ON ENDMORPHISMS OF MULTIPLICATION AND COMULTIPLICATION MODULES

H. Ansari-Toroghy and F. Farshadifar

Abstract. Let R be a ring with an identity (not necessarily commutative) and let M be a left R-module. This paper deals with multiplication and comultiplication left R-modules M having right $\text{End}_R(M)$-module structures.

1. Introduction

Throughout this paper R will denote a ring with an identity (not necessarily commutative) and all modules are assumed to be left modules. Further “\subset” will denote the strict inclusion and \mathbb{Z} will denote the ring of integers.

Let M be a left R-module and let $S := \text{End}_R(M)$ be the endomorphism ring of M. Then M has a structure as a right S-module so that M is an $R-S$ bimodule. If $f: M \to M$ and $g: M \to M$, then $fg: M \to M$ defined by $m(fg) = (mf)g$.

Also for a submodule N of M,

$$I^N := \{ f \in S : \text{Im}(f) = Mf \subseteq N \}$$

and

$$I_N := \{ f \in S : N \subseteq \text{Ker}(f) \}$$

are respectively a left and a right ideal of S. Further a submodule N of M is called (3) an open (resp. a closed) submodule of M if $N = N^\circ$, where $N^\circ = \sum_{f \in I_N} \text{Im}(f)$ (resp. $N = \bar{N}$, where $\bar{N} = \cap_{f \in I_N} \text{Ker}(f)$). A left R-module M is said to self-generated (resp. self-cogenerated) if each submodule of M is open (resp. is closed).

Let M be an R-module and let $S = \text{End}_R(M)$. Recently a large body of researches has been done about multiplication left R-module having right S-module structures. An R-module M is said to be a multiplication R-module if for every submodule N of M there exists a two-sided ideal I of R such that $N = IM$.

In [2], H. Ansari-Toroghy and F. Farshadifar introduced the concept of a comultiplication R-module and proved some results which are dual to those of multiplication R-modules. An R-module M is said to be a comultiplication R-module if for every submodule N of M there exists a two-sided ideal I of R such that $N = (0 :_M I)$.

2000 Mathematics Subject Classification: Primary: 13C99.

Key words and phrases: endomorphisms, multiplication modules, comultiplication modules.

Received September 28, 2006, revised October 2007. Editor J. Trlifaj.
This paper deals with multiplication and comultiplication left R-modules M having right $\text{End}_R(M)$-modules structures. In section three of this paper, among the other results, we have shown that every comultiplication R-module is co-Hopfian and generalized Hopfian. Further if M is a comultiplication module satisfying ascending chain condition on submodules N such that M/N is a comultiplication R-module, then M satisfies Fitting’s Lemma. Also it is shown that if R is a commutative ring and M is a multiplication R-module and S is a domain, then for every maximal submodule P of M, IP is a maximal ideal of S.

2. Previous results

In this section we will provide the definitions and results which are necessary in the next section.

Definition 2.1.

(a) M is said to be (see [9]) a **multiplication** R-module if for any submodule N of M there exists a two-sided ideal I of R such that $N = IM$.

(b) M is said to be a **comultiplication** R-module if for any submodule N of M there exists a two-sided ideal I of R such that $N = (0 :_M I)$.

(c) Let N be a non-zero submodule of M. Then N is said to be (see [1]) **large or essential** (resp. **small**) if for every non-zero submodule L of M, $N \cap L \neq 0$ (resp. $L + N = M$ implies that $L = M$).

(d) M is said to be (see [7]) **Hopfian** (resp. **generalized Hopfian** (gH for short)) if every surjective endomorphism f of M is an isomorphism (resp. has a small kernel).

(e) M is said to be (see [8]) **co-Hopfian** (resp. **weakly co-Hopfian**) if every injective endomorphism f of M is an isomorphism (resp. an essential homomorphism).

(f) An R-module M is said to satisfy **Fitting’s Lemma** if for each $f \in \text{End}_R(M)$ there exists an integer $n \geq 1$ such that $M = \text{Ker}(f^n) \oplus \text{Im}(f^n)$ (see [5]).

(g) Let M be an R-module and let I be an ideal of R. Then IM is called to be **idempotent** if $I^2M = IM$.

