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SPLIT OCTONIONS AND GENERIC RANK

TWO DISTRIBUTIONS IN DIMENSION FIVE

KATJA SAGERSCHNIG

Abstract. In his famous five variables paper Elie Cartan showed that one
can canonically associate to a generic rank 2 distribution on a 5 dimensional
manifold a Cartan geometry modeled on the homogeneous space G̃2/P , where

P is one of the maximal parabolic subgroups of the exceptional Lie group G̃2.
In this article, we use the algebra of split octonions to give an explicit global

description of the distribution corresponding to the homogeneous model.

1. Introduction

The study of generic rank 2 distributions on 5-dimensional manifolds starts in
1910 with Elie Cartan. Cartan was trying to find local normal forms for distri-
butions. This worked well for distributions on manifolds of dimension smaller or
equal to 4. In dimension 5 however, he found that generic rank 2 distributions
had local invariants, so in particular there could not be any normal form.

Cartan considered rank 2 distributions on 5-dimensional manifolds that are as
non-integrable as possible, meaning that local sections of the distribution and their
Lie brackets generate a rank 3 distribution and taking triple brackets as well gen-
erates the whole tangent bundle. He could show that one can canonically associate
to such a distribution what is now called a Cartan geometry of type (G̃2, P ), where

G̃2 is a Lie group with Lie algebra the split real form of the exceptional complex
Lie algebra gC

2 and P a certain parabolic subgroup in G̃2. In modern terminology

a Cartan geometry of type (G̃2, P ) is a P -principal bundle G → M together with
a certain g̃2-valued 1-form ω which is called Cartan connection. The curvature
K = dω + 1

2 [ω, ω] of the Cartan connection is a local invariant. Vanishing of the
curvature implies that the Cartan geometry is locally equivalent to the so-called
homogeneous model, i.e. the principal bundle G̃2 → G̃2/P together with the Mau-
rer Cartan form. Cartan gave a local description of the ‘flat’ distribution in terms
of some differential equations. The Lie group G̃2 can be realized as the symmetry
group of this distribution.
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Nowadays, one thinks of the exceptional Lie groups as being related to certain
nonassociative algebras. In 1914, Cartan noted that one can realize the compact
form G2 as the automorphism group of the octonions. There is a similar description
for the split real form. It can be realized as the automorphism group of the 8-
dimensional algebra of split octonions. We will use this realisation to give a global
explicit description of the rank two distribution corresponding to the homogeneous
model.

2. Split Octonions and G̃2

We start by collecting some information on split octonions and their relation
to the exceptional group G̃2 that we will need in the sequel. We mean by G̃2 the
split real form of the complex Lie group. The main reference for this section is [5].

A composition algebra over R is by definition a real algebra A with unit E such
that there exists a nondegenerate symmetric bilinear form 〈 , 〉 on A satisfying

〈XY, XY 〉 = 〈X, X〉〈Y, Y 〉
for all X, Y ∈ A.

Given a composition algebra, there is a notion of conjugation, defined as the
reflection with respect to the unit, i.e.

X = 2〈X, E〉E − X .

It is not difficult to verify that the bilinear form can be written in terms of conju-
gation as

〈X, Y 〉 =
1

2
(XY + Y X) .

Composition algebras are not necessarily associative. However, for all composition
algebras a weaker property holds. They are alternative, meaning that any subal-
gebra generated by two elements is associative, or equivalently, that the associator

{X, Y, Z} := (XY )Z − X(Y Z)

is skew-symmetric.
The classification of real composition algebras is as follows: In dimension 1

we have the real numbers and the only other possible dimensions for composition
algebras are 2, 4 and 8. In each of these dimensions there are up to isomorphism
two different real composition algebras. Either the bilinear form is positive definite
which leads to the complex numbers in dimension 2, the quaternions in dimension
4 and the octonions in dimension 8, or the bilinear form is indefinite. In case
it is indefinite, one can show that the dimension of a maximal totally isotropic
subspace is half the dimension of the algebra, so the signature of the bilinear form
is either (1, 1), (2, 2) or (4, 4). The corresponding composition algebras are called
split complex numbers, split quaternions and split octonions, respectively.

