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Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received August 26, 1985) 

1. I N T R O D U C T I O N 

In the frame of the qualitative theory of evolution equations the method of integral 
manifolds takes a central position [2, 4, 6, 7, 11, 20, 21]. Integral manifolds provide 
a powerful tool to justify the averaging principle [5, 14] and to reduce bifurcation 
problems (including stability questions) as for certain types of partial differential 
systems to finite dimensional bifurcation problems as for systems of ordinary dif­
ferential equations to corresponding problems for systems of lower order [7, 12, 13, 
19, 21, 25], Concerning bifurcation problems the question for persistence of integral 
manifolds is of crucial importance [10, 24, 25]. With respect to exponentially stable 
integral manifolds such problems has been succesfully treated by J. Kurzweil in the 
1960's [15, 16, 17]. By our view, the papers of J. Kurzweil distinguish themselves 
by the class of admissible perturbations (it permits averaging too) and the degree 
of generality (it admits results for partial differential systems, functional-differential 
equations and diffeomorphisms on Banach manifolds). 

The class of center manifolds plays a crucial role in studying stability and bifurca­
tion problems [12, 13, 19, 24, 25]. Using center manifolds we can reduce the Hopf 
bifurcation problem for a system of evolution equations to the corresponding one 
for a system of two ordinary differential equations in case of codimension one. 

Concerning bifurcations of a nontrivial periodic solution the problem under 
consideration is usually reduced to the problem of bifurcation of a fixed point of the 
corresponding Poincare map [8,18]. Our aim is to investigate bifurcations of a period­
ic solution of autonomous differential equations by means of integral manifolds. 
In this paper we study existence and structure of integral manifolds near a periodic 
solution of a system of autonomous ordinary differential equations 

(i-i) ft -A*.*) 
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and their persistence when X changes in a metric space. In section 2 we introduce 
local coordinates in a neighbourhood of the family of periodic solutions under 
consideration. This coordinate system differs from analogous ones used by other 
authors [3, 4, 22], By this way we obtain a nonautonomous system of differential 
equations whose qualitative behaviour near the stationary solution at the origin 
uniquely defines the topological structure of the trajectories of the system (1.1) 
near the considered periodic solution. In section 3 we investigate existence, persistence 
and structure of integral manifolds of the derived nonautonomous system. We show 
that these integral manifolds are homeomorphic either to Rk x S1 where S1 denotes 
the unit circle in R2, or to R1 x M2 where Jl2 is the Mobius strip. The problem 
of existence of submanifolds is also considered. 

2. INTRODUCTION OF LOCAL COORDINATES. 
REDUCTION TO A NONAUTONOMOUS SYSTEM 

Let ^ be an open set of Rn+1, A a metric space. We consider the autonomous 
differential system (1.1) assuming 

(Ft). fe Cr
x%<3 x A, Rn + 1), r = 1, that is, / : ^ x / l - > Rn+1 is continuous and 

r-times continuously differentiable with respect to x where all derivatives continuously 
depend on (x, X). 

(F2). There is a subset Ax of A such that (1.1) has a periodic solution p(t, X) with 
the primitive period co(X) for XeAx satisfying p e Cr+1 J(ff x Al9 Rn+1), coe 
e C(AX, R). Let X° be an element of Ax. 

We denote by yA the orbit belonging to the periodic solution p(t, A), that is yx : = 
:= {xeRn+1: x = p(t, X), 0 ^ t ^ co'X)}. Our purpose is to study existence and 
structure of local integral manifolds of (1.1) passing through yAo and their dependence 
on X. To this end we first introduce a local coordinate system by means of yx. Our 
way to construct such a local coordinate system differs from that one given by 
Diliberto [3], Hale [4], Reizins [22]. The advantages of our coordinate system 
consist in the facts that it immediately leads to a system with constant linear part 
and that it is more appropriate to investigate the dependence on parameters. 

Let <P(t, X) be the fundamental matrix of the linear system 

^=fx(p'yt,X),X)y 
at 

satisfying <P(0, X) = In+ x where It is the / x /-unit matrix. For X = X° the monodromy 
matrix P(X) := <P(a>(X), X) let have the distinct complex eigenvalues v?, v?, . . . , v°, v? 
and the distinct real eigenvalues v° + 1 , . . . , v£ (v£ = 1) with the multiplicities nxJ29... 
..., nj29 nj+l9..., nk. From the hypotheses (Fx) and (F2) we get Pe C(Al9 L(Rn+1

9 

Rn+1))9 and according to the perturbation theory of linear operators [9] there are 
a Q1 > 0 and a function D continuously mapping &Qi(X°) := {X e Ax: \X — A°| ^ g1} 
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ß—J"7" if 

ül- 1 h, if 

into L(Rn+1
9 Rn+1) with the properties 

(i) D(X) is regular W e J^A 0) . 
(ii) J(X) := D-1(A) P(A) D(A) has the structure J(A) = diag (JX(X)9 ..., Jk(A)) 

where J{ e C(Al9 L(Rni
9 R

n% and Jt(X°) has the eigenvalues v°, v° with the multi­
plicity njl for i g j and the eigenvalue v° with the multiplicity nt for i > j . 

