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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

ON THE LATTICE OF SEMISIMPLE CLASSES OF LINEARLY 
ORDERED GROUPS 

JAN JAKUBIK, KoSice 

(Received December 3, 1981) 

Radical classes and semisimple classes of linearly ordered groups were studied by 
C. G. Chehata and R. Wiegandt [1]. The author [2] and G. Pringerova [4], [5] 
investigated radical classes and semisimple classes of abehan linearly ordered groups. 

In the author's paper [3] some basic properties of the lattice 01 of all radical classes 
of linearly ordered groups were established. It was proved that 0t fails to be modular 
and has no atoms. Also it was shown that for each Xe0t distinct from the least 
element R0 of 0t there is a chain C c [K0, X\ of principal elements of 01 such that 
R0 $ C, inf C = R0 and C is a proper class. The greatest element of 0t is inaccessible 
by means of chains of principal elements of 0t. 

In the present paper analogous questions for the lattice 01 of all semisimple classes 
of linearly ordered groups will be investigated. From [1], Thms. 3, 5 it follows that 
there exists a dual isomorphism q> of the lattice 01 onto 0ts. Hence, in view of the 
results of [3], the lattice 0ls is not modular and has no dual atoms. It will be shown 
below that the lattice 0ts has no atoms; thus 0t has no dual atoms. 

In view of the quoted results of [3] concerning the principal radical classes the 
natural question arises whether for a principal radical class X the corresponding 
semisimple class cp(X) must also be principal. (If this were be valid, then from the 
theorems of [3] concerning the principal elements of the lattice 0t we could im­
mediately obtain the corresponding dual theorems concerning the principal elements 
of the lattice &s.) It will be proved that the answer to this question is negative: if X 
is principal, then (p(X) fails to be principal. 

1. PRELIMINARIES 

Small greek letters will denote ordinals (if not otherwise stated). A collection C 
will be said to be proper if there exists an injective mapping of the class of all cardinals 
into C. 

Let ^ be the class of all linearly ordered groups. When considering a subclass X 
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of ^ we always assume that X is closed with respect to isomorphisms and that 
{0}eX. 

Let X = ^. Let us denote by 

Horn X — the class of all homomorphic images of linearly ordered groups be­
longing to X; 

Sub X — the class of all convex subgroups of linearly ordered groups belonging 
toX; 

Ext X — the class of all linearly ordered groups G having the property that there 
exists an ascending chain of normal convex subgroups of G 

{0} = Gx £ G2 <= ... c Ga £ . . . ( a < 5 ) 

such that (i) \Ja<i Ga = G, and (ii) for each ft < S, the linearly ordered group 
Gfij\JT<p Gy belongs to X; 

co-Ext X — the class of all linearly ordered groups G having the property that there 
exists a descending chain of normal convex subgroups of G 

G = Gx 2 G2 2 ... 2 Ga ^ ...(a < 5) 

such that (i) (\a<8Ga = {0}, and (ii) for each f} < 3, the linearly ordered group 
(Oy<B Gy)jGfi belongs to X. 

For each ordinal x we define the class Extx X as follows. We put Ex^ X = Ext X; 
for x > 1 we set 

Extx X = Ext (Ua<* Exta K). 
Further, we denote 

extK = UyExtyK, 

where y runs over the class of all ordinals. 
Similarly, we put co-Extj X = co-Ext X and for x > 1 we set 

co-Extx X = co-Ext (Ua<* co-Exta X) ; 
we denote 

co-ext X = Uy co-Ex ty K 

(with y running over the class of all ordinals). 
The class X is a radical class of linearly ordered groups, if 

H o m I = K = ExtK. 

X is said to be a semisimple class of linearly ordered groups if 

SubX = K = co-Ext X. 

icf. WO 
Let 0t and Ms be the collection of all radical classes of linearly ordered groups or 

the collection of all semisimple classes of linearly ordered groups, respectively. Both 0t 
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and 0ts are partially ordered by inclusion. Then 0t and 0ts are complete lattices; 
the lattice operations in them will be denoted by A , v . 

