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UNIVERSAL SIMULTANEOUS APPROXIMATIONS
OF THE COEFFICIENT FUNCTIONALS

PETR PRIKRYL, Praha
(Received June 14, 1976)

Universal approximations, a concept which appeared in numerical mathematics
some years ago [1], [2], had resulted from the attempt to avoid problems con-
nected with the choice of the space over which the given functional should be (best)
approximated. BABUSKA and SOBOLEV [3] pointed out that the dependence of the
best approximation on the space can have unpleasant numerical consequences. The
information at our disposal is usually not sufficient to determine a unique space over
which the given functional should be approximated optimally and the conclusions
on the advantage of optimum methods are thus “unstable” in practice. This implies
the importance of finding approximations the error of which does not differ *“too
much” from those of the best approximations in a wide class of spaces. Such approxi-
mations are then called universal.

In an earlier paper of the author the universal approximations of Fourier coef-
ficients in a particular class of Hilbert spaces were studied [5] Later, the author
announced some results valid for general classes of Hilbert spaces [6] This paper
treats the approximations of the coefficient functionals associated with a basis of
Banach spaces and the conclusions of [6] are here contained as a special case. Since
the fundamental ideas here are similar to those of [5] we proceed rather briefly in
this paper, referring to [5] whenever convenient*).

1. BEST APPROXIMATIONS: SOME LOWER BOUNDS

We shall deal with classes B of Banach spaces (B-spaces) E over the field of complex
numbers, generated by a common Schauder basis {x;}. Let E € B and assume that
we want to compute the values F(x), j = 1,2, ..., r where

x =j;1Fi(x) Xj
and r > 1.

*) The results of this paper were presented at the Third Conference on Basic Problems of
Numerical Mathematics (Prague 1973) (cf. [7]).
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We shall approximate the vector [F;] of functionals from E* by another vector
G,], G, € E*. The approximating functionals are assumed to be of the form
ib Yi

(1 Gx) = 3, ax) 0:0)

where 1 < n < r, a, € E* and g, are complex-valued functions of an integer argu-
ment j. Thus instead of calculating r values F ,(x) we compute n values ak(x), n<r.
The main question we ask in this paper is how to choose the matrix [g,(j)] (k =
=1,2,..,n;j=12,...,r) properly.

For a given n, denote by M, the set of all the approximations [ G;] where G is of the
form (1.1). We define the error of the approximation as

E®* *

(1.2) wg([G,]) =j=rlnax “F i =G

3L 5eany

Let M = M, for some n. Then the best (or optimal) approximation from the set M
(if it exists) has the error

(1-3) Qp(M ) =[Gijf]16fM wE([Gj]) .

Obviously 24(M) = QgM,) for any M = M,,

A positive lower bound can be derived for 2¢(M,), which is of decisive importance
for further considerations.

Theorem 1.1. Let E € B and choose n + 1 integers ji, jzs ..., ju+1 in such a way
that 1 £ j, < r and j, + j, whenever s + t. Then

(14 o) 2 (3 i)

Proof. We shall make use of Lemma 4.1 of [5], which is obviously valid also
in B-spaces. We reformulate it for the reader’s convenience, but without proof.

Lemma 1.1. Let E € B and denote by 0 the zero element of E. If for every x € E
and all approximations [G;] e M,

(1.5) inf max |Fi(x) = G{(x)| 2 Ce(x, g1 925 ---» 9)
i=1,2,..,r

3
k=1,2,...,n

is valid, then

(1-6) QyM,) =z inf sup (x|~ - Calx. g1 925 --» gn)) -
I3 X€E

k=1,2,..,nx%0
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Therefore, we need a lower bound for

. inf max |Fj(x) — Gj(x)| =
ak J=1,2,..,r
k=1,2,...,n

n

= inf l'f,f.’rlFi(x) —kZIak(X) a:))| -

ax J= =
k=1,2,..,n
This can be found in the same manner as in [5]. We choose n + 1 integers j;,
s=1,2,...,n + 1 satisfying the hypotheses of the theorem. Then we compose
n + 1 n-dimensional vectors

[gl(js), gZ(js)’ LR gn(js)] s S = 15 25 e N + 1 .