Because dpfdt (0, X) is an eigenvector of P(X) to the eigenvalue v = 1 VA e &Qi(X°) 
we may choose D(X) in such a way that 

D (A)e»+ '=^(0,A), 
df 

here e1' denotes the i-th column unit vector in Rn+1; that means, the last column 
of D(X) consists of dpjdt (0, X). 

Let Qi := Ini for i = 1,.. . , ; , let 

v ? < 0 , 
v° > 0 

for 1=7 + 1,..., fc. We put 

g : = diag(Gi,. . . ,&)• 

The matrix Q, JivA°) has no negative eigenvalue Vi. Thus, there is a Q2E(09Q
1) 

such that Qi Jt(X) can be represented in the form 

Q. J.(X) = e
ro<A>*<(A) 

for X e @Q2(X°) where K{ e C(<%eJX°)9 L
(Rni

9 Rni)) for all i. 
We define 

(2.1) W r - d i a g ^ A ) , ' . . . , ^ ) ) , 
K(A):= D^K^)/)-1^), 
IV(r,A):= $(t9X)e-KWD(X). 

Obviously we have 
We C\ °X(R x @c2(X°)9 L(Rn+\ Rn+1)). 

Finally, we define a function ZA: R" x R -^ Rn+1 for Xe @Q2(X°) by 

ZA(u, 5) := vxW((d{X) s9 X) e1 + ... + vnW(co(X) s9 X) en + p(co(X) s9 X). 

The hypotheses (Ft) and (F2) imply that ZA is r-times continuously differentiable 
where all derivatives continuously depend on X9 additionally all derivatives of ZA 

are differentiable with respect to v of any order. 
It is obvious that ZA maps {0} x R onto yx V.A e &Q2(X°). Hence, there are Q3 e 

e (0, Q2) and /j1 > 0 such that ZA: ̂ i(O) x R -» ^. In what follows we want to use 
v, s as local coordinates near yx. To this end we state some properties of ZA. 

(zi) There are Q4e(0, Q3)9 fx2 e(0, fi1) such that the Jacobian Zfvs)(v9 s) is regular 
for (v9 s) e ^2(0) x R and X e @QA(X°). Let Q be the n x n-matrix which we obtain 
from the (n + 1) x (n + l)-matrix Q by deleting the last row and the last column. 
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(zii) Z\Qv9 s + 1) = Z\v9 s) V(v, s) e ̂ 2 (0) x R and X e ^(X0). 
From (zi) and (zii) we obtain that ZA is only locally one-to-one for X e ^ (A 0 ) . 

Let <3k be the image of J£2(0) x R by ZA. For X e ̂ e4(X°) we associate to the system 
(1.1) restricted to <&x the differential system 

(g(v9 5, X)\ 

(2.2) ; j = ( :=(Z(
A

y,s)(t;,s))^f(ZA(,,s)), 

\h(v9 s9 X)J 

(v9 s) e J£2(0) x R . 

It is clear that ZA maps the trajectories of (2.2) onto the trajectories of (1.1), vice 
versa the multivalued mapping (ZA)_1 maps the trajectories of (1.1) onto the trajec­
tories of (2.2). 

(ziii) The matrix K(X) defined in (2.1) is of the type 

ад-fôô-') 
where A e C(@e4{X°)9 L[Rn

9 R% a e C(BQJX°)9R
n). 

The functions g and h defined in (2.2) have the form 

where g and /z satisfy 

g(v9 s9 X) = Â(X) v + g(v9 s9 X) , 

h(v9 s, X) = ш(Я)-1 + fì(v9 s, X) 

§(0,s,X) = 0,8S<V'S,X) = 0 , fi(0,s,X) = 0, 
Sv |p=o 

g(Qv, s + 1, X) = Q§(v, s, X), fi(Qv, s + 1, X) = K(v, s, X). 

