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Casopis pro p¥stovani matematiky, ro&. 92 (1967), Praha

ON CERTAIN SPACES OF TRANSFORMATIONS OF INFINITE SERIES

TiBor NEUBRUNN and TiBorR SALAT, Bratislava
(Received December 16, 1965)

1. THE SYSTEMS M AND I® OF TRANSFORMATIONS OF INFINITE SERIES

In this part of the paper two systems of transformations of series of a certain type
are defined and their properties are studied.

- <]
Definition 1,1. 2 denotes the system of all series A = Y t,, 1, 2 0(n = 1,2,3,...),

@ n=1
Y, =1
n=1

Definition 1,2. Let ¢ = 0. M, denotes the system of all functions ¢ defined on
0, 1) for which the following condition is fulfilled: If 4 = Z t, € U, then Z qa(t ) is
convergent and IZ o(t,)| < c

Definition 1,3. Let M, = Y M_. Further, let M denote the set of all such functions ¢
c20 0 0
defined on <0, 1) for which the following is true: If A = ) 1, U then Y ¢(t,) is
n=1 n=1

convergent.

[ @©
Remark 1,1. To be short we shall write p{A4} instead of ) ¢(t,) (4 = Y t,e ).
n=1 n=1

The set M, represents a system of functions preserving, in-a way uniformly, the
convergence of the series of the system . In the paper [1] R. RaDo showed that if
a real function f defined for x € (-— 00, + o) preserves the convergence of all con-

©
vergent series ). X, (x, are real numbers) then there exist positive numbers k, &
—'l .

(k = k(f), 6 =—5(f)) such that for |x] < 8, f(x) = kx (to be short, we say f is linear
in a neighbourhood of the point 0). Evidently, the converse is also true. Let us note
that if ¢ € M, then ¢ may not be linear in a right neighbourhood of the point 0.
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E.g., if we put (p(O) = O and (p(x) = x sin (1/x) for x € (0, 1), then for each 4 = Z t,€
e, |p{4}| = Z lo(t)] = Z t, < 1, consequently ¢ € M, = M, and ev1dently (p is

not linear in any nght nexghbourhood of the point 0. But the following result ressem-
bling in a.way the result of Rado and characterising the elements of M, can be
proved.

> Theorem 1,1 Let ¢ be defined on the interval 0, 1). Then ¢ belongs to M, if
and only if all the following conditions are satisfied:

1) ¢(0) =0
@ lim sup Lo()] <+

>0+ t

3 - @ is bounded on 0, 1)

Corollary. If ¢ € M, then lim ¢(t) = ¢(0) = 0.
t-0+

Proof. If ¢ is defined on <0, 1) and has the properties (1), (2), (3) then obviously
¢ e M. Let ¢ € M. Then in view of the definition of the set M, there exists ¢ = 0
such that ¢ e M. It is easily seen that the magnitudes of the function ¢ on the
intervals (277, 27"*1% (n = 1, 2, ...) are not greater than ¢.27"*! In fact, if at
a point ¢ of the interval (27", 27"*!) the value ¢(tf) were either greater than
¢.27"*1 or less than —c .27 "*! then the series

A=t+t+ ...+t 4+0+0+...4+0+...
L —

2""1 times

would belong to ¥ and |p{d}| = [2"~* ¢(t)| > c. Now, let t >0, t < 1. Then
te(2°"27"*1) for a sultably chosen n and consequently, [¢(t)] < ¢.27"**. Thus,

we have
-n+1 :
lﬁgi)lé %—- =2c< +

and tﬁerefore lim  sup |@()/t < 2¢ < + oo, hence, (2) is valid. The validity of (3) is
also easily seen If (p(O) + 0 were the casc, then the series Z ¢(0) would not be con-

vergent in spite of the fact that 4 = Z 0e U. Hence (1) i is also true and the proof is
finished. n=1

<! Rematk 1,2 From the proof of the above theorem it follows that @(0) = 0, for
eeM.:
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Remark 1,3. If g e, then lim sup l(p(t)[ [t < + oo may not be necessarily take true.
t—=0+

We may define the function ¢ e.g. in this way: @(2™") =n.2""(n = 1,2,3,...)

and ¢(t) = 0 for each te<0,1), t 27" (n = 1,2,3,...). Evidently, ¢ € M and

lim sup |@(t)|/t = + co. Moreover, from this example it follows that M + M., thus
t—>0+

the set M, is a proper part of the set M. As we have seen each function of the system
M, is bounded, but the system I contains also unbounded functions. For example,
the function ¢ defined by ¢(x) = (1 — x)™! for xe (27, 1), ¢(1) =0, o(x) = x
for x € 0, 27*) belongs to M and it is not bounded on <0, 1).