These vectors are linearly dependent and we can find numbers 4,, 4,, ..., 4,4, such
that

n+1

(1.7) YA alis)=0, k=1,2,..,n,
s=1

and
n+1

(1.8) ; A =1.

Every vector A = [A, 4y, ..., 4,4, ] satisfying (1.7) and (1.8) will be called deter-
mined by the matrix [g,(j;)]. For any such A and any x € E we have

n+1 n+1

S;I'{S(Fjs(x) - G;,(x) =S=Zl As F(x).

In virtue of (1.8) we obtain

n+1

,,,,,,

and further

n+1
(1.9) inf  max |Fx) - G(x) | ¥4 Fi(x)|
k=1?;,.\..,n i=1,2,...,r s=1
for every x € E and [G;] € M,. The right-hand side of (1.9) is independent of a,’s
and this bound thus satisfies the hypothesis of Lemma 1.1. In fact, for every [G;] e M,
(1.9) generally represents a family of bounds (we can obtain different bounds with
different solutions of the problem (1.7), (1.8)). This ambiguity is, however, in-
significant and we can avoid it by assigning each [g,(j)] some fixed vector determined

by [g:(js)]-

294



Let N < E. Using Lemma 1.1 we now get easily

n+1
rzls Js(‘x)l |Z'1s J.(x)|
(1.10) Q(M,) =2 inf sup =——— Zinf sup >
U v

where the second infimum is taken over all A’s satisfying (1.8)*). We shall take for N
the linear subspace of E spanned by x;,, x;,, ..., X;,,,. Put

n+1 I
2(1) =s;1 I 5 _ st;
J

obviously £(A) e N. For every A satisfying (1.8) we have

| s Js(x)l IZAS Js(g)l n+1 _I_L
. SRR A

as F; (%) = X. |x;,| 7" and |#] < 1. In view of (1.10) we have thus obtained

n+1 2
(L12) Qi(M,) 2 inf( 5 JiL)
P\E
where the infimum has the same meaning as above.

The proof can now be readily finished. Firstly,

+1 n+1

” o 2 (Z el

which can be easily verified by the Cauchy inequality, and this lower bound is actually
the least one since for

(1.13)

j-l
n+
DA
t=1
(1.13) becomes equality. The theorem is proved.

Proving Theorem 1.1 we have obtained also the following result regarding the
set M4 = M, of the approximations with a fixed matrix [g,(j)] (cf. (1.11)).

hy =

Theorem 1.2. Let E € B. Given a matrix [g,(j)], choose integers jy, j,,
in such a way that 1 < j, £ r and j; + j, whenever s =+ t.

oottt

*) It can be shown (by assigning each A a fixed [g,(j)] such that (1.7) holds) that even the equali-
ty sign could be written in the second part of (1.10).
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Then

(L) o, 2y P

s=1 “ij

for any )\ determined by [g,(j,)]-
The above bounds on Q are generally improvable since e.g. for a special class of
Hilbert spaces we obtained in [5]

2,01) = (3 |,

2)— 1/2

and

Qu(M7) 2 ("il “lisf—)m .

s=1 “x,-, g

Nevertheless, for our further qualitative considerations the bounds of Theorems 1.1
and 1.2 are sufficient.
We can see from Theorem 1.1 that Q¢(M,) > 0. Hence, we can form the ratio

Q:(M, [G,]) = %]—)

and use this ratio to measure the quality of a given approximation [G;]e M = M,
with respect to the set M.

2. UNIVERSAL APPROXIMATIONS

In [5], we constructed the approximation [K}] which was optimal in a given
Hilbert space H, from a class £ and we showed that this approximation can be very
“bad’ in other spaces from the class $ considered. Namely, we proved that for any D
positive a space Hpe $ existed such that Qu, (M, [K]]) > D — even if
Qny(M,, [K}]) = 1. This effect led us to the introduction of the concept of a universal
approximation.

