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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 44 (2008), 57–67

ON DESZCZ SYMMETRIES
OF WINTGEN IDEAL SUBMANIFOLDS

Miroslava Petrović-Torgašev and Leopold Verstraelen

Abstract. It was conjectured in [26] that, for all submanifolds Mn of all
real space forms M̃n+m(c), the Wintgen inequality ρ ≤ H2 − ρ⊥ + c is
valid at all points of M , whereby ρ is the normalised scalar curvature of
the Riemannian manifold M and H2, respectively ρ⊥, are the squared mean
curvature and the normalised scalar normal curvature of the submanifold M in
the ambient space M̃ , and this conjecture was shown there to be true whenever
codimension m = 2. For a given Riemannian manifold M , this inequality can
be interpreted as follows: for all possible isometric immersions of Mn in space
forms M̃n+m(c), the value of the intrinsic scalar curvature ρ of M puts a
lower bound to all possible values of the extrinsic curvature H2 − ρ⊥ + c that
M in any case can not avoid to “undergo” as a submanifold of M̃ . And, from
this point of view, then M is called a Wintgen ideal submanifold when it
actually is able to achieve a realisation in M̃ such that this extrinsic curvature
indeed everywhere assumes its theoretically smallest possible value as given
by its normalised scalar curvature. For codimension m = 2 and dimension
n > 3, we will show that the submanifolds M which realise such minimal
extrinsic curvatures in M̃ do intrinsically enjoy some curvature symmetries in
the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their
Ricci curvature tensor and of their conformal curvature tensor of Weyl, which
properties will be described mainly following [20].

1. Deszcz symmetry

Let Mn be an n−dimensional Riemannian manifold with metric (0, 2) tensor g
and Levi-Civita connection∇. Let R denote the (0, 4) Riemann-Christoffel curvature
tensor of M aswell as the curvature operator R(X,Y ) := ∇X∇Y −∇Y∇X−∇[X,Y ],
thus having

(1) R(X,Y, Z,W ) := g
(
R(X,Y )Z,W

)
,

whereby X, Y , etc. stand for arbitrary vector fields on M . By the action of the
curvature operator working as a derivation on the curvature tensor R, the following
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(0, 6) tensor R ·R is obtained:

(2)

(R ·R)(X1, X2, X3, X4;X,Y ) := (R(X,Y ) ·R)(X1, X2, X3, X4)

=−R(R(X,Y )X1, X2, X3, X4)−R(X1, R(X,Y )X2, X3, X4)

−R(X1, X2, R(X,Y )X3, X4)−R(X1, X2, X3, R(X,Y )X4) .

We recall that Schouten, in the 1918 article in which he determined the
(pseudo-)parallel translation independently of Levi-Civita, obtained the geome-
trical interpretation of the curvature tensor R as the second order measure of
the change of the direction of vector fields after their parallel transport around
closed infinitesimal curves on M [25]. Later on this actually became the most often
used definition of the curvature tensor, cfr (1), whereby Schouten’s geometrical
view on R however almost equally often more or less got out of sight, mainly the
formal aspects of Koszul’s approach towards the connection ∇ being put in focus.
The locally flat spaces, R = 0, thus are the Riemannian manifolds for which all
directions remain preserved after parallel transport around all closed curves. The
knowledge of the curvature tensor R is equivalent to the knowledge of the sectional
or Riemannian curvatures K(p, π), π being any 2-plane in the tangent space TpM
at any point p of M , as shown by Cartan; when π is spanned by orthonormal
vectors u and v at p,

(3) K(p, π) = R(u, v, v, u)] .