3. Main results

Lemma 3.1. Let R be any ring. Every comultiplication R-module is co-Hopfian.

Proof. Let M be a comultiplication R-module and let $f : M \rightarrow M$ be a monomorphism. There exists a two-sided ideal I of R such that $\text{Im}(f) = (0 :_M I)$. Now let $m \in M$ so that $mf \in \text{Im}(f)$. Then for each $a \in I$, we have $(am)f = a(mf) = 0$. It follows that $am \in \text{Ker}(f) = 0$. This implies that $am = 0$ so that $m \in (0 :_M I) = Mf$. Hence we have $M \subseteq Mf$ so that f is epic. It follows that M is a co-Hopfian R-module. \[\square\]
The following examples shows that not every comultiplication (resp. Artinian) \(R \)-module is an Artinian (resp. a comultiplication) \(R \)-module.

Example 3.2. Let \(p \) be a prime number. Then let \(R \) be the ring with underlying group
\[
R = \text{End}_\mathbb{Z} \left(\mathbb{Z}(p^\infty) \right) \oplus \mathbb{Z}(p^\infty),
\]
and with multiplication
\[
(n_1, q_1) \cdot (n_2, q_2) = (n_1 n_2, n_1 q_2 + n_2 q_1).
\]
Osofsky has shown that \(R \) is a non-Artinian injective cogenerator (see [6, Exa. 24.34.1]). In fact \(R \) is a commutative ring. Hence \(R \) is a comultiplication \(R \)-module by [6, Prop. 23.13].

Example 3.3. Let \(F \) be a field, and let \(M = \bigoplus_{i=1}^{n} F_i \), where \(F_i = F \) for \(i = 1, 2, \ldots, n \). Clearly \(M \) is an Artinian non-comultiplication \(F \)-module.

Theorem 3.4. Let \(M \) be a comultiplication module satisfying ascending chain condition on submodules \(N \) such that \(M/N \) is a comultiplication \(R \)-module. Then \(M \) satisfies Fitting’s Lemma.

Proof. Let \(f \in \text{End}_R(M) \) and consider the sequence
\[
\text{Ker} f \subseteq \text{Ker} f^2 \subseteq \cdots.
\]
Since every submodule of a comultiplication \(R \)-module is a comultiplication \(R \)-module by [2], for each \(n \) we have \(M/\text{Ker} f^n \cong \text{Im} f^n \) implies that \(M/\text{Ker} f^n \) is a comultiplication \(R \)-module. Hence by hypothesis there exists a positive integer \(n \) such that \(\text{Ker}(f^n) = \text{Ker}(f^{n+h}) \) for all \(h \geq 1 \). Set \(f^n_1 = f^n |_{M(f^n)} \). Then \(f^n_1 \in \text{End}_R(M(f^n)) \). Further we will show that \(f^n_1 \) is monic. To see this let \(x \in \text{Ker}(f^n_1) \). Then \(x = y(f^n) \) for some \(y \in M \) and we have \(x(f^n) = 0 \). It follows that \(y(f^{2n}) = 0 \) so that
\[
y \in \text{Ker}(f^{2n}) = \text{Ker}(f^n).
\]
Hence we have \(x = 0 \). But \(M f^n \) is a comultiplication \(R \)-module and every comultiplication \(R \)-module is co-Hopfian by Lemma 3.1. So we conclude that \(f^n_1 \) is an automorphism. In particular, \(M(f^n) \cap \text{Ker}(f^n) = 0 \). Now let \(x \in M \). Since \(f^n_1 \) is epimorphism, then there exists \(y \in M \) such that \(x(f^n) = y(f^{2n}) \). Hence \((x - y(f^n))(f^n) = 0 \). It follows that \(x - y(f^n) \in \text{Ker}(f^n) \). Now the result follows from this because \(x = y(f^n) + (x - y(f^n)) \). \(\square \)

Corollary 3.5. Let \(M \) be an indecomposable comultiplication module satisfying ascending chain condition on submodules \(N \) such that \(M/N \) is a comultiplication \(R \)-module. Let \(f \in \text{End}_R(M) \). Then the following are equivalent.