We will now focus on the algebra of split octonions, i.e. the unique 8-dimensional
composition algebra over R with indefinite bilinear form. An explicit realisation of

the split octonions is given by the set of vector matrices

(

ξ x
y η

)

, where x, y ∈ R3
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and ξ, η ∈ R, with addition defined componentwise and multiplication defined by
(

ξ x
y η

) (

ξ′ x′

y′ η′

)

=

(

ξξ′ + 〈x, y′〉 ξx′ + η′x + y ∧ y′

ηy′ + ξ′y − x ∧ x′ ηη′ + 〈y, x′〉

)

,

where 〈 , 〉 denotes the Euclidean inner product on R3 and ∧ the cross product.
The bilinear form on the algebra is given by

〈(

ξ x
y η

)

,

(

ξ′ x′

y′ η′

)〉

= ξ′η + η′ξ − 〈x, y′〉 − 〈x′, y〉 .

The unit is the element E =

(

1 0
0 1

)

. The orthogonal complement to the unit

is called the set of imaginary split octonions and denoted by Im OS . It is given

by all vector matrices of the form

(

ξ x
y −ξ

)

. Restricting the bilinear form on the

split octonions to Im OS gives a bilinear form of signature (3, 4). With respect to

the basis X1 =

(

0 e1

0 0

)

, X2 =

(

0 e2

0 0

)

, X3 =

(

0 e3

0 0

)

, X4 = 1√
2

(

1 0
0 −1

)

,

X5 =

(

0 0
−e1 0

)

, X6 =

(

0 0
−e2 0

)

and X7 =

(

0 0
−e3 0

)

, e1, e2, e3 denoting the

standard basis of R3, the bilinear form on Im OS is represented by the matrix




I3

−1
I3



, where I3 denotes the 3 × 3 unit matrix.

In the description of the rank 2 distribution corresponding to the homogeneous
model we will make use of a certain 3-form φ ∈ Λ3((ImOS)∗). Note that

φ(X, Y, Z) = 〈XY, Z〉
defines a 3-form, i.e. is skew-symmetric. This can either be verified directly using
the explicit formulas for multiplication and bilinear form from above, or else one
can observe the following:

We obviously have X = −X for imaginary split octonions and one can verify
that XY = Y X. It follows that for X, Y ∈ ImOS , the expression XY + Y X =
XY + XY is a real multiple of the unit E and thus orthogonal to Im OS . Hence

〈XY, Z〉 = −〈Y X, Z〉
for all X, Y, Z ∈ Im(OS). Next, we have 〈X, Y 〉 = 1

2 (XY + Y X). Hence, for
X, Y ∈ Im(OS) we have

〈XY, X〉 =
1

2

(

(XY )X + X(XY )
)

=
1

2

(

− (XY )X + X(Y X)
)

.

Since split octonions are not associative, it is not immediately clear that this
expression vanishes. However, as mentioned above, they are alternative, meaning
that any subalgebra generated by two elements is associative. This sufficies to
conclude that

〈XY, X〉 = 0 .

It follows that φ is alternating.
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Remark. Let V be a 7-dimensional vector space. One can show that there are
exactly two open GL(V )-orbits in Λ3(V ∗). In case of one of these orbits, the
stabilizer of an element is the compact real form G2. This is well-known and used
in the study of manifolds with exceptional holonomy. For the other open orbit,
the stabilizer is the split real form of the complex group G̃2. The above 3-form φ
is contained in the latter orbit.

Let us denote by Aut(OS) the group of algebra automorphisms of the split
octonions. One can prove that given any composition algebra, an algebra auto-
morphism necessarily preserves the corresponding bilinear form on the algebra, see
[5]. It follows that Aut(OS) preserves Im OS and its restriction to Im OS is con-
tained in the orthogonal group O(3, 4). Moreover, Aut(OS) preserves the 3-form
φ.

The Lie algebra corresponding to the automorphism group Aut(OS), the algebra
Der OS of derivations of the split octonions, can thus be viewed as a subalgebra
in so(3, 4). Writing so(3, 4) with respect to the quadratic form





I3

−1
I3



 ,

it consists of matrices of the following form

so(3, 4) =











A v B
w 0 vt

C wt −At



 : C = −Ct, B = −Bt







.

Now we can determine those matrices in so(3, 4) that act as derivations on Im OS :
Consider for example the equation

(

0 e1

0 0

) (

0 e2

0 0

)

=

(

0 0
−e3 0

)

.

Assuming that M =





A v B
w 0 vt

C wt −At



 acts as a derivation, i.e.