The simplest non-flat Riemannian manifolds M are the spaces of constant curvature
K = c, i.e. the spaces whose function K is isotropic (meaning that at each point p
the Gauss curvature K(p, π) at p of the local surface formed by the geodesics of M
which pass through p and whose tangent vector at p lies in π has the same value
for all choices of planes π at p, thus K becoming a real function on M , which by
the Lemma of Schur, for n > 2, then necessarily has to be constant). These real
space forms M of curvature c are characterised by their curvature tensor R being
given by

(4) R = c

2g ∧ g ,

whereby the Nomizu-Kulkarni square g ∧ g of the metric tensor g may well be
considered as the simplest (0, 4) tensor on M with the same algebraic symmetry
properties as R. The real space forms can be obtained from the locally flat spaces
by projective transformations and their class is closed under such transformations.
A main interest of Riemann, Helmholtz, Lie, . . . in the spaces of constant curvature
was related to the fact that these real space forms are precisely the Riemannian
manifolds which satisfy the axiom of free mobility.

As a generalisation of the spaces of constant curvature Cartan introduced the
locally symmetric spaces, i.e. the spaces with parallel curvature tensor R, ∇R = 0,
or, equivalently, as shown by Levi, the spaces for which up to the first order the
sectional curvatures for all planes π remain preserved after parallel transport of π
along arbitrary curves in M . As Cartan proved, these Cartan symmetric spaces are
characterised to be the Riemannian manifolds for which the geodesic reflections in



ON DESZCZ SYMMETRIES OF WINTGEN IDEAL SUBMANIFOLDS 59

all points are local isometries. In the spirit of Schouten, recently one of the authors
and Haesen obtained the geometrical interpretation of the tensor R ·R as the second
order measure of the change of the sectional curvatures for planes π at points p
after the parallel transport of π around infinitesimal co-ordinate parallelograms in
M cornered at p [20]. Thus, the semi-symmetric or Szabó symmetric spaces [28, 29],
R ·R = 0, are the Riemannian manifolds for which all sectional curvatures remain
preserved after parallel transport around all infinitesimal co-ordinate parallelograms.
The Cartan symmetric spaces clearly are a non-trivial subclass of the class of the
Szabó symmetric spaces. Now, proceeding similarly as when going before from the
localy flat spaces to the spaces of constant curvature, one of the authors and Haesen
proceeded from the semi-symmetric spaces to the pseudo-symmetric spaces in the
sense of Deszcz, or, put otherwise, to the Deszcz symmetric spaces. So, starting
from the Szabó symmetric spaces, R ·R = 0, they looked for the simplest spaces
for which the (0, 6) tensor R ·R is not identically zero, and these turn out to be
the spaces for which R ·R and the (0, 6) Tachibana tensor Q(g,R) = − ∧g ·R are
proportional, say R · R = LR(Q(g,R)) for some real valued function LR on M .
Throughout the paper, the pseudo-symmetry function LR will also more simply be
denoted by L. Hereby we recall that the endomorphism X ∧g Y being defined by
(X ∧g Y )Z := g(Y, Z)X − g(X,Z)Y , this Tachibana tensor is given by

(5)

Q(g,R)(X1, X2, X3, X4;X,Y ) = −
(
(X ∧g Y ) ·R

)
(X1, X2, X3, X4)

= R
(
(X ∧g X)X1, X2, X3, X4

)
+R

(
X1, (X ∧g Y )X2, X3, X4

)
+R

(
X1, X2, (X ∧g Y )X3, X4

)
+R

(
X1, X2, X3, (X ∧g Y )X4

)
.

Q(g,R) may well be the simplest (0, 6) tensor on a Riemannian manifold M which
shares the algebraic curvature symmetries of the (0, 6) tensor R · R. A classical
result states that the identical vanishing of this Tachibana tensor, Q(g,R) = 0,
characterises the real space forms. Moreover, also similarly as before, results of
Mikesh and Venzi and of Defever and Deszcz learn that when a Riemannian
manifold M admits a projective mapping onto a Szabó symmetric space, then M
itself must be a Deszcz symmetric space and that the class of Deszcz symmetric
spaces is closed under projective transformations.