(i) \(f \) is a monomorphism.
(ii) \(f \) is an epimorphism.
(iii) \(f \) is an automorphism.
(iv) \(f \) is not nilpotent.
Proof. (i)⇒(ii). This is clear by Lemma 3.1.
(iii)⇒(ii). This is clear.
(iii)⇒(iv). Assume that \(f \) is an automorphism. Then \(M = Mf \). Hence,
\[
M = Mf = M(f^2) = \cdots.
\]
If \(f \) were nilpotent, then \(M \) would be zero.
(ii)⇒(i). Assume that \(f \) is an epimorphism. Then \(M = Mf \). Hence
\[
M = Mf = M(f^2) = \cdots.
\]
By Theorem 3.4, there is a positive integer \(n \) such that
\[
M = \ker(f^n) \oplus \text{Im}(f^n).
\]
Hence \(M = \ker(f^n) \oplus M \), so \(\ker(f^n) = 0 \). Thus, \(\ker(f) = 0 \).
(ii)⇒(iii). This follows from (ii)⇒(i).
(iv)⇒(iii). Suppose that \(f \) is not nilpotent. By Theorem 3.4, there exists a positive integer \(n \) such that \(M = Mf^n \oplus \ker f^n \). Since \(M \) is indecomposable \(R \)-module, it follows that \(\ker f^n = 0 \) or \(Mf^n = 0 \). Since \(f \) is not nilpotent, we must have \(\ker f^n = 0 \). This implies that \(f \) is monic. This in turn implies that \(f \) is epic by Lemma 3.1. Hence the proof is completed. \(\square \)

Example 3.6. Let \(A = K[x, y] \) be the polynomial ring over a field \(K \) in two indeterminates \(x, y \). Then \(\overline{A} = A/(x^2, y^2) \) is a comultiplication \(\overline{A} \)-module. But \(\overline{A}/\overline{Ax\bar{y}} \) is not a comultiplication \(\overline{A} \)-module (see [6, Exa. 24.4]). Therefore, not every homomorphic image of a comultiplication module is a comultiplication module.

Remark 3.7. In the Corollary 3.5 the condition \(M \) satisfying ascending chain condition on submodules \(N \) such that \(M/N \) is a comultiplication \(R \)-module can not be omitted. For example \(M = \mathbb{Z}(p^\infty) \) is an indecomposable comultiplication \(\mathbb{Z} \)-module but not satisfying ascending chain condition on submodules \(N \) such that \(M/N \) is a comultiplication \(\mathbb{Z} \)-module. Define \(f: \mathbb{Z}(p^\infty) \rightarrow \mathbb{Z}(p^\infty) \) by \(x \rightarrow px \). Clearly \(f \) is an epimorphism with \(\ker f = \mathbb{Z}(1/p + \mathbb{Z}) \). Hence \(f \) is not a monomorphism.

Lemma 3.8. Let \(M \) be a comultiplication \(R \)-module and let \(N \) be an essential submodule of \(M \). If the right ideal \(I_N \) of \(\text{End}_R(M) \) is non-zero, then it is small in \(\text{End}_R(M) \).

Proof. Let \(J \) be any right ideal of \(S = \text{End}_R(M) \) such that \(I_N + J = S \). Then \(1_M = f + j \) for some \(f \in I_N \) and \(j \in J \). Since \(\ker(1_M - f) \cap N = 0 \) and \(N \) is an essential submodule of \(M \), it follows that \(j \) is a monomorphism. Hence by Lemma 3.1, \(j \) is an automorphism so that \(J = S \). Hence \(I_N \) is a small right ideal of \(S \). \(\square \)

Proposition 3.9. Let \(M \) be a comultiplication \(R \)-module and let \(N \) be a submodule of \(M \) such that \(M/N \) is a faithful \(R \)-module. Then \(M/N \) is a co-Hopfian \(R \)-module.

Proof. Let \(f: M/N \rightarrow M/N \) be an \(R \)-monomorphism and \((M/N)f = K/N \), with \(N \subseteq K \subseteq M \). Since \(M \) is a comultiplication \(R \)-module there exists a two-sided ideal \(I \) of \(R \) such that \(K = (0 :_M I) \). Now
\[
(I(M/N))f = I(M/N)f = I(K/N) = 0.
\]
Since f is monic, it follows that $I(M/N) = 0$. This in turn implies that $I \subseteq \text{Ann}_R(M/N) = 0$. Hence we have $K = M$ so that f is an epimorphism. \hfill \Box

Lemma 3.10. Every comultiplication R-module is gH.