Theorem 1,2. If ¢ € M, then lim ¢(t) = ¢(0) = 0.
t-0+

Proof. Let ¢ € M and let the assertion of the theorem is not true. Then there
exists an &, > 0 and a sequence of positive numbers {4,} such that 6, < 27" and
|@(8,)| = . Let e.g. ¢(5,) > 0 for infinitely many n (for n e N'). Then Y 6,9,

neN’

but the series 3. ¢(8,) does not converge, thus ¢ ¢ M.

neN’

Theorem 1,3. The sets M, and M are real vector spacés (under the operations of
addition and multiplication by a real number defined in usual way).

Proof. As for M the assertion follows immediately from the fundamental
theorems concerning the convergent series and for M, the assertion follows from the
Theorem 1,1. ’

Now, let us define on M., a nonnegative real function ||¢|| in this way:

Definition 1,4. [¢| = sup |o{4}.
Aeh

It is not difficult to verify that the function | ¢|| fulfills the axioms of homogeneous
norm. In fact,

(@) || = 0 and if ¢(f) = 0 for each te<0, 1), then “qo“ = 0. If there exists
a number te (0, 1) such that ¢(f) + 0, then A=t+0+0+ ...+ 0+ ...e U
and |@{4}| > 0, consequently |¢[ > 0, |¢| + 0.

(b) If k is a real number, then |ko| = sup |ko{4}| = |K| sup |e{4}| = || . [e]-

(c) ﬂ‘Px + q’zﬂ = SuPK‘P: + (Pz) {A}l but l(‘Pl + (Pz) {AH § I‘Px{A}l + |(P2{A}| s
< lod] + lo2|- Herlce los + @l < o]l + Joal.
Thus, the set M, with this norm is a linear normed space.

Theorem 1,4. Let ¢, (n = 1,2,3,...), ¢ be functions belonging to M. Let
l@n — @] = 0 as n - oo. Then the sequence {9,}7 is umfarmly convergent on
<0, 1) to ¢. ¥
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- Proof. Let hm ﬂzp, o] =0, ¢,, peM,. Let £ > 0. Then there exists ny(e)

such that for n g no(s) les — @] < e Let A traverse over all series of the form
t+0+0+..+0+.., te<0,1). Evidently Ae ¥ and |o,{4} — o{4}| <
for each A of thls kind, hence for each t € €0, 1> |@,(t) — ¢(t)| < ¢ whenever n 2
= no(e), s6 {@,}¢ is uniformly convergent on <0, 1) to ¢.

Remark 1,4. If ¢,, ¢ € M, and if {g,} is uniformly convergent on <0, 1) to ¢,
the convergence in the sense of the norm may not take place. We shall show this fact
on the following example: Let us put ¢,(¢) = ¢/(1 + n*t*)for t € 0, 1) and ¢(f) = 0
for each te{0,1). Evidently, ¢,, o €eM,, 0 < ¢,(t) < ¢t for each t and @, (t) =
= 2nt[[2n(1 + n*t*)] < 27", hence {,}7 is uniformly convergent to ¢ on <0, 1).
Let us put for fixed n t;, = 1/n where 1 < i < nand ¢, =0fori > n Then 4 =

= 2 t,e U, ¢,{A} = 1/2, 50 that |¢,]| = 1/2(n = 1,2, 3,...). Consequently {] ¢, —

- (pﬂ}1 = {| @[} does not converge to zero.
A simple consequence of the foregoing theorem is the following one.

Theorem 1,5. The syste_m MO of all functions continuous on <0,1> which
belong to M, is a closed linear subspace of the space M.,

Proof. Evidently it suffices to prove that M is closed in M. Let ¢, e M
(n=1,23,..)), ¢, = ¢ (in the norm-convergence), ¢ € M. On the base of fore-
going theorem {¢,}{ is uniformly convergent to ¢ on <0, 1) and hence in view of
the known fact from analysis the continuity of ¢ follows. Hence ¢ € M,

Theorem 1,6. Let ¢ = 0. Then M is a symmetric, convex and closed set in M.

Proof. The properties of the symmetry and convexity are evident. Now, if ¢, € M,
(n=1,23,.),0eM, and |o, — ¢] > 0 then to each & > 0 there exists no(a)

such that for each n > ng(e) and each 4 = 2 el
k=1

|2 0] - | S 000] | Zou) - S o(w)] <.

hence IZ <p(t,)l led] + ¢ < ¢ + & Since the inequality holds for each & > 0,
wehave ﬂcpﬂ Sc,peM,.

