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FINITE GRAPHS AND THEIR SPANNING TREES

Jikf SEDLACEK, Praha
(Received March 28, 1966)

Let us begin with the formula

n—4 n— 4 X
(1) ¥y i!( ) )(1 +4)n" 0 ="t
i=0 i

valid for every integer n = 4. This formula can be obtained as a by-product in
solving the following problem concerning the graphs: Let a complete graph %,
with n vertices (n 2 4) and two of its edges h,, h, without common vertices be given.
We are to determine the number of all spanning trees of the graph %, which contain
both h, and h,. Under a spanning tree we understand the maximal tree subgraph of
a given graph. Some authors (for example O. ORE, [5]) use the term skeleton or
scaffolding for denoting this concept, others use frame etc. Note also that the
notation & = [U, H] means that the graph & has the vertex set U and the edge set H.

Theorem 1. For every integer n 2 4, equality (1) holds.

Proof. Let us choose a complete graph %, with n vertices and two of its edges h,
and h, which do not have a common vertex. Using two different procedures we are
going to determine the number of those spanning trees of the graph %, each of which
contains both edges k; and h,.

In the first consideration, let us proceed as follows: Obviously, each such spanning
tree contains a unique simple path C(h,, h,) with h, as the first edge and h, as the
last one. Denote i + 4 the number of vertices on C(h,, h,). Thus, let us first inquire
how many simple paths C(k,, h;) can be constructed in #,. There are four ways of
choosing the first two and last two vertices on C(hy, h,). In the graph %, there still
remam n — 4 vertices which are to be ordered in a sequence with i terms; this can

be :accomplished in i! (n . 4) ways. Consequently, the simple path C(hl, k,) can
ity MO I A L .
be constructed in 4i! (n K 4) Ways. The -Vettices and edges of the simple path
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C(h, h;) constitute a tree, and from the paper [7] it is known in how many ways
it can be completed to a spanning tree') of the graph #,. It turns out that this can be

n—4 .
done in (i + 4) n"~'~% ways. Thus, we see that the number 4 ). i! (n ) 4) (i+4).
' i=o i

. n"" =5 is the amount of the sought spanning trees.
Next, let us turn to the second consideration. As known, the graph %, has totally
n"~% spanning trees. Denote k(hy, h;) and k(non hy, h,) and k(hy;, non h;) and
k(non h,, non h,) the number of these spanning trees each of which contains both h,
and h,, does not contain h, but contains h,, contains h, but does not contain h,,
contains neither h, nor h,. Thus, we have n"~% = k(hy, h;) + k(non hy, h,) +
+ k(hy,non h,) + k(non hy, non h,). Because %, is complete, we have k(non h,, h,) =
= k(hy, non h,). Consequently,

2 k(hy, hy) = n""% — 2k(non hy, h;) — k(non hy, non h;) .

The numbers k(non h,, h,) and k(non h;, non h,) may be found by a well known
determinant method (see [1] and [3]). We assume here that the vertices of the
graph %, have been enumerated by integers 1, 2, 3, ..., n so that, for example, h,
joins 1 and 2 while h, joins n — 1 and n.

In order to establish k(non hy, h;), denote &, the graph obtained from %, by
removing the edge h,. Next replace each undirected edge xy of the graph ¥, by

a pair of edges xy and yx, thereby, we get a directed graph gl It is clear that

k(non hy, h,) is equal to the number of W-bases?) of the graph @, with sources
n — 1 and n. Thus, we construct an n x n square matrix A = (a;;) such that a,, =
= a,, = 0, while a;; = —1for the remaining i # j. The elements of the main diago-
nal are n — 1 with exception of a;; = a,, = n — 2. The principal minor obtained
by deleting the last two columns and rows of the matrix A is then equal to the
number k(non hy, h,;). The computation yields k(non hy, h,) = 2(n — 2) n"~4.
The determining of the number k(non h,,non h,)isanalogous. Let %, arise from ¢,
by removing the edge h,. Replacing again each edge of the graph #, by a pair of
directed edges we get a graph 9:. It can be readily seen that k(non h,, non h,) is
equal to the number of connected W-bases of the graph 5; where the source of these

W-bases can be chosen arbitrarily in %_; Thus, the consideration reduces to the com-
putation of an (n — 1)-st degree determinant as in the preceding paragraph. Following
this trend of thought, we get k(non h,, non h;) = (n — 2)* n"~*.

Substituting now into_equation (2), we .obtain k(h,, k,) = 4n"~*. A comparison
with the result obtained above yields relation (1) after cancelling a common factor.
This finishes the proof.

1) Theorem 4 in paper [7] reads as follows: Let &, be a complete graph with # vertices, and
let & = [U, H] be its subgraph with |U| = s. Furthermore, let & be a tree. Then the graph %,
contains exactly sn™~*~1 gpanning trees each of which contains & as its subgraph.

2) The concept of a W-base is defined in paper [3].
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It is evident that the method described above permits us to derive a series of
further formulas analogous to (1), if we replace %, by a different type of graph or
if we require that the spanning trees contain some other chosen elements instead of h,
and h,. The author wishes also to note that formula (1) may easily be proved by
elementary mgthods. An elementary proof, originated by J. KAuckY, was com-
- municated to him by A. RosA. Here, we consider the function

1= = ("7 e
i
defined for i = 0,1,2,3,..., and construct the difference
R . . . n— 4\ ,. —i-5
a0 =16+ ) =) = (" )(, s,
1

Thus, ;vve have

:;:i!(” 7 4)(i ) L =§::Af(i) = f(n — 3) — £(0) = n"* )

Now, let us turn our attention to further problems. First, let us prove an auxiliary
theorem.

