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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON THE MONOTONICITY OF SOLUTIONS OF CERTAIN TYPES 
OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

JOZEF KALiNOWSKi, Katowice 

(Received November 23, 1982) 

Let R denote the set of all real numbers and let J c W be an interval. By CX(I, 
we denote the set of all continuously differentiable real functions defined on I. 

We shall consider the functional-differential equation of the first order 

(1) x'(t)=f(t,x), 

where 
f:D-+R 

is a given function and I) is a subset of the set I x CX(I, R). 

We will assume that 

(2) V [x(tl) = x(t2)~f(tl,x).f(t2,x)>0]. 

(t2-x)eD 

(For special cases cf. Corollary 2.) 

A function x e C1^, R) is a solution of (1) iff (l) holds for every t e I. 

We shall prove the following lemma: 

Lemma 1. Suppose that — co<a<b<ao.Ifye Cl([a, b], R) and 

y(a) < y(b) 

then for every y e (y(a), y(b)) there exists c e (a, b) such that 

(3) . y(c) = y, y'(c) = 0. 

Proof. Consider the set 

T:={tz\a,b\:y(t) = y) . 

It follows from the continuity of the function y that T is a non-empty and compact 
set. Denote 

(4) fm = i n f T . 
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The inequality tm > a holds because y(tm) = y 4= y(a). If for a certain c e T w e have 
y'(c) _ 0, then condition (3) is fulfilled. Suppose that the inequality y'(t) = 0 does 
not hold for any t e T. Hence, in particular, y'(tm) < 0 and this yields the existence of 
a positive number e such that 

tm - e e (a, b) 

and 

y('m - e) > y('m) • 

Thus 

y(a) < y = y(tm) < y(tm - e) . 

Hence and from the continuity of y we infer that there exists an s e (a, tm — e) such 
that 

y(s) = y . 

In particular, s e Tand s < tm. So we have obtained a contradiction with (4). 

Lemma 2. If x G C 1 ^ , WJ IS not a monotonic function then there exist points 
tl9t2el such that 

(5) x(tt) = x(t2) 

and 

(6) x%). x'(t2) < 0 . 

Proof. Since x e C*(I, R) is not a monotonic function it follows that for some 
u,vel such that u < v, the inequalities 

(7a) x'(u) > 0 , x'(v) < 0 

or 

(7b) x'(u) < 0 , x'(v) > 0 

are satisfied. We shall confine ourselves to the case (7a). (In the case (7b) it is enough 
to consider the function —x.) 

The function x|[U|i;] assumes its maximum at a point vv. It follows from the condi­
tion (7a) that w e (u, v) and 

x(u) < x(w) , x(v) < x(w) . 
Consider the case 

(8).' x ( w ) < x ( v ) . 

(In the case of equality, 

x(w) = x(v), 

putting *! = u, t2 = v in (7a) we obtain (6). 

251 



If 

x(u) > x(v) 

we argue similarly as in the case (8). 

Putting 

y = y(v), a = u , b = v 

and applying Lemma 1 we obtain the existence of a point c e (u, v) such that 

(9) x(c) = x(v) and x'(c) = 0 . 

Now we shall prove that there are points tl9 t2 in the interval [u, v] such that (5) 
and (6) hold. 

It follows from the inequality 

x'(v) < 0 

that there exists a z e (w, v) such that 

(10) x'(t) < 0 for t e [z, v] . 

In particular, x\[zvl is a strictly decreasing function and so 

(11) x(v) < x(z). 

Moreover, it follows from (10) and from the choice of the points z and w that 

(12) x(z)<x(w). 

Consider the set 

U : = {t e [c, w] : x(t) e [x(v)t x(z)~]} . 

We shall prove that there exists a point t^eU satisfying 

(13) x'(tl)>0. 

To this end we consider the set 

V: = {t e [c, w] : x(t) = x(z)} . 

Recalling (9), (11) and (12) we get 
V4=0. 

Put 
vOT = infV . 

In view of (9) and (11) as well as from the continuity of the function x we infer that 
there exists an e > 0 such that vm — e ^ c and for every t e (vm — e, vm) we have 

(14) JC(I?) < x(t) < x(z) . 

Hence 
(vOT -e,vm)cU. 
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Now, if wehadx '(t) ^ 0 for every te U then x\(Vm_etVm) would be a decreasing function, 
which, however, contradicts (14). Hence, there exists a tx e U such that (13) holds. 

Finally, since 
x(v) < x(t,) _i x(z), 

we can find a point t2 e [z, v] such that (5) is true. Recalling (10) and (13) we get (6). 

This completes the proof of Lemma 2. 

Theorem. Under the hypothesis (2), every solution x e Cl(l, R) of equation (l) 
is a monotonic function. 

Proof. Suppose that a solution x of (l) is not a monotonic function. Then by 
Lemma 2 there exist points tx,t2el such that (5) and (6) holds. 

From (5) and assumption (2) we derive that 

f(tux).f(t2,x) = 0, 

i.e., since x is a solution of equation (1), we have 

x'(h) . x'(t2) = 0 , 
which contradicts (6). 

This completes the proof of the theorem. 

Remark. A particular case of the theorem was proved in [1], where the equations 

and 
x'(t) = x(x(t)) 

were considered. 

An immediate consequence of the theorem is the following corollary. 

Corollary 1. Under the hypothesis (2), equation (l) has neither periodic nor oscil­
latory solutions, except that which is a constant function. 

The theorem is no longer true if we drop assumption (2), which is shown by the fol­
lowing examples. 

Example 1. The function 

x(t) = t2 , f e ( - l , 1) (or teR) 

is a solution of the equation 

, , ( f ) = 2 , *(*(')) + ! 
k ; MOP + i 

in ( — 1, l) (or in R, respectively). 
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A type of equations of the form (l) for which condition (2) need not be fulfilled 
are ordinary differential equations with a constant but different from zero deviation 
argument. 

Example 2. Consider the equation 

x'(t) = x(t + \n) , teR . 

The function x(t) = sin t, t e R, is a solution of this equation. 

It is impossible to obtain analogous theorems for systems of differential equations 
of type (1). Under similar assumptions about each equation of the system the com­
ponents of the solution need not be monotonic. 

Example 3. Consider the system of ordinary differential equations 

M O = WO]2 - y(0 + i > 
}/(0 = 2 x(t) , 

on the real line. It is easily verified that the function 

(x(t), y(t)) = (t,t2), teR, 

is a solution of the above system. 

Corollary 1 and Example 3 complete a result of J. A. Yorke (see [2]). 
For ordinary differential equations without deviation the following is true: 

Corollary 2. Suppose thatfx :I -> R is a function which does not change the sign 
and let f2 : R -> R be an arbitrary function. Then every solution x e Cl(l, R) of 
the equation 

x'(t)=fl(t).f2{x(t)) 

is a motonic function. 
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