Theorem 1,7. The space M, with the norm | ¢| (see definition 1,4) is a Banach
linear normed space.

. Proof. Let {@.}¥ be a fundamental sequence of points of M. Let n > 0. Then
in view.of the assumption there exists no(n) such that for m, n = no(n) | @, — @a] <
< nf4holds. If A* travers over the series of the form t + 0+ 0 + ...+ 0 + ...,
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te {0, 1), then from the above mentioned facts, it follows that for each t e 0, 1)
there exists ¢(f) = 11m (p,,(t) and {¢,}? is uniformly convergent to @ on 0, 1). It
will be shown that @ eﬂJt and |@, — @] > 0 holds. Let 4 = Z t,€A. To any

k=1
positive integer A there exists, in view of the uniform convergence of {¢,} 7, a positive

integer n(4) = ny(n) such that

n ‘
S e ) < k=1.2,...,2
21 o(t) — ‘Pn(l)(k) 4l ( )

Hence
A " A A ”
@ Y Can(t) = < X o(t) < T Punfti) + -
k=1 4 ¥=1 k=1 4

If we take into the account that |@,, — @, < n/4, we get for the series t; +
+t,4+...4+41,+04+ 0+ ...eU the following:

©) k‘; Puolti) — % <él Pua(te) <k§=:1¢no(tk) + %
From (4) and (5) we get
© S0 = 1< T o) < T oule) + 1.

Since (6) is valid for each positive integer 4, we have
. . l . l
|tim inf Y, @(t) — limsup ¥, o(t)| < 7 .
A= k=1 A-2o k=1
From the last inequality valid for each n > 0, we have

lim inf Z o(t) = hm  sup Z o(t)

A—>w k=1

so that the series Y, ¢(t;) is convergent. Simultaneously from (6) it follows that
k=1
n n
|¢{A}l s “q’no“ + '2' sSc+ 5 (q’noemc) .
Since n,, is independent of A4, we get ||@| = sup |p{4}| < ¢ + 7/2, so that ¢ e M.
A
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Further from (6) evidently follows for each n = no(n),

ki%(‘x) -1 <k§1¢(tk) <k§1<o..(tk) +1

hence |@, = ¢|| < 5 for n 2 ne(n), so that |@, — ¢| — 0. This finishes the proof.

In what follows sets M, and M will be studied as subspaces of the topological
space § of all real functions defined on {0, 1). The topology considered in this
space will be that which is given by the uniform convergence. B will denote the
closure of that B in the topology given by uniform convergence.

Theorem 1,8. Let M, M and § have the previous meaning. Then

(a) M, and M are not closed sets.

(b) W, + W and none of the relations M,, = M, M = M, takes place.

Proof. () Let t, = 2% (k = 1,2, 3,...). Let {¢,}* be defined by p,(t) = k™!
for t = 27% k < n, ¢,(t) = 0 for the rest of ¢, t € €0, 1). Then the sequence {¢,}
converges to the function defined by ¢(f) = k™' for t =27%(k =1,2,3,...) and
o(t) = Oforte0,1>,t + 27%(k = 1,2,...). Evidently 9, e M, «c M(n = 1,2,...)

o0

but @ ¢ M, because 4 = ) 27*e A and {4} = +oc. This proves (a) and simul-
k=1

taneously the non-validity of M, = M is shown.

For concluding the proof it suffices to prove the existence of a function ¢ € M
not belonging to M. Let us define ¢ by ¢(k/(k + 1)) = kfor k =1,2,3,... and
o(t) =0 for te(0,1), t £ k/(k + 1) (k =1,2,3,...). Then ¢ e M. Actually, if

@
A= z t, € U, then at most for two indexes j, r ¢}, t, € {271, 1), so that in the series

n=1
®

¢(t,) all but at most two terms are equal to zero. If there existed a sequence
1

{@a}7s @, € M, uniformly converging to the function ¢ then to each ¢ > 0 there
would exist ny such that for each n = n, and for all te {0, 1)

(7 o() —e< o) < ot) + ¢

would hold. Let ¢, € M, (co = 0). Let us choose k > ¢, + eand putt = kf(k + 1),
n = n,, then we get from (7)

o) — s <o (K
k+1 Po\k+1)
C.<k—8—(p—’—c— —s.<q) L
0 k+1) "\k+1)

Which is a contradiction, since ¢,, € M.

Hence
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Theorem 1,4 shows that the convergence in norm is stronger than the uniform
convergence. The following theorem characterises the convergence in norm.