Planes π and π̄ spanned by vectors u, v, and x, y, respectively, at a same point
p of M , are said to be curvature-dependent if Q(g,R)(u, v, v, u;x, y) 6= 0, (which
is independent of the choices of bases for π and π̄). For such planes, the double
sectional curvature or the sectional curvature of Deszcz L(p, π, π̄) is defined as the
real number given by

(6) L(p, π, π̄) := (R ·R)(u, v, v, u;x, y)
Q(g,R)(u, v, v, u;x, y) ,

(which is independent of the choice of bases). And likewise as in Cartan’s result on
the equivalence of information contained in the (0, 4) tensor R and in the sectional
curvatures K(p, π), there is the equivalence of information contained in the (0, 6)
tensor R · R and in the sectional curvatures L(p, π, π̄) of Deszcz. This sectional
curvature of Deszcz, L(p, π, π̄), is a scalar valued Riemannian invariant depending
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on any two curvature-dependent 2-planes π and π̄ at any point p of M . And whereas
(R ·R)(u, v, v, u;x, y) measures the second order change of a sectional curvature
K(p, π) when π is transported parallely around an infinitesimal co-ordinate paral-
lelogram cornered at p with sides directed by x and y, Q(g,R)(u, v, v, u;x, y) in
some sense calibrates this change by the change of K(p, π) under the performance
of a kind of rotation of π at p defined in connection with infinitesimal rotations of
projections of π = u ∧ v onto π̄ = x ∧ y. We restrict ourselves at this place just to
mention further that, like the sectional curvatures K(p, π) can nicely be interpreted
geometrically in terms of the parallelogramoïds of Levi-Civita, which was likely the
main goal of the 1917 article in which he defined his parallel transport [23], also
the sectional curvatures L(p, π, π̄) of Deszcz can be well interpreted geometrically
in terms of these parallelogramoïds. And the Riemannian curvatures of Deszcz
are isotropic, i.e. at any point p of M the numbers L(p, π, π̄) do not depend on
the planes π and π̄, but can only depend on the points p of M , if and only if
the Riemannian manifold M is Deszcz symmetric, R · R = L(Q(g,R)) for some
function L : M → R. In the present situation however, there is no lemma of Schur,
which then would further force this function L to be constant; therefore, Kowalski
and Sekizawa called the Deszcz symmetric spaces for which the double sectional
curvature L is indeed a constant, independent of the planes π and π̄ aswell as of
the points p of M , the pseudo-symmetric spaces of constant type L [22]. By way of
examples in this respect we’d like to mention here that the 3-dimensional Thurston
geometries [30], which in a kind of axiomatic way originated as natural extensions
of the spaces of constant curvature with their typical free mobility, all do have
constant Deszcz Riemann curvature L = 0,+1,−1 : L = 0 for E3(K = c = 0),
S3(K = c > 0), H3(K = c < 0), S2 × E1 and H2 × E1, L = 1 for ˜SL(2, R) and
for the 3−dimensional Heisenberg group H3, and L = −1 for the Lie group SOL.
For further information on pseudo-symmetry in the sense of Deszcz also concerning
the physical space-times, see e.g. [2, 11, 19, 18, 31].

A similar study concerning the geometrical meaning of Ricci pseudo-symmetry
in the sense of Deszcz, R ·S = LS

(
Q(g, S)

)
= LS(∧g ·S), of Riemannian manifolds

M whose Ricci (0, 2) tensor is denoted by S and whereby LS denotes a real valued
function on M , was carried out by one of the authors and Jahanara, Haesen and
Sentürk in [21]; in this respect, see also [10, 12].