The operation A in 0t and 0ts coincides with the operation of forming the inter­
section of classes. In [3] (Thm. 2.3) it was shown that, whenever J # 0 is a class 
and Xj is a radical class for each j e J, then 

V ^ - Y ^ e x t U ^ - Y y . 

For the analogous lesult concerning the operation v in the lattice 0ts cf. Thm. 2.2 
below. 

Let X ^ ^ . The intersection of all radical classes (or semisimple classes) Y with 
X <= Y will be denoted by T(X) or TS(X\ If G e & and X is the class of all H e & 
such that either H is isomorphic to G or H = {0}, then we write also T(X) = T(G) 
or TS(X) = TS(G) and put ^ p = {T(G) :Ge$}, 0tsp = {TS(G) :Ge<$}. 0tp and ^ s p 

is the collection of all principal radical classes or the collection of all principal semi-
simple classes, respectively. 

2. THE OPERATION V IN &• 

2.1. Theorem. Let X ^ &. Then TS(X) = co-ext Sub X. 

Proof. According to the definition of a semisimple class we have co-Ext Sub X c 
c TS(X) and hence by transfinite induction we infer that co-ext Sub X <= TS(X). 
For proving the relation TS(X) .= co-ext Sub X we have to verify that the class 
Y = co-ext Sub X fulfils the conditions (a*) co-Ext Y c Y, and (b*) Sub Y _= Y. 
The validity of (a*) is obvious. When investigating the validity of (b*) for the class Y 
we proceed as follows. 

a) Let G e Y and let H + {0} be a convex subgroup of G. There is an ordinal x 
such that G e co-Extx Sub X. Hence there is a descending chain of normal convex 
subgroups 

G = Gx 2 G2 3 .. . = Ga 3 .. . (a < d) 

of G such that (i) f)a<dGa = {0}, and (ii) for each p < <5, (f)y<fi Gy)JGp belongs to 

Ua<* co-Exta Sub X . 

Put Ha = Ga n if for each a < <5. Then {Ha}a<<5 is a descending chain of convex 
normal subgroups of H and from (i) we infer that f)a<dHa = {0} is valid. Let T be 
the first ordinal with H 12 Gt. For jS < T, the linearly ordered group (f|y<^ H^jH^ 
is trivial; if /? < T, then 

(a</,II , ) /H / I = (nv< / IGyj/G / t . 

For jS = r we have 
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(f)y<fi Hy)JHfi e Sub (n 7 <, Gy)\Gp s Sub Ua<x co-Exta Sub X = 

= Ua<x Sub co-Exta Sub X . 

Thus it suffices to verify that for each ordinal \x < x we have 
.» 

(3.1) Sub co-Ext., Sub X c co-Ext,, Sub X . 

b) We prove (3.1) by transfinite induction. If \i = 1, then the validity of (3.1) can 
be easily established (by using analogous arguments as we did in part a) of this proof). 
Let \JL > 1. Assume that (3.1) is valid for each ordinal less than \x. Put co-ExtM Sub X = 
= Z. Then 

Z = co-Ext (U«<M co-Exta Sub X) , 

hence 
Sub Z c co-Ext (Ua<„ Sub co-Exta Sub X) c 

S co-Ext (Ua<M co-Exta Sub X) £ Z , 

which completes the proof. 

From 2.1 we obtain as a corollary: 

2.2. Theorem. Lef J 4= 0 be a c/ass and for each j e J let Xj e 0ts. Then 

VJeJXj = co-at\JjeJXj. 

We deduce some further consequences of 2.1 (these will be applied in § 3 below). 

2.3. Lemma. Let x be an ordinal, x > 1, X £ ^ {0} 4- G e co-Ext,, Sub X. 
Then there is an ordinal TX < x and a convex normal subgroup Kx of G such that 
Kt * G and G\K1 e co-Extri Sub X. 

Proof. If there exists TX < x such that G e co-ExtTl Sub X, then we put Kx = {0}. 
Now assume that 

(*) G £ co-ExtTl Sub X for each x1 < x . 

We have 

G G co-Ext (Ur<* co-ExtT Sub X) . 