Theorem 1,9. Let {@,}T be a sequence of functions belonging to M. Then the
sequence {(p,,}i" converges to @ € M, in the convergence in norm if and only if
there exists such right neighbourhood U of the point 0, that the sequence {(p,,xv},fll
(xu denotes the characteristic function of the set U) converges in the convergence
in norm to @yxy and {@,}7 converges uniformly to ¢ on {0,1> — U

Proof. The necessity follows from the theorem 1,4. We prove the sufficiency.
Let U be a right neighbourhood of the point 0, U = (0, 8); let {@,xy}T converges to
@yyinthe convergenceinnorm and ¢, = ¢ (=3 is the symbol of uniform convergence)

on (0,1 — U. Let 4 = 2 t, € A. Then interval <4, 1> = {0,1) — U contains at

most [671] tegms of the sequence {67 Let te, tiys oo ti, (ky < by < ... < k) are
those terms. In view of the convergence in norm of {¢, Xu} ¥ we know that to eache>0

there exists n,(g) such that ]Z' (@u(t) — olt)| < &2 for n > n,y(e). The dash

appearmg at the symbol ), denotes that the summation is made for i + kg, k,, ..., k;.
Further according to the uniform convergence of {¢,}7 on (5 1, the existence of
n,(e) follows such that for n > n,(e),

loa() — o(t)] < 2_[.1"’_/35 teds, 1).

Then for n > max (n,[e), ny(€)) we have

|Z(0d0) - o0)] 5 5 (1) = 0(0)] +

From the last inequality the assertion of the theorem immediately follows.
The following theorem is motivated by the preceding one.

Theorem 1,10. A function ¢ defined and bounded on {0, 1) belongs to M, if and
only if there exists a right neighbourhood U of zero and a function ¢, € M, such
that ¢(x) = @,(x) for xe U.

Proof. Evidently it is sufficient to show that if ¢ is bounded on (0, 1) and in
some neighbourhood U = (0, §) of zero ¢(x) = cpl(x) where ¢, € M, then p € M.

Let |o(x)| < K for x <0, 1) and @, eM,. Let A = Z t, € A. Then in the interval

k=1
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{8, 1) is at most [1/8] terms of the sequence {f,}7. Let us denote those terms
thys ooty 8 S [1/6]. Then

| S0l S 1Z i) + Lol

where Y’ denotes that i runs over all positive integers with the exception of
ks, ks, ..., k,. According to the fact that ¢, € M, and in view of boundedness of ¢ we
get :

lo{4)] = | o] 5 ¢ + sk

where ¢, s, K on the right side are independent on 4. Hence ¢ € M, and o] <
S ¢+ skK.
If M(0, 1) denotes the metric space of all bounded functions on <0, 1) with the
metric ¢(f, g) = sup )l 7(£) — g(f)| then according to the theorem 1,1"(see (3)) M, is
1e¢0,1

included in (0, 1). The set M., is not a closed subset of M(0, 1) (see theorem 1,8,
the proof of (a)). But the following theorem may be proved.

Theorem 1,11, Let M,(0, 1) be the set of all the functions ¢ € M(0, 1) for which
lim ¢(t) = ¢(0) = 0. Then M, = M,(0,1) (M, denotes the closure in the space
-0+

M(, 1)).

Proof. We have M, = M,(0, 1) = M,(0, 1) (see the corollary following theo-
rem 1,1), so that M, = M,(0, 1). Now, let ¢ € M,(0, 1). Let us define @, (n =
=1,2,3,...) by ¢,(f) = 0 for t €0, 1/n) and ¢,(t) = ¢(t) for t € (1/n, 1>. In view
of Theorem 1,10, ¢,eM, (n =1,2,3,...) and evidently ¢, 3 ¢ on (0, 1).
Hence M,(0, 1) =« M,,. Thus M, = M,(0, 1) is proved.

In connection with the above mentioned Rado’s result let £ denote the set of all
such functions @ which have the following property: ¢ € M, and there exists § =
= &(¢) such that ¢ is linear on the interval <0, 5(¢))>. As we have seen £ + M,
But it is not difficult to prove the following theorem showing that as for the approxi-
mations in the space M(0, 1) the sets &(<M,,) and M, are of the same value.

Theorem 1,12. Let £ and M, have the previous meaning. Then € =M., (=M, (0,1))
(in the sense of uniform convergence).

Proof. Let feM,. Then to each positive integer n, there exists an interval
€0, 6,) in which [f(x)| < 1/n. Let us define g, (n = 1,2,3,...) on <0, 1) by g,(x) =
= f(x) if x ¢ 0, 8,) and g,(x) = x[nd, if x e {0, é,>. Evidently g, =3 f on (0, 1)
and g, e € (n = 1,2,3,...). Hence M, = L. But & = M,(0, 1) and so M,(0, 1) =
=M, T = M(01)and weget M, = T.
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A question appears, if £ = M, is dense in M, (if M, is considered as a linear
normed space with the norm defined in definition 1,4). We shall show that the
answer is negative. The following lemma will be useful.