M ·
(

0 e1

0 0

) (

0 e2

0 0

)

+

(

0 e1

0 0

)

M ·
(

0 e2

0 0

)

= M ·
(

0 0
−e3 0

)

,

implies
(Ae1) ∧ e2 + e1 ∧ (Ae2) = −Ate3

which is equivalent to A being tracefree. Similar computations show that Cei =
1√
2
(v ∧ ei) and Bei = − 1√

2
(wt ∧ ei). Thus we get a description of Der OS as

matrices in so(3, 4) satisfying the following additional conditions:

A ∈ sl(3, R) , B =
1√
2





0 w3 −w2

−w3 0 w1

w2 −w1 0



 , C =
1√
2





0 −v3 v2

v3 0 −v1

−v2 v1 0



 .

Next, we can consider the subalgebra of diagonal matrices in Der OS. Via
the adjoint action it acts diagonalisable on Der OS and we get the corresponding
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eigenspace decomposition. Once we have this eigenspace decomposition, it is not
difficult to see that Der OS cannot contain any solvable ideals. Hence it is semisim-
ple, the subalgebra of diagonal matrices is a Cartan subalgebra and we can write
down the corresponding root system. Let us denote by φi the linear functional
that extracts the ith diagonal entry. Choosing as simple roots α1 = φ1 − φ2 and
α2 = φ2 we obtain the following set of positive roots:

∆+ = { α1, α2, α1 + α2 = φ1, α1 + 2α2 = φ1 + φ2 = −φ3,

2α1 + 3α2 = φ1 − φ3, α1 + 3α2 = φ2 − φ3 } .

¿From the root system we see that the Lie algebra Der OS is indeed the exeptional
Lie algebra g̃2.

The description of g̃2 as a subalgebra in so(3, 4) also enables us to understand
the ‘standard’ representation of g̃2 = Der OS on Im OS in terms of weights. It

turns out that X7 =

(

0 0
−e3 0

)

is annihilated by all positive root spaces and thus

a highest weight vector. Its weight −φ3 = α1 + 2α2 is the fundamental weight
dual to the shorter simple root α2. Other weight vectors and their weights are:

X1 α1 + α2

X2 α2

X4 0
X6 −α2

X5 −α1 − α2

X3 −α1 − 2α2 .

3. Some background on Cartan geometries

In this section we provide some basic information on Cartan geometries.
Consider a Lie group G, a closed subgroup P ⊂ G and the corresponding

homogeneous space G/P . One can associate to such a homogeneous space the
following geometric structure:

• the principal bundle G → G/P ,
• the Maurer Cartan form ωMC ∈ Ω1(G, g) defined by

ω(g)(ξ) = Tgλg−1ξ ,

where λg−1 denotes left multiplication by g−1.

It turns out that the automorphisms of this structure, i.e. the principal bundle
automorphisms Φ satisfying Φ∗ωMC = ωMC , are exactly the left multiplications
by elements in the group G.

The notion of a Cartan geometry generalizes this structure, introducing a con-
cept of curvature:

Definition. A Cartan geometry of type (G, P ) on a manifold M is given by a
principal P -bundle G → M and a Cartan connection ω ∈ Ω1(G, g). A Cartan

connection is a smooth one-form on G with values in g, which is P -equivariant,
reproduces generators of fundamental vector fields and satisfies the condition that
ω(u) : TuG → g is a linear isomorphism for all u ∈ G.



334 K. SAGERSCHNIG

Since the Maurer Cartan form satisfies the properties required in the definition
of a Cartan connection, the principal bundle G → G/P endowed with the Maurer
Cartan form is a Cartan geometry of type (G, P ). It is called the homogeneous

model of a Cartan geometry of type (G, P ).
The Maurer Cartan form has a property that general Cartan connections don’t

have. It satisfies the Maurer-Cartan equation dω(ξ, η) +
[

ω(ξ), ω(η)
]

= 0. In

general, the 2-form K ∈ Ω2(G, g)

K = dω +
1

2
[ω, ω]

is called the curvature of the Cartan geometry. One can show that a Cartan
geometry with vanishing curvature is locally equivalent to the homogeneous model.

4. Generic rank 2 distributions on 5 dimensional manifolds and

Cartan geometries

Having collected some general backround, we return to the discussion of generic
rank two distributions on five dimensional manifolds. In his famous five variables
paper [3], Elie Cartan considered distributions H of rank two on five-dimensional
manifolds, satisfying the following generic condition:

H1 := H +
{

[ξ, η] : ξ, η ∈ Γ(H)
}

is a distribution of rank three and

H1 +
{

[ξ, η] : ξ ∈ Γ(H), η ∈ Γ(H1)
}

is equal to the whole tangent bundle TM . Any such distribution corresponds to
a filtration H ⊂ H1 ⊂ TM, such that the Lie bracket of vector fields induces
bijective tensorial mappings L : Λ2H → H1/H and L : H ⊗ H1/H → TM/H1.