Hence there exists a descending chain of convex normal subgroups of G 

G = G^ ...^ G^ ... (a < S) 

such that, for each /? < 5, 

(a</, Ga)/G, e co-Ext^, Sub X , 

where r(p) < x. In view of (*) we must have 2 < 5. It suffices to put Kx = G2, 
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2.4. Lemma. Let the same assumptions as in 2.3 be satisfied. Let xx and Kt be 
as in 2.3. Assume that rl > 1. Then there is T2 < TX and a convex subgroup K2 of G 
with K2 4= G such that G/K2 e co-Extt2 SubZ. 

Proof. By applying 2.3 we infer that there is T2 < t1 and a convex normal sub­
group K2 of G/K! such that K2 4= G/Kx and (G\K^\K2 e co-ExtT2 Sub X. There is 
a convex normal subgroup K2 of G with K2 4= G such that G/K2 is isomorphic to 
(G/K0/K2. Hence G/K2 e co-ExtT2 Sub X. 

From 2.3 and 2.4 we infer: 

2.5. Corollary. Let I c ^ {0} 4= G e co-ext Sub X. Then there is a normal 
subgroup K of G with K 4= G such that G/K e Sub K. 

3. NONEXISTENCE OF ATOMS IN ®s 

The trivial variety R0 is the least element in both the lattices 0t and $s. In this 
section it will be shown that if X e Sts and X 4= K0> then the interval [K0, K] of 3ts 

is a proper collection; in particular, 0ts has no atoms. The construction for proving 
this is analogous to that applied in [2]; cf. also [5]. We use the same notations 
concerning lexicographic products of linearly ordered groups as in [2]. 

Let a be an infinite cardinal. We denote by co(<x) the first ordinal having the property 
that the set of all ordinals less than co(<x) has the cardinality a. Let I(a) be the linearly 
ordered set dual to a>(a). 

Let G G ̂ , G 4= {0} and let a be a cardinal with a > card G. We put 

Ga
 = rf6j(a) Gt , 

where Gt is isomorphic to G for each i e I. Next, let G\ be the subgroup of G\ con­
sisting of all g e G\ such tha the set {i 6I(a) : g(i) 4= 0} is finite. 

From the construction of G\ we immediately obtain: 

3.1. Lemma. Let Ke Sub {G2}, K 4= {0}. Then edit A K = a. 

3.2. Lemma. G2 e co-Ext {G}. IfP is a cardinal with /? > a, then Gj e co-Ext {G^}. 
From 3.2 and 2.1 we conclude: 

3.3. Lemma. G2 e TS(G). If j5 > a, then Gj e T/G^). 

3.4. Lemma. G £ TS(G^). If j3 > a, f/ten G^ £ T^Gl)." 

Proof. This is a consequence of 3.1, 2.5 and 2.L 

From 3.3 and 3.4 we infer: 
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3.5. Lemma. Ts(G
2
a) < TS(G). If fi > a, then TS(G

2) < Ts(G
2
a). 

3.6. Theorem. Let XeMs9X =# R0. Then there exists C c 0tspsuch that (i) C is 
a chain, (ii) i ? a ^ C, (iii) C is a proper collection, (iv) inf C = jRc, (v) C c [JR0, X]. 

Proof. There exists GeX with G 4= {0}. Let C be the collection of all semisimple 
classes TS(G

2)9 where a runs over the class of all cardinals a such that a > card G. 
Then R0 $ C c ^ s p . In view of 3.5, (i) and (iii) are valid. Assume that there is H =f= 
4= {0} such that H e TS(G«) for each a > card G. Hence in view of 3.1, 2.5 and 2.1 
we have card H ^ a for each a > card G, which is impossible. Therefore inf C -= 1\0. 
The validity of (v) is a consequence of the fact that GeX. 

3.7. Corollary. The lattice 0ts has no atoms. 
Foi the analogous result concerning the lattice of semisimple classes of abelian 

linearly ordered groups cf. [5]. 

4. THE RELATION BETWEEN SEMISIMPLE CLASSES AND RADICAL CLASSES 

Let us recall the following definitions introduced in [1]. 
Let G G (S. A convex subgroup Gt of G is said to be accessible in G if there are 

convex subgroups G2 , . . . , Gn of G such that 

G ^ ^ c . czG„ = G 

and Gt is a normal subgroup of Gi+1 for i = 1, 2 , . . . , n — 1. 