Lemma 1,1. Let ¢ be defined and bounded on {0, 1). Then ¢ € M, if and only
if |o| e M.

Proof. If |p| e M, then evidently ¢ € M,,. Now, if ¢ € M., then in view of
Theorem 1,1 and the boundedness of ¢ on {0, 1) we obtain the existence of K > 0
such, that |cp(t)| < Kt for all te{0,1). From the last inequality it follows that
[(pl eM,..

Definition 1,5. Let € = M. The closure of the set € in the sense of the con-
vergence in norm (see the definition 1,4) will be denoted by cl €.

Theorem 1,13. Let MM, denote the linear space with the norm given in the definition
1,4 and let & = M, have the previous meaning. Then cl 8 + M.

Proof. Let us put f*(x) = max (0, x sin (1/x)) for x # 0 and f*(0) = 0. Since
f(x) = xsin(1/x), x % 0, f(0) = O belongs to M, we have f* e M, according
to Lemma 1,1 and to the fact that M, is a vector space. It will be shown that f+
is not a limit function (in the sense of the convergence in norm in ) of any sequence
{fu}? of functions belonging to £. Denote as €0, 3,) the interval on which f, is linear
and let f,(x) = k,x on that interval. Evidently it suffices to consxder the case.k, =2 0
(n =1,2,3,...). Let us consider two cases

1) There exists ¢, > 0 such that to each N there is » = N such that k, > &,.

2) To each & > 0 there exists n,(¢) such that k, < & for n 2 n,(e).

If the first case occurs, then there exists an infinite set of indexes n such that
k, > €. These indices form a set N'. If n € N’, choose in the interval <0, 6, points
t, by ..ty (r=r(n)) such that 1 2 ¢, + t, + ... + t, 2 &k, and sin (1/t)) =
(j=1,2,..,r).Letusputt, = Oforj > r. Then

A= ;tjeu, |§=:lf+(tj)‘—f,,(t,)| = k,;t, = e

Hence ||f* — f,|| 2 & for an infinite set of indices n (n € N'), so that {f,}T does not
converge to f* in the norm.

Next, consider the second case and let & < 1/3. Let €0, 5,> (n = 1,2, 3,...) have
the previous meaning. For n 2 n,() we have k, < &. Choose in the interval <0, 5,>
(n 2 ny(e)) points t,, t,, ..., 1, (s = s(n)) such that

sxn;l-—-l (i=14L2..,5, 12+t +...+t, 2%
i
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and put t; = Ofor j > s. Then for this 7

If* = £ 2 % for n 2 n,(e). Hence {f.}* does not converge to f* in the norm.
The proof is fmished.

2. THE SPACE M, AS AN INTERSECTION OF CERTAIN QUOTIENT SPACES

We shall show, that I, may be considered as an intersection of certain quotient
spaces. At first we prove some general theorems concerning these spaces.

Under a quotient space on a vector space X we shall undestand the set of all the
equivalence classes formed by means of a subspace of the space X. The subspace
by means of which the quotient space will be formed will be called the zero class of
the quotient space. Under the operations of forming sums and multiplying by a real
number, which are assumed to be defined in the usual way on the equivalence classes,
the quotient space is a vector space (see [2] p. 25). If a metric or a norm on such
quotient space is given then the latter will be called a quotient space with metric or
norm respectively.

Remark 2,1. If T+ 0 and X, is a quotient space for t € T, whose zero class
is O,, then O* = N O, is a subspace of the space X. (sec e.g. [2] p. 23).

teT

Definition 2,1. The quotient space X* formed by means of the subspace O* w111 be
called the intersection of quotient spaces X,.

Theorem 2,1. A set C = X belongs to the intersection of the quotient spaces X,
if and only if for each t € T there exists C, € X, such that N C, + P and C = N C,.

teT teT
The latter representation of the set C by means of C, (t e T) is unique.

Proof. Let C € X¥*. Then C = . If x is an arbitrarily chosen element in C, then
for each t € T there exists a class C, € X, such that x € C,. Such class there is just one.
If ye C, then y belongs to the same class C, (te T) because y — xe O* < O,.