Proof. Let M be comultiplication R-module and let $f : M \to M$ be an epimorphism and assume that $\ker(f) + K = M$, where K is a submodule of M. So $Kf = Mf = M$. Since M is a comultiplication module, there exists a two-sided ideal J of R such that $K = (0 :_M J)$.

Now $0 = 0f = (J(0 :_M J))f = J(Kf) = JM$.

It follows that $J \subseteq \text{Ann}_R(M)$. Hence we have $K = (0 :_M J) = M$. This shows that $\ker(f)$ is a small submodule of M. So the proof is completed. \hfill \Box

Proposition 3.11.

(a) Assume that whenever $f, g \in \text{End}_R(M)$ with $fg = 0$ then we have $gf = 0$. If M is a self-generated (resp. self-cogenerated) R-module, then M is Hopfian (resp. co-Hopfian).

(b) Let M be a self-generated (resp. self-cogenerated) R-module and let S be a left Noetherian (resp. right Artinian) ring. Then M is a Noetherian S-module.

Proof. (a) Let $S = \text{End}_R(M)$ and let $g : M \to M$ be an epimorphism. Let f be any element of $I^{\ker(g)}$. Then $Mf \subseteq \ker(g)$, so $M(fg) = (Mf)g = 0$. Hence, $fg = 0$. By our assumption, $gf = 0$. Since g is an epimorphism, we have

$$Mf = (Mg)f = M(gf) = 0.$$

Thus, if M is self-generated,

$$\ker(g) = \sum_{f \in I^{\ker(g)}} \text{Im}(f) = 0.$$

Hence M is a Hopfian R-module. The proof is similar when M is a self-cogenerated R-module.

(b) Let

$$N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$$

be an ascending chain of S-submodules of M. This induces the sequence

$$I^{N_1} \subseteq I^{N_2} \subseteq \cdots \subseteq I^{N_k} \subseteq \cdots.$$

Now there exists a positive integer s such that for each $0 \leq i$, $I^{N_s} = I^{N_{i+s}}$. Since M is a self-generated R-module, we have $N_s = MI^{N_s} = MI^{N_{i+s}} = N_{i+s}$ for every $0 \leq i$. Thus M is a Noetherian S-module. For right Artinian case when M is a self-cogenerator R-module, the proof is similar. So the proof is completed. \hfill \Box

Theorem 3.12. Let M be a multiplication R-module and let N be a submodule of M.

(a) If R is a commutative ring, and I is an ideal of R such that IM is an idempotent submodule of M, then IM is gH.

(b) If R is a commutative ring and N is faithful, then N is weakly co-Hopfian.

(c) If M is a quasi-injective, N is gH.

Proof. (a) Let I be an ideal of R such that IM be an idempotent submodule of M. Let $f : IM \to IM$ be an epimorphism and assume that $\ker(f) + L = IM$, where L is a submodule of IM. Then we have $I(\ker(f)) + IL = IM$. Let $\ker(f) = JM$ for some ideal J of R. Since R is a commutative ring, we have

$$0 = I(\ker(f))f = (IJM)f = J(IM)f = JIM = IJM = I(\ker(f)).$$

Thus by the above arguments, $IL = IM$ so that $IM \subseteq L$. It follows that $IM = L$ so that IM is a generalized Hopfian R-module.

(b) Let I be an ideal of R such that $N = IM$. Let $f : N \to N$ be an injective homomorphism and assume that $Nf \cap K = 0$, where K is a submodule of N. Then there exist ideals J_1 and J_2 of R such that $Nf = J_1M$ and $K = J_2M$. Then we have

$$0 = K \cap Nf = K \cap (IM)f = (J_2M) \cap (IM)f = J_2M \cap J_1M \supseteq J_2J_1M.$$

Hence $J_2J_1M = 0$. Now we have

$$(IJ_2M)f = J_2(IM)f = J_2J_1M = 0.$$

Since f is monic, $J_2N = IJ_2M = 0$. Since N is a faithful R-module, we have $J_2 = 0$ so that $K = 0$. Hence Nf is essential in N. It implies that N is a weakly co-Hopfian R-module as desired.