As shown in [13], a 3-dimensional Riemannian manifold M is Deszcz symmetric
if and only if it is quasi-Einstein, i.e. if its Ricci tensor has an eigenvalue of
multiplicity ≥ 2. We recall that, for arbitrary dimensions n ≥ 3, the Einstein
spaces M are characterised by the isotropy of their Ricci curvatures, i.e. by the fact
that their Ricci curvatures Ric(p, d) at every point p ∈M are independent of the
tangent direction d, which then in a Schur-like way further implies that the scalar
valued curvature function Ric is actually moreover independent also of p, i.e. is a
constant function. In [21], the invariance of the Ricci curvatures Ric(p, d) under
the parallel transport of the direction d around co-ordinate parallelograms tangent
to planes π̄ and cornered at p was studied, and related to the Ricci semi-symmetry
of M , R · S = 0. And from here, for the Ricci tensor S and the associated



ON DESZCZ SYMMETRIES OF WINTGEN IDEAL SUBMANIFOLDS 61

scalar valued curvatures Ric(p, d), in analogy with the above discussion for the
Riemann-Christoffel tensor R and the associated scalar valued curvatures K(p, π),
the Ricci curvatures Ric(p, d, π̄) of Deszcz were introduced of which the isotropy, i.e.
their independance at all points p ∈M of the directions d as well as of the planes
π̄, was shown to be the geometrical meaning of the Ricci pseudo-symmetry in the
sense of Deszcz. The class of Riemannian manifolds with pseudo-symmetric tensor
S is considerably larger than the class of those with pseudo-symmetric tensor R
(which obviously it contains as a subclass).

At this stage we finally would like to add that a Riemannian manifold M is said
to have a pseudo-symmetric conformal Weyl tensor C if, in the same notations as
before,
(7) C · C = LC

(
Q(g, C)

)
= LC(∧g · C) .

The classes of the Deszcz symmetric Riemannian manifolds and of the Riemannian
manifolds with pseudo-symmetric Weyl tensor are distinct. In this respect, we
just briefly mention hereafter some related observations on hypersurfaces Mn in
Euclidean spaces En+1 which may help to get a better view on the appearance
of the latter intrinsic curvature property later on, to be looked back at then, of
course, taking into account the Gauss equation of the 2-codimensional submanifolds
of not necessarily flat real space forms in comparison with the one of Euclidean
hyprsurfaces.

A hypersurface Mn of dimension n > 2 in a Euclidean space is semi symmetric
(including, as particular cases the hypersurfaces which are of constant curvature
or more generally which are locally symmetric) if and only if zero is a principal
curvature of multiplicity ≥ n − 2 or if Mn has at most two distinct principal
curvatures of which one is zero in case there really are two. Such a hypersurface Mn

is properly pseudo-symmetric, i.e. is Deszcz symmetric but not Szabó symmetric, if
and only if Mn has exactly two distinct principal curvatures, none of which is zero.
And a Euclidean hypersurface Mn of dimension n > 3 has a pseudo-symmetric Weyl
tensor C if and only if it is a 2-quasi umbilical hypersurface, i.e. if it has a principal
curvature with multiplicity ≥ n−2. The property of a Riemannian manifold to have
a pseudo-symmetric Weyl tensor C is invariant under the conformal deformations
of the metric tensor g. For further information on this intrinsic curvature condition,
see e.g. [1, 13, 14].

2. Wintgen ideal submanifolds

For surfaces M2 in E3, the Euler inequality K ≤ H2, whereby K is the intrinsic
Gauss curvature of M2 and H2 is the extrinsic squared mean curvature of M2 in
E3, at once follows from the fact that K = k1k2 and H = 1

2 (k1 + k2) whereby
k1 and k2 denote the principal curvatures of M2 in E3. And, obviously, K = H2

everywhere on M2 if and only if the surface M2 is totally umbilical in E3, i.e.
k1 = k2 at all points of M2, or still, by a theorem of Meusnier, if and only if
M2 is a part of a plane E2 or of a round sphere S2 in E3. In the late seventies,
Wintgen proved that the Gauss curvature K and the squared mean curvature H2

and the normal curvature K⊥ of any surface M2 in E4 always satisfy the inequality
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K ≤ H2 −K⊥, and that actually the equality holds if and only if the curvature
ellipse of M2 in E4 is a circle [32]; (see e.g. also [7, 8] for results on the studies
in global differential geometry of Smale, Lashof, Chen, Willmore, a.o. concerning
the Euler characteristic of the normal bundle, the number of self-intersections
and the total mean curvature of submanifolds). This inequality between the most
important intrinsic and extrinsic scalar valued curvatures of surfaces M2 in E4