Thus C < C, (t € T) and from this inclusion C = N C, follows immediately. Now,
teT

1f x,y€ () C,, then y — x € O, for each t e T, consequently y — x € O*. The inter-
teT

section () C, contains all mutually equivalent (modulo O*) elements. The last fact
teT

implies that n C, is included in some class of X¥*. From the disjointness of these

classes we have C= n C,. Each class Ce X* may be represented in the form

C= n C,C,ek, (te T) The uniqueness is seen from the proof.
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Now, let C=NC, *# 0, C,e X, (te T). We shall show that C e ¥*. From the

teT
preceding part of the proof it follows that C = (| C, = C’, where C’ e X*. Let

teT
xeCand ye C'. Then y — x € O* in view of the definition of C’. Hence y — x € O,

for each t € T. Since x € C,, then also y € C,, for each ¢t and we have ye C = N C,,
so that C' = C, C' = C. teT

Theorem 2,2. Let (X,, o,) for te T be quotient spaces on X with metric g,. Let
¢o(C, D) = sup {/(C,, D,)} < + 0 for any two elements C,De¥* (C, D, teT
teT .

are those elements of the space X, for which C = C,, D = D,). Then (X*, g) is
a metric space.

Proof. We shall prove that g is a metric.

(@) Evidently o(C, D) 2 0. If ¢(C, D) = 0, then ¢/(C,, D,) = 0 for each t € T and
C, = D,(te T) follows. From Theorem 2,1 C = D. If C = D then again in view of
Theorem 2,1 C, = D, for each t € T consequently ¢(C, D) = 0.

(b) The symmetry of g is evident.

(¢) Let C, D € X*. Then ¢(C, E) = sup {e{C,, E,)}, where C=NC, D = N D,
teT teT

E = () E,. Since g, is a metric on ¥,, we have foreachte T
teT

Qt(ct’ E:) =< Q!(Ct’ Dt) + Qt(Dn Et) = Q(C: D) + Q(D: E) ’

hence

o(C. E) = sup {o(C E)} < ¢(C, D) + e(D, E).

Theorem 2,3. Let (X,, ¢,) (te T) be linear normed spaces (the norm || Y|, on X%,
is given by | Y|, = o(Y, 0,)) and let o(C, D) =sup {¢,, (C,, D)} for any C, D € X*,
teT
C=NC, D=\D, Then (X*,0) is a normed space (with the norm “ Yﬂ =

teT teT

= o(Y, 0%)).

Proof. a) We shall show that for k complex g(kC, 0*) = lkl ¢(C, 0*) holds.
Let C e %, then C = () C, C,€ X,y KC = 1 KC, o(kC, 0¥) = sup {o,(kC, 0)} =

lk! sup {edC,, 0))} = lk, e(C, 0%).

b) IfC D, E € X* theng(C + E, D + E) = ¢(C, D). Infact, o(C + E,D + E) =
= sup {o(C, + E,, D, + E,)}, where C=NC, D= nD,, E = () E, Since

teT teT teT

o{C, + E,, D, + E) = 9(C,, D,), for each te T we have o(C+E D+E)=
= sug {e{C,, D,)} = o(C, D).
te
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Remark 2,2. If O* = {0} in the previous considerations (0 is the zero element of
the space X), then the corresponding space X* has the onepoint sets as elements. In
such case we shall identify X* with X.

Now we show that M, may be considered as an intersection of certain quotxent
spaces. For the set T, the set of all sequences t = {};%, with 4 = Z e

will be taken. If t = {£,}7 € T then O, denotes the set of all those functlons ¢ for
which ¢(t,) = 0(k =1,2,...). O, is evidently a subspace in 0, so that we may form by
means of the last a quotient space M,. To show that M, is the intersection of quotient
spaces M, (te T) it suffices (according to the last remark) to show that O* = {0},
0 denotes the function which is identically zero on 0, 1)). Let ¢ € O*, then ¢(f) = 0
for each te <0, 1). In fact, it suffices to form a sequence {tk}‘f, in which t, = ¢,
t, = 0 for k > 1 and to note that ¢ € O,.

The metric q,mzm will be given as follows: If D, E, e M, (t = {1}, Zt,, € U), then
¢{D, E,) = Z le(t) - ¥(ty)|, where @ € D,, Y € E,. It is easily seen that o, is in-
dependent of the choire of ¢ and . The condition sup {edDn E)} < +©

follows from the fact that ¢ — Yy e M, and consequently [q) lp[ eM,, (see
Lemma 1,1). To prove that g, is a metric makes no difficulties. Evidently
e{D,, E;) = 0if and only if () = ¥(t;) (k = 1, 2, 3, ....) but the last equality holds
exactly if ¢ and ¥ are from the same class. The symmetry and the triangular
inequality are evident. It is also easily seen that (¥, ¢,) are normed spaces with the
norm ||D,| = (D, O,). Thus the space M, with the metric o(¢, ¥) = sup {o/D,E.)},

