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Časopis pro pčstovánf matematiky, roč. 109 (1984), Praha 

SOME REMARKS ON THE AUTOMORPHISM GROUP 
OF A COMPACT GROUP ACTION 

MIRCEA PUTA, Timisoara 

(Received December 16, 1982) 

1. Hs-AUTOMORPHISMS 

Let M be a compact w-dimensional manifold without boundary and G a compact 
Lie group which acts in a transitive way on M. Let ft : G x M -> M be the group 
action, and let fijm) = K-7* wi)> for each a e G, me M. 

We denote by @S(M) the space of all diffeomorphisms of M of Sobolev class Hs, 
i.e., / G Q)S(M) if and only if/ is bijective and / , / - 1 : M -> M are of class Hs. It is 
known [2], [3] that <3S(M) is a topological group and for 5 > (nj2) + 1 it is a Hilbert 
manifold whose tangent space at e, the identity of 2i\M), is given by Te(M) = 
= &S(M) = the space of all Hs-vector fields on M. Moreover, if X is in ££S(M). 
s > (nj2) + 1, and {/J is its flow, then/ , is a C1 curve in Qfs(M). More details and 
proofs can be found in [2] and [3]. 

Throughout the paper we suppose that s > (nj2) + 1, and that the Riemannian 
metric on M is invariant under the action of G. 

1.1. Definition ([2]). An automorphism of class H5 is a diffeomorphism/ : M ^ M 
of class Hs which is G-invariant. 

We denote by &G(M) the group of all Hs-automorphisms of the action, namely: 

®G(M) = { /G @*(M)\ Va G G, iia of = / o fia] . 

1.2. Remark. It is not difficult to see that &G(M) is a subgroup of ^S(M) and also 
a C°°-manifold, whose tangent space at e is given by Te @

S
G(M) = {X e %S(M) | X 

commutes with all infinitesimal generators of JU}. 

2. G-INVARIANT FORMS OF CLASS Hs 

Let Hs AP(M) be the space of p-differential forms on M endowed with the Hs-
topology, i.e., with the topology given by the inner product 

(a, P)s = f a A *p + f (d + S)s a A *(d + S)s 0, 
J M J M 
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where a, fi e Hs AP(M), * : Hs AP(M) -> Hs An~p(M) is the "star" Hodge operator 
and 6 : Hs AP(M) -> Hs_1 AP~1(M) is the adjoint of d with respect to the inner 
product (*)s, given on p-forms by 

The action of G on M determines is a natural way an action of G on Hs AP(M), 
and we have 

2.1. Definition, coe Hs AP(M) is G-invariant iff for each a e G, the following 
equality holds: 

fl*CO = co . 

We denote by Hs AG(M) the space of G-invariant p-forms on M of class H5. 

As in the non-equivariant case, there is a natural relation between ^G(M) and 
HsAl

G(M): 

2.2. Proposition. There is an isomorphism between %S
G(M) and Hs AG(M). 

Proof. Let X be a G-invariant H5-vector field on M. Then we can associate with X 
an 1-form X, where 

X(Y)^g(X,Y), 

YE &S(M) and g is the Riemannian structure on M. Since this correspondence is 
a bijective one, it is enough to verify that X is G-invariant. For each a e G, we 
succesively have 

fi*aX(Y) = X(ii'aY) = g(X, £Y) = g(fiaX, fi'aY) = 

= ii*ag(X, Y) = g(X, Y) = X(Y), 

and then X e Hs AG(M). q.e.d. 

2.3. Theorem (G-invariant version of Hodge decomposition theorem). Let 
OJEHS AP

G(M). Then there are aeHs+1 A^'^M), PeHs+1 AP
G

+1(M), y e C00 AP
G(M), 

Ay = 0, such that 
co = da + Sp + y . 

Furthermore, da, d/3 and y are Hs-orthogonal and hence uniquely determined. 

Proof. By the classical Hodge theorem [2], there are a EHS+1 AP~1(M), /?e 
E Hs+1

 AP+1(M) and yeC 0 0 AP(M), Ay = 0, such that 

co = doc + dp + y . 

Now using the invariance of the metric under the action of G and Wattson's theorem 
[5] we conclude that a, /?, y are G-invariant. 

q.e.d. 
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2.4. Remark. We can also answer the following question. Given a G-invariant 
p-form co, under what conditions is there a G-invariant p-form rj such that the 
equation 

At] = co 

is satisfied? The answer is : if and only if 

(y, co)0 = 0 

for every G-invariant harmonic form y. 

Indeed, suppose that co = Arj and y is harmonic. Then 

(y> ^)o = (y> An)o = (Ay, n)o = C°, n)o = ° • 

On the other hand, suppose co is a G-invariant form satisfying (y, co) = 0 for each 
G-invariant harmonic form y. From the decomposition 

co = da + dp + y 

we have, using the particular y which is part of co, 

0 = (y, co)0 = (y, da)0 + (y, 5p)0 + (y, y)0 = 

= ($y> a ) 0 + (dy, P)o + (y> ?)o = (y> y)o ; 

hence y = 0, co = dot + d/3. 