Hence, the system (2.2) can be written in the form 

(2.3) ^ = A(X) v + §(v, s, X) , 
dt 

^ ^^(X)-1 + % s , A ) . 
dt 

In virtue of o^A0)"1 + h(0, s, X°) = co^0)"1 > 0 there are Q5 e (0, Q% fi3 e (0, n2) 
such that ds/df = ci^A0)"1^ on J^(0) x <ft x ^,5(A°). Consequently, the system 
(2.3) has the same trajectories as the system 

(2.4) ^ = A(X)v + g(v,s,X), - = 1 
dt dt 

which we obtain by multiplying the right hand side of (2.3) by (<u(A)_1 + fi(v9 s, X))"1. 

307 



Here, 

(2.5) A(k):=co(k)A(k), < / ( 0 , S , A ) E E O ,
 aJ^iIiA = 0 , 

8v {v = 0 

g(Qv, s + 1, A) = Qg(v, s, A) . 

It is clear that the phase space of (2.4) coincides with the (t, x)-space (space of motion) 
of the nonautonomous system 

(2.6) — = A(k) v + g(v, t9 X) 
dt 

and that the graph of the solution v(t; v°, t°, A) of (2.6) corresponds to the trajectory 
of (2.4) passing through (v°, s°). 

By (Qv, s + \) ~ (v, s) we define an equivalence relation on Rn x R, the set of 
corresponding equivalence classes is denoted by Jt. The canonical map n: Rn x 
x R -> Jt which orders to each (v, s) e Rn x R its equivalence class induces in Jt 
a topology. Since n is locally one-to-one we can conclude that Jt is a smooth mani­
fold [27]. 

From (zii) it follows that we may interpret ZA as mapping from 7T(J^3(0) X R) 
into ^ for A e &Q5(k°). It is easy to show that there are numbers fi4' e (0, j*3), Q6 G 
G (0, Q5) such that for A e $Qe(k°) the mapping ZA is a one-to-one mapping on 
7r(^3(0) x R). From (2.5) we get that for any solution v = \j/(t; v°, t°, X) of (2.6) 
n(\\j(t; v°, t°, A), t) depends only on n(v°, t°), t, A. Therefore, we may consider (2.6) 
as a system with 7r(J^4(0) x R) c Jt as space of motion for A e ^Qe(0). 

Summarizing our results we get 

Theorem 2.1. Suppose the hypotheses (Fj) and (F2) are valid. Then there are 
constants \i > 0, g > 0, a differential system (2.6) defined on J^(0) x R for 
A e &e(k°), and a family of mappings Zx: &l(0) x R -> & such that the following 
properties are valid: 

(i) AG C(^(A°), L{Rn,Rn)). A(A) = diag(A!(A), ...,Afc(A)) where the spectrum 
of At(k) consists either of a pair of conjugate complex eigenvalues or of a real 
eigenvalue and where ^A^k)) n o(Aj(k)) = 0 for i + j . ea(A(X)) u {1} = G(Q P(k)) 
where P{X) is a monodromy matrix of yx. 

(ii) g: &nj0) x R x &Q(k°) -> Rn is continuous and has continuous derivatives 
with respect to v and t up to the order r, possibly except the derivative drgjdf, 
satisfying 

(2.7) q(0,r,A)EE0, M ^ A ) ^ o V(t,k)eRx@Q(k°), 
dv ]v = 0 

g(Qv, t + 1, A) EE Qg(v, t, X) V(v, t, A) G ̂ ( 0 ) x R x @Q(k°). 

(iii) ZA has the regularity properties mentioned above. 
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(iv) Zx as mapping of n(^(0) x R) on &x is one-to-one, where (ZA) - 1 is r-times 
continuously differentiate and all its derivatives continuously depend on X. 

Zx maps the graph of the solution of (2.6) passing through (v°, t°) on the trajectory 
o/ ( l . l ) through x° = Z\v°, t°) VAe^(A°) . Especially we have 

Z\n({0} xR)) = yx. 

Using Theorem 2.1 we are able to determine the topological structure of the 
trajectories of (1.1) near yx by investigating the behaviour of the solutions of (2.6) 
near v = 0. 

The manifold Jt is generated by identifying the points (Qv, t + 1) and (v, t) 
in Rn x R. Since we have Q = diag(q l 9 . . . , qn) where qt= + 1 this identifying 
proceeds coordinate wise that means we identify (vi91) and (vt, t + 1) or ( — vh t + 1) 
resp. Therefore, the plane spanned by el e Rn and 1 e R is mapped by n onto the 
cylinder R x S 1 or the Mobius strip J/2. 