where ¢ = N D, ¥ = n E, (we identify f and {f}) is in view of Theorem 2,3
teT

a linear normed space “with the norm lels supz |@(t)|- The norm [of, was
defined on the space M, by [o| = sup | Y. (p(tk)l It is immediately seen that on the
te' k=1

sets of all nonnegative and nonpositive functions respectively the norms Hq)“ and “ gon 1
are identical. In general this is not the case. If we put e.g. #(3/4) = 2, p(1/4) = —
(t) = Ofor the rest of t € {0, 1), then @ & M, [|¢|| = 2, |¢[, = 3. But the following
theorem shows that from the topological point of view, there is no difference be-
tween these two norms.

Tl\eorem 2,4. The convergence induced by the norm H(o is equivalent with that
induced by ||p|,.

Proof. It suffices to prove the equivalence of convergences for sequences which
converge to zero. Since |¢|| < @[, we see that the convergence in norm of
{@.}7 induced by @], implies the convergence in norm ||g|. Now, let {¢,} con-
verge to 0 in the sense of the norm || ie. lim @, = 0. To each & > O there

n-* o0
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exists ny such that for n > ny and each ¢t = {&}T € T we have
, © .
(8 | S ou)] < 5.
k=1

Let t° = {t)}? € T. Let us form a sequence {t5,}: from those #{ for which ¢,(t?) = 0
and a sequence {1, }; from those ones for which ¢,(f}) < 0. Both of these sequ-
ence (after completing by zero terms if some of them is finite) belong to T and (8)
implies

Youtd) < 2. [Teut)] = Tledis)] <=
1 2 J J 2

Hence i](p,,(t,‘,’)l = Youte) + Youtn) and we get [o,], S & for n > ny, so
k=1 [ i

[@als = 0 as n - co.

In Theorem 1,7 the completness of the space M, with the norm |p| was proved.
From the last fact and from Theorem 2,4 the completeness of MM, with the norm
le]; follows.

Now we shall prove two theorems concerning the completeness and separability of
general quotient spaces.

Definition 2,2. Let {C,}, t € T'be a system containing for each t € Tjust one element
of X,. The system {C,}, t € T will be called uniformly attainable if to each t € T there
exists a sequence {C}},=; of elements of ¥, such that lim C} = C, uniformly with

respect to t € Tand () C; + 0. .o
teT

Theorem 2,5. Let (%,, ¢,) for te T be complete linear metric spaces. The in-
tersection (X*, ¢) of the spaces (%,, 0,) is complete if and only if each uniformly

attainable system {C,}, te T has a nonempty intersection ( (\ C, + 0).
teT

Proof. Let each uniformly attainable system {C,}, t € T have a nonempty intersec-
tion. Let {C"};>, be a fundamental sequence of elements of X*. To ¢ > 0 there
exists ny(€) such that for m, n = no(e)

©) o(C™, €)= sup e (CP O} <

holds, where C™ = N C7, C* = N C7. (9) implies
teT

(10) BT C X REICRETHO)

for each t e T. Since X, is complete, there exists C, € ¥, such that lim C} = C,.

n-*oo
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Simultaneously from (10) it is seen that the convergence is uniform with respect to
te T, so that if n 2 nofe) then (10) implies ¢(C}, C,) < /2 < & for each t € T. The
last inequality implies sup {e{C% C,)} < & for n 2 no(e). According to the assump-

tion n C, + 0 holds. Let us put C = n C,. Then {C"}%, converges to C because
Q(C" C) £ sup {e{C7, C)} < g forn > no(s) The completeness of the space (X¥, )

is proved.

Let (X*, ) be complete and let {C,}, t € T'be a uniformly attainable system. By the
definition of {C,}, t € T; for each t € T there exists a sequence {C}},~; of elements of
X, such that

(11) lim ¢,(C, C,) = 0

n—+ow

uniformly with respect to ¢t € Tand C"=NCi+90 (» =1,2,...). Since g(C™, C") =
teT
="sup {e{C7, C7)} and since {C}};>, are uniformly fundamental with respect to
teT

t € T, the sequence {C"} ;% is fundamental in X*. Due to the completness of the
space (¥X*, @), there exists C € X* such that

(12) lim C" = C e ¥*

n— o

In view of Theorem 2,1, C = N C,, C; e ¥X,. We shall show that C; = C, for each

teT

te T and consequently C = () C, % 0. Thus, it suffices to prove C; = C, for each
teT

te T. According to the definition of the metric, (12) implies lim ¢,(C}, C,) = 0 for

n— o0

each te T and using (11) we get C, = C, in view of the uniqueness of the limit.