Definition 2.1. An approximation [G;] € M, is said to be universal for a given
class B of B-spaces if there exists a constant D such that

(2.1) ‘ 0sM,, [G,]) < D

for any E € B.
So, in contrast with the optimality, universality is related to some class of spaces.
Itis clear that for a sufficiently small class B (e.g. consisting of only a finite number of
spaces E) every approximation from M, would be universal. On the other hand, for
wider classes of spaces a universal approximation need not exist [5]. It is therefore
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reasonable to search for some (as general as possible) conditions on B that would
guarantee the existence of a universal approximation. The concept of a conservative
class of spaces will play an important role in such conditions.

Definition 2.2. We shall call the class B of B-spaces E conservative, if the elements
of the common basis can be assigned subscripts in such a way that

(22) [l = %] = - = =

in every E € B.

In the remainder of the paper we shall be concerned with conservative classes of
B-spaces only and we shall assume that the basis {x;} has been ordered in such a way
that (2.2) holds.

We now formulate some conditions on B that are sufficient for a universal ap-
proximation to exist. We denote by S, the (continuous) linear operator given by

n
S,,(X) =j;1Fj(x) Xjo
(x€E, n=1,2,...). Further denote
v(E) = sup "S,,}
1<nsr

and
WE) = sup [5,]

(the norm of the basis {xl})
Theorem 2.1. Let B be a conservative class of B-spaces. If
(2.3) v(E) £K

for every E€ B and K is independent of E, then for each n, 1 < n £ r, there
exists an approximation [Bj] € M, universal with respect to B. This approximation
is defined by (1.1), where

(2.4) a=F, k=12,...,n,

gk(j)=6kj’ k=1,2,...,n, j=1,2,...,r.*)

Moreover,

(2.5) Qx(M,, [B;]) < 2K(n + 1)

in every E e B.
*) &; = O unless k = j, in which case §; = 1.
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Proof. The error of [B,] is

(2.6) . wg([B;])

e = [[Follee

ji=n+1,.., r

where n + 1 < q < r. Using Theorem 1.1 withj, =s,s = 1,2, ..., n + 1 we obtain

n+1
g2 % -
s=1

(2.7) Q:(M,, [B)]) = |IF,

We need to estimate ”F q” £+ Dy means of ”xq” ~1 Tt will prove sufficient to proceed
in a very simple manner. We write

7o) = L xl

[l
This yields
o) s O IEEOR ey ok
=l [l
Hence,
(2.8) |Follex = ||2x—K§|

From (2.7) and (2.8) we now get

Qx(M,, [B,-])._S_ ZKHZI

=[x

Since B is conservative and ¢ = n + 1, we have ”xs” < “xq
and

Xs

,s=1,2,....,n+ 1,

0x(M,, [B;]) = 2K(n + 1),
which completes the proof.

Remark 2.1. It can be seen from the proof of Theorem 2.1 that we could assume
”xj“ < "x,‘” whenever 1 < j < n + 1 =< k < r instead of the conservativeness to
obtain the same result for a fixed n.

Remark 2.2. A basis {x;} of a B-space E is said to be monotone if we have
n n+m
” iglaixi“ = “ i‘_élotix,-"

for all finite sequences of complex numbers a,, a5, ..., &, ,. Monotone bases satisfy
the condition (2.3) of Theorem 2.1 trivially since their norm is ¥(E) = 1in any B-space
[8]. In Hilbert spaces, monotonicity is equivalent to orthogonality.
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We now give some examples of classes B satisfying the hypotheses of Theorem 2.1.

Example 2.1. The spaces L¥([0, 1]) and the Haar functions. It is well-known [8]
that the sequence of equivalence classes {J,}, where y; are the Haar functions, i.e.
the functions defined on [0, 1] by

(2.9) nn=1,

20-2 21 -1
k
V2 for ‘6[37;1—’7:)’

yaredt) = —/2¢ for te[z_l__l 2’)

gk+1 ’2k+1 ’

0 for the other ¢,

(1=1,2..,2% k=0,1,2,...) constitutes a basis of the space I*([0, 1]) (p 2 1).
Further, it may be shown that this basis is monotone [8]. An easy computation yields

(2.10) 154, = 1, [Faxsi], = @27 2729),

(I=12..,2%k=0,1,2,...) where ““p denotes the norm in I7([0, 1]). From
(2.10) we see that the class B of the spaces ([0, 1]), p = 2, with the Haar basis is
conservative. Hence, B, satisfies the assumptions of Theorem 2.1 with K = 1.