Let us now consider a (m + l)-dimensional subspace H of Rn x R spanned by m 
of the vectors e1,..., en e Rn and l e R ( m ^ n ) . Without loss of generality we assume 
that H is spanned by e1, ...;emeR and l e f i . If all corresponding qu ..., qm are 
equal to 1 then it is obvious that n(H) is homeomorphic to Rm x S 1 and if exactly 
one of the q{ (i = 1, . . . , m) equals —1 then n(H) is homeomorphic to R"1'1 x Jt2. 
We now assume I ^ 2 of the qt to be —1, without loss of generality be qt = q2 = 
= — 1. Together with Q we consider Q' = diag (1,1, q3,..., qn) and the corresponding 
manifold Jt'. It is easy to see that 

vi ~* vi c o s nt + v2 s i n nt ^ v2 "* —^I s i n ^^ + u2 c o s nt 9 

v3-+v3,...,vn-+vn, t-+t 

defines a homeomorphism of Jt on Jt*. By this way we get: n(H) is homeomorphic 
to Rm x S1 if the number of elements being — 1 in Q corresponding to H is even 
else n(H) is homeomorphic to R™'1 x Jt1. 

From the property det P(A°) > 0 we obtain that an even number of elements 
of Q equals — 1, that is, Jt = n(Rn x R) is homeomorphic to Rn x S1. 

3. EXISTENCE, PERSISTENCE AND STRUCTURE OF INTEGRAL 
MANIFOLDS NEAR yAo 

According to Theorem 2.1 we may assume 

(3.0) A(X) = diag (A~(X), A°(X), A+(X)) 

where Re <r(A~(l0)) ^ -x, Re c(A°(X0)) = 0, Re cr(A+(X>)) = x for some x > 0. 
By the perturbation theory of linear operators [9] there is Q1 e (0, g) such that 

(3.1) Re <r(A-(X)) = - ~ < - - = Re a(^t°(A)) ^ ^ < ^ = R e ^ + ( A ) ) 
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for X e 3SQ-,(X°). Using (3.0) we may rewrite (2.6) in the form 

(3.2) ^ -=*4-(A)» 1 + 01(i;,t',A), 
at 

(3.2) ^ = A°(X)v2 + g2(v,t,X), 
at 

^ = A+(X)v3 + g3(v,t,X) 
at 

where the matrices A~(X)9 A°(X)9 A
+(X) satisfy (3.1) and the function g(v919 X) obeys 

(2.7). Modifying the function g outside some sufficiently small neighbourhood of 
v = 0 we may additionally suppose that g is defined for all ve Rn and fulfils for some 
Sl952 

(3.3) \g(v9t9X)\ = Sl9 \\gv(v,t9X)\\=S2 

V(v, t9 X) e Rn x R x @Q7(X°). 

Let 9CRS(A) [SWtt(A)] be the set of all (v*. t*) e Rn x R satisfying \v (t; t*9 v*9 X)\ = 
= 0 (<T*,f,/2) as t -* +oo (t -» -co). Let Wlc(X) be the set of all solutions of (3.2) 
whose t^-component is bounded for decreasing t and whose i;3-component is bounded 
for increasing t. 

Using the same techniques as in [24, 25] we can prove: 

% Theorem 3.1. Assume the following hypotheses hold: 
(A) A-9A°9A

+eC(@el(A°)9 L(Rmt
9R

m)) satisfy (3.1). 
(Gx) g e C[Vtt) i(R

n x R x @el(A°)9 R
n) satisfies (2.8) and (3.3) where 82 is suf­

ficiently small. 
Then the sets 9M5, W,u9 and SDIC are integral manifolds of the system (3.2) in 

(t9 x)-space having the representations 

ms(X): v2 = S2(vl919 X)9 v3 = S3(vl919 X), 

2RM(A): v2 = U2(i;3, t9 X)9 v1 = Ut(v3919 X) , 

mc(X): vx = Cx(v2919 X)9 v3 = C3(v2919 X) • 

where the functions S29 S39 Ul9 U29 Cl9 C3 possess the same regularity properties 
as g and vanish together with their derivative with respect to v at v = 0. 

Remark 3.1.1. In case X = A0 the manifold 2KS(A) [2RM(A)] is said to be the stable 
(unstable) manifold, 9KC(A) is referred to as center manifold. For A =# A0 2RS(A), 
Wlu(X)9 and 9MC(A) resp. are called the perturbed stable, unstable, and center manifold 
resp. Corresponding to the partition v = (vl9 vl9 v3) we have Q = diag(Q1, Q2, g3). 
By (2.8) the relations 
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g{Qv, t + l9X) = Qi gt(v919 X)9 i = 1, 2, 3 

hold. The following theorem says that the functions Sj9 Uj9 Cj resp. describing the 
manifolds 9Jls(X)9

 SMU(X)9 9Jlc(X) resp. satisfy the corresponding relation. 