Theorem 2,6. A necessary condition for the separability of the space (X*, @) is the
separability of the spaces (%,, ¢,).

Proof. Let (X*, ) be separable and let ¢, € T. Let 3 be a countable and dense set
in X*. Let M, denote the set of all those C,, € X, which appear in the intersections
C = N C,, where C e M. Evidently M,, is countable. We shall show that 9, is

teT
dense in X,. Let D, € X, then there exists D € X* such that D c D,,. To each

e>0 there exists C eim such that Q(C D) < &. The existence of such C follows

from the density of M in X*. Among the terms C, appearing in the intersection N C,
teT

the term C, € M,, appears. According to the definition of the metric ¢ we have
0:o(Ceo» Dy,) < 0(C, D) < &. Hence (%, 0,,) is a separable space. The proof is
finished.

Remark 2,3. The condition stated in the preceding theorem is not sufficient. We
shall show it on an example. An example is furnished by the space M, serve. M,
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will be considered as the intersection of the quotient spaces M,, te T, t = {#,};>,,
}ﬂitk e, |C,| = f |o(ti)|, where ¢ is some representative of the class C,. It is
;;nediately seen :;;t if t e Tis fixed then X, = M, is isometric with the space I,
of all sequences x = {§}i=, for which 2 |&] < +c0 with the norm |x| =

= Z '*k' It is well known that /, is separable and consequently MM, = X, is separable

space. In spite of it M, is not separable. It suffices to consider in M, the subset Pt*
of all such ¢ € M, which assume values 0 and 1 at the point of the form k[(k + 1)
and 0 at other points.’Evidently IR* is an uncountable subset of MM, and the distance
of any two points of M* is = 1.
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Vytah
O ISTYCH PRIESTOROCH TRANSFORMACIH
NEKONECNYCH RADOV

TiBor NEUBRUNN a TiBOR SALAT, Bratislava

[}
Oznadme znakom A systém vSetkych nekonetnych radov 4 =Y 1,, 051, S 1
n=1
(n =1,2,3,...), ktorych siuéty neprevySuju &slo 1. Nech pri ¢ = 0 M, znadi systém
vietkych reélnych funkcii ¢ deﬁnovanych na <0, 1), ktoré maja ta vlastnost, Ze pre

kazdy rad A = Zt e je |p{4}] = |Z(p(t )| < c. Polozme M, u&m a na
mnoZine M, deﬁnujme redlnu funkciu l](pﬂ takto: |o| = sup ‘qp{A}] v préci sa

dokazuje, Ze |¢| je norma a M., s touto normou je Banachov linedrny priestor.
V prdci sa podrobne $tuduji vlastnosti tohoto priestoru a dokazuje sa, Z¢ M,
mozno chdpat aj ako prenik istych faktorovych priestorov.
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Pe3rome

O HEKOTOPBIX ITPOCTPAHCTBAX ITPEOBPA30OBAHUM
BECKOHEYHBIX PsJ0B

- TUBOP HOVIBPYHH n TUBOP INAJIAT, Bpatucnasa

ITycrs U 0Go3ma%aeT MBOXKECTBO BCeX GeCKOHEYHBIX psfoB A = Y 1,, 0 < 1, < 1,
1

(n = 1,2,...), cyMMHI KOTOPBIX HeGobime 1.
Iycre M, (c = 0) o6o3HAYET MHOXKECTBO BCEX MEHCTBHTENHHBIX QYHKUUH @,
onpezeneHHbIX Ha oTpe3ke <0, 1) W MMeIONMX ClEAYIOLIEe CBOWCTBO: I BCAKOTO

-] o
A =Yt,e% nmeer mecro HepaseHctBo |p{A}| = |Yo(t,)| < c. Mycrs M, =
1 T
= UM, Ecm ma mHOoxecTBe M, ompenesmm AelicTBuTenbHyo dynkmuio | o]
cg0
cnenyroumm o6pasom ||| = sup |p{A4}|, To 31a PyHKIMs sBAsETCA HOpMOH, M M,
Aey

€ 9TOi HOpMOIii ABJIsSeTCA JIMHEHHBIM IpocTpaHcTBoM bamaxa. B pabGore metanmHo
HM3y4ajOTCHA CBOMCTBAa 3TOr0 MOCTPAaHCTBA H IOKa3biBaeTcd 4To M, MOXKHO paccMma-
TPHBATh KaK HepecedeHUe ONpeeIeHHOro Buaa GakTop-poCTPaHCTB.
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