was shown to hold more generally for all surfaces M2 in arbitrary dimensional
space forms M̃2+m(c), inclusive the above characterisation of the equality case, by
Rouxel [24] and by Guadalupe and Rodriguez [17]. After these extensions, in 1981
and in 1983 respectively, in 1999 De Smet and Dillen and Vrancken and one of the
authors proved the Wintgen inequality ρ ≤ H2 − ρ⊥ for all submanifolds Mn of
codimension 2 in all real space forms M̃n+2(c) and characterised the equality as
follows in terms of the shape operators.

Theorem ([26]). For every submanifold Mn of arbitrary dimension n and co-
dimension 2 in a real space form M̃n+2(c) of curvature c, at every point p of
Mn:

(8) ρ ≤ H2 − ρ⊥ + c ,

and equality holds if and only if there exist orthonormal bases {e1, e2, e3, . . . , en}
and {ξ1, ξ2} of respectively the tangent space TpM and the normal space T⊥p M
such that the corresponding Weingarten maps are given by

(9) Aξ1 =



λ µ 0 . . . 0
µ λ 0 . . . 0
0 0 λ . . . 0
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
0 0 0 . . . λ


, Aξ2 =



µ 0 0 . . . 0
0 −µ 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0


for some λ, µ ∈ R.

Next, we recall a few basic formula’s and definitions to be a bit more precise
(see also [5]). First, the normalised scalar curvature ρ of the Riemannian manifold
Mn is defined to be

(10) ρ = 2
n(n− 1)

∑
i<j

R(ei, ej , ej , ei) ,

i, j, . . . ∈ {1, 2, . . . , n}. Denoting the Riemannian metric and the corresponding
connection on M̃ by g̃ and ∇̃, the formula’s of Gauss and Weingarten, respectively,
read like

∇̃XY = ∇XY + h(X,Y )(11)

and

∇̃Xξ = −AξX +∇⊥Xξ ,(12)
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whereby ξ, η, . . . denote normal vector fields on M in M̃ , h is the second fundamental
form, Aξ is the shape operator or the Weingarten map of M with respect to the
normal vector field ξ and ∇⊥ is the normal connection of M in M̃ . The mean
curvature vector field −→H of M in M̃ is defined as −→H = 1

n trace h and its length
H = ‖−→H‖ is the mean curvature of M in M̃ . By the equation of Ricci, the normal
curvature tensor R⊥ of M in M̃ is given as follows:

(13) R⊥(X,Y ; ξ, η) := g̃
(
R⊥(X,Y )ξ, η

)
= g
(
[Aξ, Aη]X,Y

)
,

whereby R⊥(X,Y ) := ∇⊥X∇⊥Y −∇⊥Y∇⊥X −∇⊥[X,Y ]. The normalised scalar normal
curvature ρ⊥ of M in M̃ is then defined to be

(14) ρ⊥ = 2
n(n− 1)

{∑
i<j

[
R⊥(ei, ej ; ξ1, ξ2)

]2} 1
2
.

We remark that ρ⊥ = 0 if and only if the normal connection is flat, which, as follows
from (13) and as already observed by Cartan [4], is equivalent to the simultaneous
diagonalisability of all shape oprators Aξ.

Finally, we would like to recall that, as shown by Chen, the extrinsic normal
curvature tensor R⊥ and the “mixing” (ρ−H2) g of intrinsic and extrinsic quantities
of submanifolds are both conformal invariants (see e.g. [7, 6]).