Theorem 3.2. Assume the hypotheses of Theorem 3.1 to be valid. Then we have 
for (v9 t9X)eRn x R x @el(X°) 

Sj(Qxvl91 + 1, X) = QJSj(vl919 X), j = 2, 3 , 

Uj(Q3v391 + 1, X) = e'U/ua, U ) , I = 1, 2 , 

c / e 2 ^ , t + 1 , A) = Q'c>2, t9 X), I = i, 3 . 

Remark 3.2.1. Theorem 3.2 implies that the sets TT(9KS(A)), 7r(9Wu(A)), and n(mc(X)) 
2iTQ also integral manifolds of the system (3.2) in Jf as space of motion. Consequently, 
the images of these manifolds by (ZA)_1 lying in a small neighbourhood of yx are 
local integral manifolds of (l . l) . 

Corollary 3.3.1. In case Q = In the functions Sj9 Uj9 Cj are l-periodic in t9 that is9 

the integral manifolds n(Ms)9 n(Wlu)9 7i(Wlc) are homeomorphic to a cylinder. In 
case that Q1, Q2

9 Q
3 resp. contains an odd number of(— 1) on the main diagonal 

the stable, unstable, center manifold resp, is homeomorphic to a manifold of type 
Rl x Jt1. 

R e m a r k 3.3.2. The case Q = I has been treated by Kelley [10], Knobloch [12], 
Pliss [21]. Example of dynamical systems whose stable and unstable manifolds are 
homeomorphic to a Mobius strip has been given by Reizins [22] and Hale [4]. 
The question for existence of submanifold can be easily answered for the stable 
and unstable manifold. 

Theorem 3.4. Assume the hypotheses of Theorem 3.1 hold. Suppose further 
that Re c(A+(X0)) [Re <r(A~(A°)y] can be separated into r+[r~] disjoint sets. 
Then the manifold ?0ls(X) [Wlu(X)~ contains r+ — 1 [r~ — 1] submanifolds charac­
terized by different velocities of approaching the stationary solutions v = 0 by 
their solutions. 

Remark 3.4.1. The underyling idea for the proof of Theorem 3.4 essentially is 
the same as for the proof of the manifolds $Jls(X) and SCR„(A). 

Concerning center manifolds passing through an equilibrium point of an autono­
mous system the problem for existence of submanifolds has been treated by one 
of the authors for the first time [26]. The underlying method applies also in case 
of system (3.2). We formulate the prototyp of results in case of a three-dimensional 
system. 

Consider the system 
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(3.4) -^1 = A,(X) Vl + *.(>., v2, t, X), 
dt 

—1 = A2(X) v2 4- h2(vl9 f?2, r, A) 
dt 

under the assumptions 

(3.5) 

(V,.) AL-. e CXA!, L(/^2, ly?2)), A2 e CX(A, R) 

where Ax := ( — Xl9 Xx), At > 0 . 

(V2) ^ i ( A ) ) = a,(A) ± i^(A) for XeAl9 

a i(0) = A2(0) = 0 , ^ ( 0 ) > 0 , 

ai(0) > A2(0). 

(V3) h = (hl9 h2)
J e C\R2 x R x R x Al9 R3), 

fc(0, t, A) = 0 , ftw(0, r, A) = 0 V(t, X)eR x Al9 

h(Q}vl9 Q2v291 + 1, A) = g/z(v, t, A) V(v, f, A) e lj?3 x ^ x A1 , 

where Q = diag(g1 , Q2), Ql = diag(qi, q2), q!=±l, 
|/i(v, *, A)| = 0(|A|), \\hv(v9 t9 X)\\ = 0(|A|) V(v, ( ) e H 3 x H . 

Then the following result holds. 

Theorem 3.5. Suppose (Vx), (V2), (V3) hold. Then there exists a unique integral 

manifold of the system (3.4) having the representation 

v! = cp(v291, X) (v2, t9 X) e R x R , A2 < At , 

where cp possesses the same regularity properties as h and satisfies 

(p(0, t9 A) = 0 , cpV2(09 t9 A) = 0 V(f, X)ER x A29 

<p(Q2v2> t + 1, A) = Q V(v2 , t, A) V(v2, l, A) e ff x flP x A2 . 
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