(c) Let $f : N \to N$ be an epimorphism and let $\ker(f) + K = N$, where K is a submodule of N. Since M is quasi-injective, we can extend f to $g : M \to M$. But as M is a multiplication module, $Kg \subseteq K$, therefore $Kf \subseteq K$. On the other hand, $Kf = N$ since f is epimorphism. Therefore $K = N$. Hence N is a generalized Hopfian R-module as desired.

Proposition 3.13. Let R be a commutative ring and let M be a multiplication R-module. Let $S = \text{End}_R(M)$ be a domain. Then the following assertions hold.

(a) Each non-zero element of S is a monomorphism.

(b) If I and J are ideals of S such that $I \neq J$, then $MI \neq MJ$.

Proof. (a) Assume that $0 \neq g \in S$. Then there exist ideals I and J of R such that $\text{Im}(g) = JM$ and $\ker(g) = IM$. Now we have

$$0 = (\ker(g))g = (IM)g = I(Mg) = IJM.$$

It implies that $IJ \subseteq \text{Ann}_R(M)$. Since S is a domain, $\text{Ann}_R(M)$ is a prime ideal of R by [2, 2.3]. Hence $I \subseteq \text{Ann}_R(M)$ or $J \subseteq \text{Ann}_R(M)$ so that $IM = 0$ or $JM = 0$. It turns out that $\ker(g) = 0$ as desired.

(b) Since R is a commutative ring, M is a multiplication S-module. Hence for $0 \neq m \in M$ there exists an ideal K of S such that $mS = MK$. Now we assume that $MI = MJ$. Since R is a commutative ring, S is a commutative ring by [3]. Hence

$$mI = mSI = (MK)I = (MI)K = (MJ)K = (MK)J = mSJ = mJ.$$
Choose \(f \in I \setminus J \). Then since \(mf \in mI = mJ \), there exists \(h \in J \) such that \(mh = mf \). Thus we have \(m(h - f) = 0 \). Further \(h - f \neq 0 \). So by using part (a), we have \(m \in \ker(h - f) = 0 \). But this is a contradiction and the proof is completed.

Corollary 3.14. Let \(R \) be a commutative ring and \(M \) be a multiplication \(R \)-module. Set \(S = \text{End}_R(M) \) and \(\text{Im}(J) = \sum_{f \in J} \text{Im}(f) \), where \(J \) is an ideal of \(S \). If \(J \) is a proper ideal of a domain \(S \), then \(\text{Im}(J) \) is a proper submodule of \(M \).

Proof. This is an immediate consequence of Proposition 3.13 (b).

Theorem 3.15. Let \(R \) be a commutative ring and let \(M \) be a multiplication \(R \)-module such that \(S = \text{End}_R(M) \) is a domain. Then for every maximal submodule \(P \) of \(M \), \(I^P \) is a maximal ideal of \(S \).

Proof. Since \(\text{Id}_M \in S \) and \(\text{Id}_M \not\in IP \), we have \(IP \neq S \). Now assume that \(U \) is an ideal of \(S \) such that \(IP \subseteq U \subseteq S \). Then if \(MU = M \), then by Corollary 3.14, \(U = S \). If \(MU = P \), then \(U \subseteq IP \), so \(U = IP \). Hence \(IP \) is a maximal ideal of \(S \) and the proof is completed.

Example 3.16. Let \(R \) be a commutative ring and let \(P \) be a prime ideal of \(R \). Set \(M = R/P \). Then \(M \) is a multiplication \(R \)-module and \(S = \text{End}_R(M) \) is a domain. Hence by Theorem 3.15, for every maximal submodule \(N \) of \(M \), \(IN \) is a maximal ideal of \(S \).

Acknowledgement. The authors would like to thank the referee for his invaluable comments.

References

Department of Mathematics
Faculty of Science, Guilan University
P. O. Box 1914, Rasht, Iran
E-mail: ansari@guilan.ac.ir, Farshadifar@guilan.ac.ir