The Wintgen inequality (8) was conjectured to hold for all submanifolds Mn

in all space forms M̃n+m(c), in the paper [26] of “DDVV”, (and some people
recently mention this as “the DDVV conjecture” although probably “conjecture on
Wintgen’s inequality” may well be more appropriate; and moreover, there might
exist papers in differential geometry by several other DDVV’s as well . . .). In
any case, for pertinent comments and recent contributions to this conjecture, for
descriptions and classification results on the submanifolds satisfying the equality
in the Wintgen inequality, i.e. on “Wintgen ideal submanifolds”, we refer to the
works of Bryant, Choi, Dillen, Fastenakels, Lu, Suceavă and Van der Veken in
the bibliography. In particular, Choi and Lu recently proved the conjecture on
Wintgen’s inequality to be true for all 3−dimensional submanifolds M3 in arbitrary
dimensional space forms M̃3+m(c) [9]. In view of this result (of which we learned
just after finishing the work for the present paper) and in view of the fact that
some symmetry properties of Wintgen ideal submanifolds turn out to be somewhat
special for dimension 3 as compared to dimensions n > 3, in the following we
will only consider submanifolds Mn of dimension n > 3 and of codimension 2,
(intending of dealing with the situation of dimension n = 3 and codimension m ≥ 2
at a later occasion).

3. About three Deszcz symmetries of Wintgen ideal submanifolds

Theorem 1. A Wintgen ideal submanifold Mn of dimension n > 3 and with
codimension 2 in a real space form M̃n+2(c) of curvature c is Deszcz symmetric,
i.e. satisfies R ·R = L(Q(g,R)), if and only if Mn is totally umbilical in M̃n+2(c),
in which case L = 0, or if Mn is minimal in M̃n+2(c), in which case L = c.
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Proof. By the Gauss equation

(15)
R(X,Y, Z,W ) =c

{
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

}
+ g̃
(
h(Y,Z), h(X,W )

)
− g̃
(
h(X,Z), h(Y,W )

)
and since

(16) h(X,Y ) = g
(
Aξ1(X), Y

)
ξ1 + g

(
Aξ2(X), Y

)
ξ2 ,

the Riemann-Christoffel curvature tensor R of a submanifold Mn in M̃n+2(c) for
which ρ = H2−ρ⊥+c is explicitly determined by the characteristic shape operators
Aξ1 and Aξ2 as given in (9) for some orthonormal normal vectors ξ1 and ξ2 with
respect to some orthonormal tangent vectors e1, e2, . . . , en. Hence R ·R and Q(g,R)
are readily computable. And, on the other hand, also from the expressions of
Aξ1 and Aξ2 given in (9), it is clear that Mn is totally umbilical and respectively
minimal in M̃n+2(c) if and only if µ = 0 and respectively λ = 0.

Then, to begin with, the comparison of the components

(R ·R) (e1, e4, e3, e4; e1, e3) = (λµ)2(17)

and (
Q(g,R)

)
(e1, e4, e3, e4; e1, e3) = 0(18)

learns that if Mn is a pseudo-symmetric space, then certainly λµ has to vanish.
If µ = 0, then Mn is a totally umbilical submanifold in M̃n+2(c), (and the

converse obviously holds as well). Hence it is itself a real space form [5], (of curvature
c+ λ2), and thus, in particular, it is semi-symmetric, i.e. pseudo-symmetric with
L = 0. So, the part of the statement in the theorem related to the totally umbilical
submanifolds is done with.

If λ = 0, then Mn is a minimal submanifold of M̃n+2(c), (and the converse
obviously holds as well). And then, all the components of the (0, 6) tensors R ·R
and Q(g,R), with respect to the tangent basis {e1, e2, . . . , en}, are either “together”
zero, or, when non-zero, they are, up possibly to a common change of sign coming
from the algebraic identities satisfied by the tensors R ·R and Q(g,R), found to
be given “in pairs” with the same values as in formulae (17) and (18), or else, with
the same values as, for instance, given in the following formulae:

(R ·R) (e1, e2, e2, e3; e1, e3) = 2µ2c(19)

and (
Q(g,R)

)
(e1, e2, e2, e3; e1, e3) = 2µ2 .(20)

So, the part of the statement in the theorem related to the minimal submanifolds
is also done with. When the ambient space is Euclidean, these submanifolds are
semi-symmetric, L = 0, and, otherwise, they are properly pseudo-symmetric of
constant type L = c 6= 0. �
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Theorem 2. A Wintgen ideal submanifold Mn of dimension n > 3 and with codi-
mension 2 in a real space form M̃n+2(c) of curvature c is Deszcz Ricci-symmetric,
i.e. satisfies R · S = LS

(
Q(g, S)

)
for some function LS : M → R, if and only if it

is Deszcz symmetric.