Lemma 1. Let x be a vertex of a finite connected graph ¥ = [U, H] with H + 0.
Let ¢, =[U,H] (i=1,2,...,1) be all lobe graphs®) of ¥ such that xe U,
Furthermore, let A be a set of edges ending in x such that An H; + 0 for all
i=1,2,...,r, and let B be the set of all remaining edges ending in x. Then the
graph ¥ = [U, H — B] is connected.

Proof. Suppose that 1) is not connected. Thus, there exist two vertices u, v which
cannot be connected by a path. However, in the graph ¢ there exists a path §
beginning at u and ending at v. Let ¢(S, B) be the number of edges from the path §
which belong to B. Choose § such that ¢(S, B) is minimal. If several such paths
exist choose an arbitrary one from them and denote it by Sy, In S, we choose an
edge h, € B (assume that it is the m-th edge of this path) and find the lobe graph ¥,
containing h;. Because we have A n H; & § we can find an edge h, € A such that
h, € H,. Since both h; and h, belong to the same lobe graph #,, we can construct
a circuit @ containing these two edges. Obviously, the cir¢uit @ contains a unique
edge from B. Next, construct a new path $* between u and v as follows: We remove
the m-th edge of the path S, and instead of it we introduce into S* the edges and
vertices of the circuit @ (except h,). It is clear that ¢(S*, B) = @(Sm B) — 1,
which is a contradiction. This concludes the proof.

3) The definition of a lobe graph may be found in the book [5).
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Now, let us still introduce two notations. Let g(x, %) denote the degree of a vertex x
in the graph ¢, and let a(x, &) be the number of all lobe graphs of ¥ which contain
the vertex x. In the bibliography the lobe graph concept is usually defined only for
connected graphs with at least one edge. Then it is clear that a(x, 9) < go(x, 9).

Theorem 2. Let x be a vertex of a finite connected graph ¢ = [U, H] with H + 0.
Furthermore, let s be a given positive integer. The necessary and sufficient condition
for the existence of a spanning tree X" of the graph ¥ satisfying the condition
o(x, ) =sis

(3) *x, %) < s < ox, 9).

Proof. It can be easily verified that (3) is necessary. Actually, o(x, ") > o(x, ¥) -
cannot be true for any spanning tree " = [U, H*]. If we had o(x, ¥ < a(x, 9),
denote M the set of all edges from J¢" ending in x. Then we could find a lobe graph
9o = [Uo, Hy] such that x e Uyand M n H, = 0. However, it is clear that H* n H,,
is the set of edges of a spanning tree X", of the graph %,, so that we can find an edge
h € M satisfying simultaneously the condition h € H, (contradiction).

Next, let us prove that condition (3) is sufficient. We construct an arbitrary set 4
described in Lemma 1 such that |4| = s. By Lemma 1 it follows that the graph ¥
is connected. Thus, it remains to construct its spanning tree 2", = [U, H,] such
that A = H,. The construction can be carried out as follows: From all trees & =
= [U’, H'], where U’ = U and A = H’ = H, we choose that which maximizes |U’|,
and denote it by #,., = [Ulux Huax)- We are going to show that UL, = U.
Actually, if a y, e U — U, existed, choose y, € U}, and construct in ¢ a path §
between y, and y,. On § we can find the last vertex belonging to U — Up,,, say y;.
Consequently, the vertex y, following y; on S belongs to U_,,,. The graph [UL,, u
U {¥3}, Hiex Y {¥3¥4}] is obviously a tree having more vertices than S|, (contradic-
tion). Hence, the proof.

Finally, let us illustrate Theorem 2 by an example. If we choose a complete graph
with n vertices (n = 2) for ¥, then, by Theorem 2, for every integer se {1, n — 1)
and every vertex x a spanning tree X" exists such that o(x, &) = s. A calculation

shows that here there exist exactly (n - ?) (n — 1)""*~* such spanning trees — see

also [2].
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Vytah
KONECNE GRAFY A JEJICH KOSTRY

Jiitf SEDLACEK, Praha

V préci se nejprve ukazuje, Ze rovnici (1) a rovnice obdobné je mozno dostat jako
vedlejdi vysledek, fe¥i-li se tato Gloha: Je ddn graf (vhodného typu) s n uzly a dv&
jeho hrany h,, h, bez spolenych uzlli; mdme urlit polet t€ch koster, jeZ obsahuji h,
i h,. Ddle je odvozena nutnd a postadujicf podminka k tomu, aby v kone¢ném souvis-
Km grafu ¢ s danym uzlem x existovala kostra, ve které se stupefi uzlu x rovnd
danému pfirozenému &islu s. '

Pe3roMme
KOHEYHBIE TPA®BI U IX OCHOBBI -

WMPXU CEJJIAYEK (Jifi Sedliek), ITpara

B paGoTe cHaYaja mMOKA3aHO, 9TO ypaBHeHwe (1) M aHAJIOrMYHBIE €My YPaBHCHHS
MOXKHO IOJYYHTb KaK BTODOCTEHCHHBIH pe3yJabTaT IpPH PeIleHWH creLyIollleil 3a1a-
un: Jlad rpad (momxofsiuero THNa) ¢ n BepUIMHAMH M €To ABa pebpa hy, h, Ges
o6nmx BepumH. TpebyeTcs OmpeAesMTh TUCIO BCEX OCHOB, COAEpXallMX hy U h,.
3areM BHBE/ICHO HEOOXOIUMOE M JOCTATOYHOE YCIIOBHE IJIS TOr'0, YTOOHI B KOHETHOM
‘CBA3HOM rpade ¥ ¢ naHHON BEepHIMHOM X CyIecTBOBaJIa OCHOB2, B KOTOPOH CTEHCHD

BEPIIMHEL X PaBHA 33JAHHOMY HATYPAJILHOMY YHCIY S.
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