These rank two distributions are related to G̃2 and a certain parabolic subgroup
P .

Recall that for complex semisimple Lie algebras as well as for their split real
forms, standard parabolic subalgebras are in bijective correspondence with subsets
of the set of simple roots, see [1]. The Lie algebra g̃2 has two simple roots, a
longer one α1 and a shorter one α2. Correspondingly, there are two maximal
standard parabolic subalgebras. We denote by p the one consisting of the Cartan
subalgebra h, all positive root spaces and the root space corresponding to −α1.
Using the notation for parabolic subalgebras in terms of Dynkin diagrams, see

[1], p is represented by ◦ ×> . The connected subgroup in G̃2 with Lie algebra p

will be denoted by P . Let X7 be a highest weight vector in the representation of
G̃2 on ImOS . Then the parabolic subgroup P can be realized as the connected
component of the stabilizer of the real line through X7, or equivalently, as the
stabilizer of the ray through X7.

Any parabolic subalgebra gives rise to a grading on g̃2 such that the parabolic
can be recovered as the sum of all non-negative grading components. In case of
the parabolic subalgebra p, we define gi to be the sum of all root spaces gα such
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that in the decomposition of α into simple roots α2 occurs with coefficient i. Thus,
we obtain

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 ,

where g−3 is the direct sum of the root spaces corresponding to −(3α2 + 2α1)
and −(3α2 + α1), g−2 is the root space corresponding to −(2α2 + α1) and g−1 is
the direct sum of the root spaces corresponding to −(α2 + α1) and −α2. Note
that since −(α2 + α1) − α2 = −(2α2 + α1) the Lie bracket [ , ] : Λ2g−1 → g−2

is surjective and by equality of dimensions it is an isomorphism. Similarly, we see
that [ , ] : g−1 ⊗ g−2 → g−3 is an isomorphism.

It follows, that the vector bundle gr(TM) = H⊕H1/H⊕TM/H1 corresponding
to a generic rank 2 distribution together with the tensor L induced by the Lie
bracket of vector fields is a bundle of graded Lie algebras such that each fibre is
isomorphic to the graded Lie algebra g− = g−3 ⊕ g−2 ⊕ g−1.

Further, a theorem by Elie Cartan states that one can construct a Cartan
geometry of type (G̃2, P ) from a generic rank 2 distribution in dimension 5. In
that way one obtains an equivalence of categories between generic distributions
of rank two on five-dimensional manifolds and Cartan geometries of type (G̃2, P )
satisfying a certain normalisation condition. Using modern tools, this result is
obtained as a special case of Tanaka theory, see [6] for a treatment of this case, or
the theory of parabolic geometries, see [2] and [4].

Note that recovering the generic rank 2 distribution from the Cartan geometry
is easy: Given a Cartan geometry (p : G → M, ω) the tangent bundle can be

identified with the associated bundle G̃2 ×P g/p, where the P -action on g/p is
induced by the adjoint action. Explicitly, the isomorphism is given by

G ×P g/p ∼= TM
[

(x, X + p)
]

7→ Txp · ω(x)−1(X) .

The grading on the Lie algebra g̃2 induces a P -invariant filtration g/p ⊃ g−2/p ⊃
g−1/p on g/p, where gi = gi ⊕ · · · ⊕ gk. Via the above isomorphism this filtration
gives rise to a a filtration TM ⊃ T−2M ⊃ T−1M of the tangent bundle. The
subbundle T−1M = G ×P g−1/p is the rank 2 distribution corresponding to the
Cartan geometry.

Applied to the homogeneous model (G̃2 → G̃2/P, ωMC) we obtain the distribu-
tion

H = G̃2 ×P g−1/p

on G̃2/P . In this special case, the equivalence between generic rank 2 distributions

and Cartan geometries says that the diffeomorphisms of G̃2/P preserving H are

exactly the left multiplications by elements of G̃2. Our aim is to give a nice
description of G̃2/P and H.

