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Abstract. In this paper we show that a “locally Lipschitz” locally com-
pact transformation group acting continuously and effectively on a connected
paracompact locally Euclidean topological manifold is a Lie group. This is
a contribution to the proof of the Hilbert-Smith conjecture. It generalizes
the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Re-

povš-Ščepin Theorem [17] which holds only for Riemannian manifolds.

A topological group G acting continuously and effectively (i.e. every non-trivial
element of G acts non-trivially) on an n-dimensional topological manifold M is
said to be locally Lipschitz if ∀ a ∈ M , ∃ (Ua, ϕa) chart of M where a ∈ Ua open
⊆ M , ϕa : Ua → Rn an open embedding and 1 ∈ V open ⊆ G, a ∈ U open ⊆ Ua

such that V (U) ⊆ Ua and ∀ g ∈ V , d(gx, gy) ≤ cgd(x, y) ∀ x, y ∈ U for some
cg ∈ R where d is the transported Euclidean distance from Rn via the map ϕa.
This definition generalizes the corresponding one given in [8].

In this paper we generalize the results of [8] and we show that a locally Lipschitz
locally compact transformation group acting continuously and effectively on a
connected paracompact locally Euclidean manifold is a Lie group, Theorem 2. This
provides a contribution to the proof of the Hilbert-Smith conjecture. It generalizes
the classical Bochner-Montgomery-Kuranishi Theorem [1, 9] where the group acts
by C1 diffeomorphisms on a smooth manifold and also the Repovš-Ščepin Theorem
[17] which holds only for Riemannian manifolds.

The following theorem is all what we need to establish our result. It replaces
the Hausdorff dimension argument in [17] by an elementary theorem in dimension
theorem from Nagata book [16, p.83]. This will enable us to obtain the required
generalization from Riemannian manifolds to topological manifolds.
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Theorem 1. Let G be a zero-dimensional compact topological group acting con-

tinuously on a paracompact n-dimensional topological manifold M such that G is

locally Lipschitz then dimM/G = dimM = n (dim = covering dimension).

Proof. Let a ∈ M and let (Ua, ϕa) chart of M where a ∈ Ua open ⊆ M , ϕa : Ua →
Rn an open embedding. Let a ∈ U open ⊆ U− compact ⊆ Ua and H open
normal subgroup of G such that H(U−) ⊆ Ua [1, TGIII.36] such that ∀ g ∈ H ,
d(gx, gy) ≤ cg d(x, y) ∀x, y ∈ H(U−) for some cg ∈ R, where d is the transported
Euclidean distance from Rn via the map ϕa.

Since H = ∪k≥1{g ∈ H : d(gx, gy) ≤ k d(x, y) ∀x, y ∈ H(U−)}, we may assume
by a Baire category argument that cg = c ∀ g ∈ H .

Let β be the invariant Haar measure on H of total mass 1, then

d−(x, y) =

∫

H

d(gx, gy) dβ(g), ∀ x, y ∈ H(U−)

defines an equivalent H-invariant metric on H(U−) and if π1 : M → M/H is the
canonical map, then d ∗ (π1x, π1y) = d−(Hx, Hy) defines an admissible metric on
H(U−)/H .

Note that if A ⊆ H(U−), then diam (π1, d∗) ≤ diam (A, d−) ≤ c diam(A, d)
(diam (B, δ) = diameter of set B under the metric δ) so that if

mn(A, d) = sup
ε>0

inf
{

∑

i≥1

(

diam (Ai, d)
)n

: A =

n
⋃

i=1

Ai, diam (Ai, d) < ε, ∀ i ≥ 1
}

[16, p.81], and if we identify H(U−) by its image in Rn under ϕa then mn(A, d) =
(

4

π

)
n

2 Γ
(

1 + n
2

)

λ∗n(A) where λ∗n (resp. λn) is the Lebesgue outer measure (resp.
measure) on Rn [6, p.157].

We have mn+1

(

H(U−), d
)

= 0 since λn+1

(

H(U−)
)

= 0 and

mn+1

(

H(U−)/H, d ∗
)

= 0

so that dim H(U−)/H = dimπ1(U
−) ≤ n [16, p.83].

Now, if π : M → M/G and π2 : M/H → (M/H)/(G/H) are the canonical maps,
then

dimπ(U−) = dimπ2

(

G/Hπ1(U
−)

)

[2, TG III.15]

= dimG/Hπ1(U
−) [13, Theorem 4.1]

= dimπ1(U
−) [15, p.53]

≤ n

hence n = dimM ≤ dimM/G ≤ n [15, p.62+p.130].

Now we can establish our main theorem which, in view of [10, Lemma 2.1], gen-
eralizes Repovš -Ščepin Theorem [17] which holds only for Riemannian manifolds.

Theorem 2 (Main Theorem). Let G be a locally compact topological group acting

continuously and effectively on a connected paracompact n-dimensional topological

manifold M such that G is locally Lipschitz, then G is a Lie group.
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Proof. Note that G is metrizable [2, TG III 36 + TG III 76] and dim G < ∞ [11],
so that by the main approximation theorem [12, p.175] if G is not a Lie group,
then G contains a zero-dimensional torsion free compact group by [2, TG III 60],
[15, p.161], [14, Theorem 2.1] and [5, p.206] hence it contains the p-adic group
Zp = lim

←
Z/pnZ for some prime number p [7, p.426] and

n = dimM = dimM/Zp by Theorem 1

= dimZ M/Zp [15, p.206, p.210]

= n + 2 [3, 18]

(dimZ = cohomological dimension over Z) which is absurd.

Corollary 1 (Bochner-Montgomery-Kuranishi [1, 9]). Let G be a locally compact

topological group acting continuously and effectively on a connected paracompact

n-dimensional C1 manifold M such that G acts on M by C1 diffeomorphisms,

then G is a Lie group.

Proof. Clearly by the mean value theorem [4, p.155] G is locally Lipschitz, hence
our assertion follows from Theorem 2.
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