Let l e i The class of all G e ^ such that no nonzero accessible convex subgroup 
of G belongs to X will be denoted by sX. 

Let Ye 0ts. The class of all Ge<$ having the property that no nonzero homo-
morphic image of G belongs to Y will be denoted by u Y. 

4.1. Proposition. (Cf. [1]. Propos. 7 and 9.) Let X e 01 and Ye 0ts. Then 

(i) sX e 01 s9 

(ii) uYe®9 

(iii) usX = X and swY- Y. 

Consider the mapping of the collection 0t into 0ts defined by X -» sX for each 
Xe0t. According to the definition of s and w, from Xl9 X2 e 0t9 X1 <£ X2 we con­
clude sXt *z sX29 and similarly Yl9 Y2e0ts9 Yt g Y2 implies that uYt ^ uY2. 
Thus in view of 4.1 (iii) we obtain the following result: 

4.2. Lemma. The mapping s is a dual isomorphism of the lattice 0t onto the 
lattice 0ts and u -= s^1. 
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Hence to each theorem concerning merely lattice properties of 0t there corresponds 
a dual theorem concerning 3ts, and conversely. For example, the fact that the lattice 0t 
has no atoms [3] implies: 

4.3. Proposition. The lattice 0ts has no dual atoms. 
Similarly, 3.7 yields: 

4.4. Proposition. The lattice £% has no dual atoms. 
Also, since the notion of modularity is self-dual and since & is not modular [3] 

we get: 

4.5. Proposition. The lattice $s is not modular. 
Now we can ask whether the above correspondences concern also those properties 

of 0t which are expressed in terms of principal elements, i.e., whether for each principal 
element X of 0t the semisimple class sX is principal, and conversely. It will be shown 
below that the answei to this question is 'No'. 

Let a be an infinite cardinal. Let 1(a) be as in § 3 and let /'(a) be the linearly ordered 
set dual to /(a). For G e & we put 

Ga -= r i e r ( a ) Gt, 

where each Gt is isomorphic to G. Taking into account the structure of Ga we obtain: 

4.6. Lemma. Let G e &,G 4= {0}, a > card G. Let K be a convex normal subgroup 
of Ga, K #= Ga. Then card (Ga/K) = a. 

4.7. Lemma. 0tsp has no maximal element. 

Proof. Let Ge&,G # {0}. Let a be a cardinal, a > card G. Put H = G o Ga. 
Since G e Sub {H} we have GeTs(H), hence TS(G) ^ TS{H). From 4.6, 2.1 and 2.5 
it follows that H does not belong to TS(G), therefore TS(G) < TS(H), which completes 
the proof. 

Let I and J be linearly ordered sets. We denote by I Q J the set of all pairs (U ]) 
with ielj e J which is linearly ordered as follows: for (iiJi), (iiJi)^! o J we put 
( W i ) < (hJi) if either j i < j 2 , or j! = j 2 and ix < i2. 

4.8. Proposition. Let X be a principal radical class* Then the semisimple class sX 
fails to be principal. 

Proof. Let Ge& and let X be the principal radical class generated by G. If 
G = {0}, then sX = ^ and hence in view of 4.7, sX fails to be principal. Let G 4= {0}. 
Assume that there is H e & such thaf sX = TS(H). Then we must have H 4= {0}. 
Let Ke &, K 4= {0} and let a be a cardinal with a > max {card G, card H}. Put 
(under the above notations) 
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M(a) = I(a)oF(a), 

where each Kt is isomorphic to K. For each nonzero convex subgroup Kx of K[a] 

we have card Rx > card G, hence in view of Lemma 4.1 in [3], Kt does not belong 
to R = T(G). Therefore K[a] e sX. On the other hand, if K2 is a nonzero homo-
morphic image of K[a], then card K2 > card H. Hence in view of 2.1 and 2.5, K[a] does 
not belong to TS(H). Therefore the relation sX = 15(H) cannot hold. 

The proof of the following proposition is analogous to that of 4.8; it will be 
omitted. 

4.9. Proposition. Let Y be a principal semisimple class. Then the radical class uY 
fails to be principal. 
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