5. Description of the homogeneous model

Theorem. Let G̃2 be the automorphism group of the split octonions and P ⊂ G
the maximal parabolic subgroup introduced in the previous section. We denote by
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C the cone of nonzero null vectors

C =
{

X ∈ Im OS : X 6= 0, 〈X, X〉 = 0
}

and by C/R+ the space of rays in C, i.e. the quotient where X and Y are identified

if and only if X = λY for λ ∈ R+. Then the action of G̃2 on C/R+ induces a

diffeomorphism between G̃2/P and C/R+. The tangent map of this diffeomorphism

maps the distribution G̃2 ×P g−1/p on G̃2/P onto the distribution H on C/R+

defined by

H[X] =
{

Y ∈ Im (OS) : φ(X, Y, Z) = 0 : ∀Z ∈ Im (OS)
}

/ℓ ,

where X ∈ C, where [X ] denotes the ray through X and ℓ the real line through X.

Proof. The first step is to get the identification between the homogeneous space
G̃2/P and the space of rays in the cone C. The ‘standard’ representation of G̃2 =
AutOS on Im OS preserves the bilinear form 〈 , 〉. Hence, it preserves the cone

C and we get an action of G̃2 on the quotient C/R+. Next note that the highest
weight vector X7 is a null vector. Thus, the ray [X7] through X7 is contained in

C/R+ and we can consider its orbit under the action of G̃2. The stabilizer of [X7]

in G̃2 is the parabolic subgroup P . This parabolic is 9-dimensional. We know
that G̃2 has dimension 14. Thus the homogeneous space G̃2/P has dimension 5.

The space of rays C/R+ has also dimension 5 and it follows that the G̃2-orbit of
[X7] is open in C/R+. Moreover, we know that every quotient of a semisimple Lie

group modulo a parabolic subgroup is compact. Hence the G̃2-orbit of [X7] and
the space of rays C/R+ coincide and we get an identification

G̃2/P ∼= G̃2 · [X7] = C/R+ .

Next, we come to the description of the rank two distribution G̃2 × g−1/p in
this picture. Let us describe the tangent space of C/R+ first. The tangent space
of the cone C in a point X is given by the orthogonal complement to X , i.e.
TXC = {Y ∈ ImOS : 〈X, Y 〉 = 0}. We denote by p the projection p : C → C/R+.
Then the tangent space of C/R+ in the point [X ] is given by the tangent space of
C in X modulo the kernel of TXp which is the real line ℓ through X . Thus, we
have

T[X](C/R+) = ℓ⊥/ℓ .

Now we consider the subspace W/ℓ7 in T[X7](C/R+) = ℓ⊥7 /ℓ7, where

W =
{

Y ∈ Im (OS) : φ(X7, Y, Z) = 0 ∀Z ∈ Im(OS)
}

,

and φ denotes the generic 3-form φ(X, Y, Z) = 〈XY, Z〉. We claim that this
subspace describes the rank 2 distribution H in the point [X7].

To verify the claim take an arbitrary imaginary split octonion Y =

(

ξ x
y −ξ

)

.

Note that 〈X7Y, Z〉 = 0 for all Z ∈ Im OS if and only if the product X7Y is a real
multiple of the identity E. We have

(

0 0
−e3 0

) (

ξ x
y −ξ

)

=

(

0 −e3 ∧ y
−ξe3 −〈e3, x〉

)

.
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The right hand side is a multiple of the identity if and only if it vanishes and this
is the case if and only if Y has zeros in the diagonal, the entry y is a real multiple
of e3 and x is orthogonal to e3. Comparing with the weight decomposition of the
standard representation on Im OS at the end of section 2, we conclude that W is
the sum of the following weight spaces

W = Vα1+2α2
⊕ Vα1+α2

⊕ Vα2
.

The isomorphim between the tangent spaces TeP (G̃2/P ) and T[X7](C/R+) is given
by

g̃2/p ∼= ℓ⊥7 /ℓ7

A + p 7→ A · ℓ7 + ℓ7 .

The filtration component g−1 consists of the parabolic subalgebra p and the root
spaces corresponding to the roots −α2 and −α1 − α2. The parabolic subalgebra
p stabilizes the line ℓ7 and the remaining two root spaces map ℓ7 onto the weight
spaces Vα1+α2

respectively Vα2
. It follows that the isomorphism maps g−1/p onto

W/ℓ7.

Finally, note that since G̃2 preserves the 3-form φ, it follows that the distribution
H is given in any point [X ] ∈ C/R+ by

H[X] =
{

Y ∈ Im (OS) : φ(X, Y, Z) = 0 ∀Z ∈ Im (OS)
}

/ℓ .

