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Časopis pro pěstování matematiky., roč. 106 (1981), Praha 

GLOBAL EXISTENCE OF SOLUTIONS OF CERTAIN 
FUNCTIONAL-DIFFERENTIAL EQUATIONS 

G. G. HAMEDANI, Tehran 

(Received June 8, 1978) 

In this paper we are concerned with the problem of the existence and uniqueness 
of solutions of the following functional-differential equations 

(1) y(x) = f(x, K^(x)),..., y(hn(x% y'(hn+1(x))9...9 yf(hn+m(x)), u), 

in the interval J = ( — a, a), 0 < a = oo, where hi9 i = 1, 2, ..., n + m are con­
tinuous on J into J,fis a continuous vector-valued function on J x Ek x ... x Ek x 
x E into Ek satisfying the global Lipschitz condition 

n + m 

(2) |/(x, yu..., y„+ m ) u) - f(x, yf,..., y*+m) u)\ g £ z;(x) \yt - y?| 

for every (yl9 ..., yn+m)9 (y$9 ..., y*+w) e (£k)n+m, x e J, u e E, and nonnegative 
continuous functions z,(x), i = 1, 2,.. . , n + m defined on J so that: 

(i) there exists a constants K > 0 such that zf(x) = K for i = 1, 2,.. . , n, for all 
x e J; 

n + m 

(ii) there exists a constant C, 0 = C < 1 such that £ zf(x) = C for all x e J. 
i = n + l 

Here | • | denotes the usual norm in Ek. 
An equation of this has been studied under different assumptions by many authors; 

see, e.g. [6], [7]. The exact form of (1) has been investigated, under still different 
assumptions, by ST. CZERWIK in ([3], [4]) where he takes a general Banach space 
instead of Ek. 

We use here the ideas of [2] employed in [5] to establish a theorem on the existence 
of a unique solution of (1). We shall also consider the problem of continuous depen­
dence of solutions of (1) on a parameter u. The results of this paper extend that of [5]. 

Following [5], we let {lj\j ^ 1} be an increasing family of compact intervals 
which contain zero and [j Ij = J. We denote by c(Ij) the Banach space of con-

j 

tinuous vector-valued functions g :I -> Ek with norm 
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(3) IMICM) = S UP íexp ( - 4 4 ) Hx)W> 
xelj 

where X is an arbitrary parameter. The Frechet space c(J) may be topologized by 
the family of seminorms {||g||(/,A) |I E= 1}. If A = 0, the spaces c(Ij) have the usual 
sup norm ||*||0 on Ij. 

Theorem 1. If the function f(x, yl9 ..., y„+m, u) satisfies (2), and if 

(4) x ht(x) = 0 , \ht(x)\ S\x\, xeJ, i = 1, 2, ..., n + m , 

then the initial value problem y(0) = j ^ has a unique solution y for every y0 e Ek, 
which is given as the limit of successive approximations. 

Proof. Let I be a compact subinterval of J containing zero and for simplicity, 
denote the norm of g ec(l) by ||g||A. From (3), it follows that the norms ||^||A, for 
arbitrary real X, are all equivalent to the norm ||g||0. The identity 

(5) |rexp(A|.|)d. =i{exp(A|x|)-l} 
Jo X 

is valid for every x e J, X > 0. 
We shall reduce our problem by substitution g(x) = y'(x), (y(x) = y0 + J0 g(s) ds) 

to the following equation 
rhi(x) 

(6) g(x) = f(x, y0 + g(s) ds , . . . , 

rhn(x) 

yo + d(s) ds, g(hn+ t(x)),..., g(hn+m(x)), u) . 

Let u e E be fixed. It is obvious the transformation 4> = T(g) defined by the right-
hand side of (6) maps c(l) continuously into itself. We shall prove that 

(?) \\Tg2-Tgi\\xS^~ + c\\\92-9i\\, 

for all gu g2 e c(l) and A > 0. Using (2) and the definition of | • \\x we have: 

|Ta2(x) - Tfll(x)| = £ Z i (x ) | f M(g2(s) - Sl(s))ds 
1=1 |Jo 

n + m 

+ I Zi(x)|fl2(ft((x))-fll(h,.(x))| = 
i = n + l 

n \ Cx n + m 

= Z -i(*) W ) - 9i(s) |ds| + I z,(x) \g2Hx)) - gMx)) 
i = l J 0 i = n+l 

+ 
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= £ Z l ( * ) | 0 2 - gl||я 
i = l 

n + m 

exp (A|s|) ds 

+ £ Zi (*) |k2- t? i | i cxp(A| fc l (x) | )^ 
/ = M + 1 

-S ||g2 - 0I||A f Y + CJ exp (A|x|) , 

where we have used (4) and ((4), (5)) to obtain the second and the fourth inequalities 
respectively. Thus 

\Tg2- i g & Z ^ + c)\g2- gi\2. 

Now choose X > 0 so that nKjX + C < 1 and apply the classical Banach contraction 
principle to Fand the distance function \g2 — gt\\x to complete the proof. 

Now we consider the problem of continuous dependence of solutions of our 
problem on a parameter u. 

Theorem 2. Let the hypotheses of Theorem 1 be satisfied. If there exist a constant M 
and a function G : J -+ J such that for every x e J, u,ute E, (yx,..., yn+m) e 
G (Ek)n+m 

\f(x,yx, ...,yn+m,u) -f(x9yl9...9yH+n9u1)\ ^ G(x)\u - ux\ 

and 
sup {exp (-X\x\) G(x)} = M , 
xeJ 

then solutions y(x, u) of (l) fulfilling y(0, u) = y0 is continuous with respect to 
the variables (x, u) in J x E. 

Proof. For g e c(l) we define the transformation Tu(g) by the right-hand side of 
the equation (6). From (7) we have 

\\Tu(9)-Tu(y)\\xs(f + c)\\g-yl. 

From the hypotheses we obtain 

exp(-A|x|) \Tu(g)(x) - TUl(g)(x)\ = G(x) \u - ux\ exp(-A|x|) 

and hence 

| |r„(0)-rj0)MM|t.-Ml | . 

From theorem 1, there exist unique function g(x, u), g(., u) e c(J) such that 

y(x, u) = y0 + g(s, u) ds , 

Tu(g(x, u)) = g(x, u), TUi(g(x, ut)) = g(x, ux) for x e J . 
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Therefore, we have 

\\g(x, u) - g(x, ui)|A á \\Tu(g(x, u)) - Tu(g(x, ut))\\x + 

+ \\Tu(g(x, ux)) - TUl(g(x, ux))\\x ^ (~ + CJ \\g(x, u) - g(x, u,)\\x + M\u - u, 

Hence 

\\g(x, u) - g(x, UOIA š ( l - f y + C))'1 M\U - u, 

Consequently the function g is continuous with respect to the variable x e J, 
uniformly with respect to the variable u e E; so y is also continuous with respect 
to two variables (x, u)e J x E, which completes the proof. 

Aknowledgement. The author is grateful to professor V. BURIKOVIC for pointing 
out an error in the proof of theorem 1 and for his comment on the correction. The 
author is also grateful to professor J. KURZWEIL for his valuable suggestion strength­
ening Theorem 1. 
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