Example 2.2. General separable Orlicz spaces with the Haar basis. Let M(u)
be an even convex continuous function defined on (— o, + 00) with the following
properties:

(211)  a) lim M) _ 0,
n-0 U

b) lim—M=oo,
u

n—w

c) there exist constants k > 0, u, = 0 such that M(2u) < k M(u) for
u = ug.

The general separable Orlicz space*) Ly ([0, 1]) is then the space of the equivalence
classes ii given by real-valued functions u(f) defined on [0, 1] for which

(2.12) f M(u(t) dt < oo.

*) Proofs of the properties of Orlicz spaces and functions M(«) used in this example can be
found e.g. in [4].
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The norm “1’1“ M can be introduced by the relation

(2.13) . I:M [“’Lf’&] dt=1.

It can be proved that Ly([0, 1]) with this norm is a separable B-space and, moreover,
the equivalence classes {J,;} where y,(t) are the Haar functions defined by (2.9)
constitute a monotone basis of Ly([0, 1]) [9].

For example, M(u) = |u|? (p > 1) satisfies (2.11) and this choice yields Ly([0, 1]) =
= I?([0, 1]). Another possible choice of M(u) is

(2.14) M(u) = Ju]? (jin |ul| + 1)

with p > 1; the resulting Orlicz spaces are different from the I’-spaces.
According to (2.13), the norms of the Haar functions are

L
M(1)’

J

”)~’2k+z”M = T o

2k
M2’

(2.15) |94 =

(1=1,2..,2%k=0,1,2,...), where M~ !(v) is the inverse function for the func-
tion M(u) considered on [0, + o). (It may be shown that every M(u) that satisfies
(2.11) is increasing on [0, + ).)

Let B, be the class of separable Orlicz spaces Ly([0, 1]) whose M(u) satisfy

(2.16) M(u \/2) 2 2 M(u)

for u 2 M™(1). The class B, contains e.g. the spaces I([0, 1]) for p = 2 and the
spaces Ly([0, 1]) with M(u) given by (2.14) for p = 2.

We now show that B, with the Haar basis is conservative. It is sufficient to prove
that (2.16) implies

(2.17) 212 M~ Y(v) 2 M~1(20)

for v 2 1. Denote v = M(u). We can write (2.16) as 2v < M(u /2). Since M(u) is
increasing for u = 0, M~ !(v) is increasing for v = 0 and we have

M~ (20) Su2=2"2M"(v),
which is (2.17). (2.17) yields the conservativeness immediately.

We recall that the Haar basis is monotone and conclude that the class B, satisfies
the assumptions of Theorem 2.1 with K = 1.
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3. OPTIMAL UNIVERSAL APPROXIMATIONS

It is a priori clear that e.g. in the case described by Theorem 2.1 more than one
universal approximation exist. For example, the approximation [Ej] with the same
[9:(j)] as [B;] and a, = F, + ¢,F,,, qx = n + 1, ¢, arbitrary complex numbers,

=1,2,...,n, is also universal with respect to the class B described in the above
theorem. It is reasonable, therefore, to search for the universal approximations with
minimum error.

To be able to do this we need a characterization of the set U, < M, of all the ap-
proximations universal with respect to a given class B. We shall describe U, by means
of some conditions on [g,(j)] which the universal approximations satisfy necessarily.
Such results are also of interest in answering the question of the proper choice of
[9x(j)]- In order to find the necessary properties of matrices [g,(j)] we must suppose,
however, that the class B considered is sufficiently wide.

Theorem 3.1. Let B be a conservative class of B-spaces. Let v(E) < K for every
E € B (K independent of E) and let n be an integer,1 < n < r, such that for any D
there exists a space Epe B in which

(3.1) Posslen 5 5

Il

Then the matrices [gi(j)] of a universal approximation [G;]e U, have the
following two properties:

(3-2) a) g(j)=0, k=1,2,..,n, j=n+1,..,r,
b) rank ([gu(/)]x,;=1) = 1.