�

The theorem gives a description of the distribution corresponding to the homo-
geneous model (G̃2 → G̃2/P, ωMC) on the space C/R+ of rays in the cone C. Now
C/R+ is diffeomorphic to S2 × S3, an explicit diffeomorphism is given by

S2 × S3 → C/R+

(

x, (α, y)
)

7→ R+ ·
(

α y − x
y + x −α

)

.

Hence we can try to find a description of the distribution on S2×S3 as well, which
leads to the following result.

Corollary. Let H be the distribution on S2 × S3 given by

H(x,(α,y)) =

{

(

v, (β, w)
)

⊂ R3 × R4 : 〈v, x〉 = 0, β = 〈v ∧ y, x〉 ,

w = 〈v, y〉x + α(v ∧ x) − 〈y, x〉 v

}

,

for any (x, (α, y)) ∈ S2 × S3. Then the group of diffeomorphisms of S2 × S3 such

that the tangent maps preserve the distribution H is a Lie group with Lie algebra

g̃2.

Proof. In view of section 4 and the theorem, it remains to understand that via the
tangent map of the diffeomorphism S2 × S3 ∼= C/R+, the distribution described
in the corollary is mapped onto the distribution described in the theorem.
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We start with an element
(

x, (α, y)
)

in S2 × S3, that is x ∈ R3,(α, y) ∈ R × R3

such that |x|2 = 1 and α2 + |y|2 = 1. The tangent space of S2 × S3 in (x, (α, y))
is given by

T(x,(α,y))(S
2 × S3) = x⊥ ⊕ (α, y)⊥,

i.e.
(

v, (β, w)
)

∈ T(x,(α,y))(S
2 × S3) satisfies 〈x, v〉 = 0 and αβ + 〈w, y〉 = 0. The

inclusion ρ : S2×S3 → C maps
(

x, (α, y)
)

to X =

(

α y − x
y + x −α

)

and its tangent

map is given by

T(x,(α,y))ρ ·
(

v, (β, w)
)

=

(

β w − v
w + v −β

)

.

Now we consider the space H(x,(α,y)) of all (v, (β, w)) where v is any vector
orthogonal to x, β = 〈v ∧ y, x〉 and w = 〈v, y〉x+α(v∧x)−〈y, x〉. This is a subspace
of T(x,(α,y))(S

2 × S3) since one easily verifies that αβ + 〈w, y〉 = 0 and obviously
it is two dimensional. We need to verify that it coincides with the subspace
of all elements in T(x,(α,y))(S

2 × S3) that are mapped via T(x,(α,y))ρ ·
(

v, (β, w)
)

into the set of imaginary split octonions Y such that φ(X, Y, Z) = 0 for all Z ∈
Im(OS). Note that by dimensional reasons we are done, if we can show that
H(x,(α,y)) contains all elements mapped via T(x,(α,y))ρ into the set of imaginary
split octonions Y such that φ(X, Y, Z) = 0 for all Z ∈ Im(OS). This will be done
in the following:

The set of imaginary split octonions Y such that φ(X, Y, Z) = 0 for all Z ∈
Im(OS) can equivalently be described as the set of all imaginary split octonions
Y such that XY is a real multiple of the identity. Demanding that

(

α y − x
y + x −α

) (

β w − v
w + v −β

)

=

(

λ 0
0 λ

)

leads to the following equations

αβ + 〈y − x, v + w〉 = λ
αβ + 〈y + x, w − v〉 = λ
α(w − v) − β(y − x) + (x + y) ∧ (v + w) = 0
−α(v + w) + β(y + x) − (y − x) ∧ (w − v) = 0 .

Expanding these equations an subtracting the second from the first implies

〈v, y〉 = 〈w, x〉
and adding the fourth to the third gives

−αv + βx + y ∧ v + x ∧ w = 0 .

Now we consider the inner product

〈−αv + βx + y ∧ v + x ∧ w, x〉 = β + 〈y ∧ v, x〉

from which we derive

β = 〈v ∧ y, x〉 .
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Next

(w ∧ x) ∧ x = 〈w, x〉 x − 〈x, x〉w = 〈v, y〉x − w

and

(w ∧ x) ∧ x = (−αv + βx + y ∧ v) ∧ x = −α(v ∧ x) + 〈y, x〉 v

which gives

w = 〈v, y〉x + α(v ∧ x) − 〈y, x〉 v .

This concludes the proof of the corollary. �
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