Proof. We need to show that amongst the Wintgen ideal submanifolds Mn in
M̃n+2(c) with n > 3, the Deszcz Ricci symmetric ones are totally umbilical or
minimal. The Ricci tensor of such Mn in M̃n+2: S(X,Y ) =

∑n
i=1 R(Ei, X, Y,Ei),

whereby {E1, E2, . . . , En} is any orthonormal local tangent frame on Mn, is readily
obtained from the Gauss equation (15) together with (16). And, comparing the
non-trivial components of the (0, 4) tensors R · S and Q(g, S), we find that Mn is
Deszcz Ricci symmetric if and only if the following system of three equations holds,
(obtained, for instance, by considering the components {e1, e1; e1, e2}, {e3, e2; e1, e3}
and {e3, e1; e1, e3}, respectively):

λµ {LS − c− λ2 + 2µ2} = 0 ,(21)

λµ
{

(n− 2)(LS − c− λ2) + 2µ2} = 0 ,(22)

µ2 {2(LS − c− λ2) + (n− 2)λ2} = 0 .(23)

Using that, essentially, n > 3, this obviously leads to a contradiction unless
λµ = 0. �

Theorem 3. Every Wintgen ideal submanifold Mn of dimension n > 3 and with
codimension 2 in a real space form M̃n+2(c) of curvature c is a Riemannian
manifold with pseudo-symmetric conformal Weyl tensor.

Proof. The (0, 4) conformal Weyl tensor C of a Riemannian manifold Mn is given
by

(24)

C(X1, X2, X3, X4) := R(X1, X2, X3, X4)

− 1
n− 2

{
S(X1, X3)g(X2, X4) + S(X2, X4)g(X1, X3)

− S(X1, X4)g(X2, X3)− S(X2, X3)g(X1, X4)
}

+ τ

(n− 1)(n− 2)
{
g(X1, X3)g(X2, X4)− g(X1, X4)g(X2, X3)

}
,

whereby τ denotes the scalar curvature of M , i.e. τ := trace S. With the same
definitions related to C as given explicitly before for R, in a straightforward way, it is
found from (9) that for all submanifolds Mn in M̃n+2(c) for which ρ = H2−ρ⊥+c :

C · C = LC
(
Q(g, C)

)
(25)

whereby

LC = 2(n− 3)
(n− 1)(n− 2) µ

2.(26)

�
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Proposition 1. A Wintgen ideal submanifold Mn of dimension n > 3 and with
codimension 2 in a real space form M̃n+2(c) of curvature c is minimal if and only
if the pseudo-symmetry function of its conformal Weyl tensor C is given by

(27) LC = n− 3
(n− 1)(n− 2) (c−Kinf) .

Proof. The sectional curvatures Kij , in the tangent frame {e1, e2, . . . , en} of the
Theorem of Section 2, of a Wintgen ideal submanifold Mn in a real space form
M̃n+2(c), by (9), are given by
(28) K12 = λ2 − 2µ2 + c ,

and, for (i, j) 6= (1, 2), by
(29) Kij = λ2 + c .

From these values of the particular sectional curvatures for the plane sections
spanned by the vectors of this frame, one sees that the minimal value Kinf of
the sectional curvature function K(p, π) for the tangent 2−planes π at p on such
submanifolds Mn is attained on the plane spanned by e1 and e2. And then from
(26) and (28) at once follows the proposition. �
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