We set ,7 = \i + y and try to solve A\x = da, Ay = 5)8 separately. First we take 

Afi = do:. 

Decomposing a we have 
a = daj + 5/?! + yt , 

da = d<5/?! . 
Further, 

j8x = da2 + 5p2 + y2 , 

d^^i = d5da2 = (dd + <5d) (da2) = A(da2), 

da = A\i with \i = da2 . 
We find y similarly. 

For us, one of the most important consequences of the above theorem is the 
following 

2.5. Proposition. Let X be a G-invariant Hs-vector field on M. Then there are 
a unique G-invariant divergence free Hs-vector field Y and a G-invariant gradient 
W-vector field grad (p) such that 

X = Y+grad(p). 

Moreover, when setting P(X) = Y, P is a bounded linear operator from &S
G(M) 

to the space of G-invariant vector fields with free divergence. 
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Proof. The first part is an immediate consequence of the above propostion. 
Indeed, in terms of the corresponding G-invariant 1-form X we write 

X = doc + SP + y 

and set da = dp, Y = Sfi + 7. Since S2 = 0, SY = 0 it follows that div 7 = 0 . For 
the second part we can use the general technique of Ebin-Marsden [2j. 

q.e.d. 

We close this section with a proposition which will be very useful in the next 
section: 

2.6. Proposition. Let co be a G-invariant volume form on M. Then we have the 
isomorphism 

{X J co I X e XS
G(M)} ~ Hs+1 An

G~ l(M) . 

Proof. By the classical theory of differential forms, for each a e Hs+L An
G

x(M) 
there exists X e %S(M) such that X J co = a. Hence it is enough to prove that X is 
G-invariant. But for each a e G we successively have 

X J co = a = /x*a = /x*(X J co) = \iaX J co , 

and hence X is G-invariant. q.e.d. 

3. VOLUME PRESERVING AUTOMORPHISMS 

Let a; be a G-invariant Hs-volume from on M and <2)G,jM) the subgroup of @G(M) 
of all co-preserving Hs-automorphisms: 

®G,JM) = {fe ®G(M) \f*co = co} . 

This group is important in the study of flows with various symmetries (e.g. a flow 
in R3 that is symmetric with respect to a given axis). 

Now it is easy to see that @GjM) = 9>*jM) n Q)G(M). Since this intersection is 
in general not transversal, it is not obvious that Q)GtjM) is a submanifold of Q)G(M). 
However, we shall prove that this is the case. More precisely, we have 

3.1. Theorem. @GtjM) is a closed Hilbert submanifold of $)G(M). 

Proof. Using the G-invariant version of Hodge theorem we have that the coho-
mology class of co, 

[col = co + d(H°+lAn
G-l(M)), 

is a closed affine subspace of Hs AG(M). 

Define the map 

* c : / e ^ + \M) -> ^ G ( / ) = f / » e [a , ] , . 
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It is easy to see that 

and then @G(0(M) is a C°°-submanifold of @G(M) if we prove that \J/G is a submersion. 
To this end it is enough to observe that 

Te x//G(X) = d(X J oo) , 

and hence Te \j/G is onto by Proposition 2.6. 
q.e.d. 

In the sequel we shall try to understand other topological properties of the group 
Q)G(M). We begin with a G-invariant version of the Moser theorem: 

3.2. Theorem. Let rs
G(M) = {y e Hs An

G(M) \ v > 0, JM v = JM co}. Then there is 

a map %G, XG * ^G(M) -* @G(M) sucn tnat 

*AG o XG = identity . 

Proof. Let v e f G ( M ) and vf = tv + (l - t) co, so that v, e-TG(M). Since 
JM V = §M w, we have co — v = doc. Define Xt by Xt J v. = a. Then it is easy to 
see that Xt e &G(M). Let {cpt} be the flow of Xt. Since X, is G-invariant it follows 
that the flow {cpt} of Xt is G-invariant so that cpt e Q)S

G(M). Now, it is enough to take 

XGW = (pi1 , 

and we obtain the desired result. 
q.e.d. 

Using the classical observation of R. Palais [4] that the topology of @S
G(M) and 

@G(M) (i.e. the group of C°°-G-invariant diffeomorphisms of M) is the same, we can 
deduce from the above theorem the following result. 

3.3. Theorem. (G-invariant version of Omori theorem). QJG(M) is diffeomorphic 
to @Gt(0(M) x f^G(M). In particular, @G)(0(M) is a deformation retract of Q)G(M). 

Proof. For the proof it is enough to observe that 0 defined by 

*(Lv)=7=Z0(v) 
gives the desired diffeomorphism. q e d 

In [1] W. Curtis showed that if the action of G is free, then there is a G-invariant 
spray on Q)G{M). Using this result and the same technique as in [2] we can build 
a G-invariant spray on S)G)(0(M). More precisely, we have 

3.4. Theorem. If ZG is a G-invariant spray on SJG(M), then SG(X) = TP(ZG o X) 
is a G-invariant spray on Q)G>m(M), where P is defined as in Proposition 2.5. 
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