Proof is exactly parallel to that of Theorem 5.6 in [5] and will be only sketched.

For every s such that n + 1 < s < r denote by [g,(j)], the n x (n + 1) submatrix
of [gi(j)] consisting of the columns 1,2, ..., n, s. We shall investigate the solutions
A =9, 29, .., AT of

(33 (9] A =0
satisfying
n+1
(34) YAl =1.
ji=1

Denote |A®| = [|AP], [A$], ..., |42 4[] and let e, be the k-th unit vector.
The proof is based on Lemma 5.1 of [5], which we present in a somewhat modified
form:

Lemma 3.1. The conditions (3.2) are equivalent to the following statement:
There exists a unique system of vectors {|{N®|};_,. such that \®, s =n + 1,
n +2,...,r,satisfy (3.3) and (3.4), namely A"+ )| = |A®*D| = . = 00| = e,,,.
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The proof of the theorem is by contradiction. If the conditions (3.2) are violated,
then using Lemma 3.1 we conclude that for some s, n + 1 < s < r, there exists
a vector A satisfying (3.3) and (3.4) whose p-th component, 1 < p < n, is not zero.
According to Theorem 1.2, we have for the approximation [G,] violating (3.2)

(35) o[G]) 2 3 H + jf*"uz > H

To complete the proof we need an appropriate upper bound for (M,). It is
sufficient to make use of the trivial fact that Q(M,) < w([1;]) for any approximation
[1;]1€ M,. Choosing for [I;] the approximation [B;] from Theorem 2.1 and using
(2.8) we obtain

(3.6) - om,) < X B "

where n + 1 £ g < r. (3.5) and (3.6) now yield for the approximation [G,]

o, [6,) 2 2L Lol

sl
and, in view of (3.1), [G,] is not universal.

The classes B, and B, from Examples 2.1 and 2.2 do not satisfy (3.1). It is easy,
however, to construct classes of Hilbert spaces with orthogonal bases [5], [6]
satisfying the assumptions of Theorem 3.1. The strongly periodic spaces described
in [5] may serve as an example.

Theorem 1.2 and Lemma 3.1 imply immediately that the error of an optimal ap-
proximation from U, is bounded by

(3.7) A

B

in all spaces satisfying the assumptions of Theorem 3.1.
Let us consider again the approximation [B;] from Theorem 2.1. This approxima-
tion belongs to U, and we can compare its error with Q(U,).

Theorem 3.2. Let B be a conservative class of B-spaces. Let v(E) < K for every

E €B and let n be an integer, 1 < n < r, such that for any D there exists a space
Ep € B in which (3.1) holds. Then

(3.8) ‘ 0:U,, [B;]) = 2K

in every E € B.
If, moreover, the basis {x;} is orthogonal*); then [B,] is an optimal universal
approximation in every E € B, i.e. Qi(U,, [Bj]) = 1 in every E€ B.

*) A basis {x;} of E is orthogonal, if every permutation of {x;} is a monotone basis of E.
In Hilbert spaces this is the orthogonality in the usual sense [8].
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Proof. From (2.6) we have

wg([B;]) = “F q
Using (3.7), (2.8) we obtain

g, N+1=5q=r.

o x| < 2k Znrtll < 2
S Y

The orthogonality implies (cf. [8], p. 556) ||Fj"5. = "xj”;] and, instead of (3.9),
we have

(3.9) Qx(U,. [B)]) < |IF,|

QU [B]) < [xo 7* - [raes| = 1.
The theorem is proved.

Remark 3.1. The conclusions on the advantage of the approximation [B;] can
be given more practical meaning by replacing the functionals F, in (2.4) by sequences
of functionals assumed to be convergent to F, in every E € B. The whole procedure
would be the same as in [5] where this was done for a special class of Hilbert spaces.
So, asymptotic results analogous to the above “theoretical” ones could be obtained
having computational character. Since the procedure would bring nothing new as
compared with [5] we have omitted this aspect in the present paper.
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