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CONNECTIONS ON HIGHER ORDER TANGENT BUNDLES

ToMAS KLEIN, Zvolen

(Received November 26, 1979)

1. PROLONGATION COFUNCTORS

Denote by .# the category of differentiable manifolds and mappings, by & .# the
category of fibred manifolds and by ¥ % the category of differentiable vector bundles.

As usual, T denotes the functor of # into ¥"# < & # transforming any manifold
M into its tangent bundle TM and any map f: M — M, into the induced tangent
map

fe=Tf:TM > TM, .

Definition 1. A functor p: . # — F.# will be called a prolongation functor,
if pM is a fibred manifold over M for any manifold M and

pf : pM - pM,

is a morphism of fibred manifolds over f : M — M, for any mapping f (cf. [4]).
Every f: M — M, determines the cotangent map f* transforming any form
we Tj,yM, into f*o e TS M. Let n, n;, n* or n] be the fibre projections of TM,
TM ,, T*M or T*M,, respectively. Denote by f ~!T*M, the induced bundle over M,
ie.
fIT*M = {(x, w)e M x T*M,; nfo = f(x)} .

Then we can define
T*f :f~'T*M, - T*M

by T*(x, w) = f*w e TM. Obviously, T*f is a fibre morphism over the identity
of M (the so-called base-preserving morphism).

Given two fibred manifolds 7 : E - M, n, : E; — M, over the same base, a base-
preserving morphism ¢ : E — E, and a map f: M —» M,, the induced morphism

(1) flo:f"'E—fE,
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is defined by
(x, e) > (x, @(e)) with =(e) = f(x).

Definition 2. A prolongation confunctor p : # — ¥ # is a rule transforming any
manifold M into a fibred manifold pM over M and any map f: M — M, into
a base-preserving morphism

pf :f " 'pM, > pM

such that
(2 pidy) = id,y forall M,
3 plgof)=pfof""pg

forall f: M - M;and g : M; > M,.
If the values of a prolongation cofunctor p lie in the subcategory ¥'# <« ¥ 4,
then p is said to be a prolongation cofunctor of .# into ¥ 4.

Lemma 1. T* is a prolongation cofunctor of M into ¥ 4.
Proof is obvious.

In differential geometry, several prolongation cofunctors can be obtained by using
the following general construction of the jet theory. ’

Consider two manifolds M, Q and a point g € Q. The set J(M, Q), = J;M of
all r-jets of M into Q with the target q is a fibred manifold over M. Consider further
a mapping

(4) Jof 171 (My, Q) = (M, Q)
defined by the following rule. If be f~'J'(M,, Q),, b = (x, j7x)¢), then
(Jef) (6) = je = f) -

Theorem 1. J; is a prolongation cofunctor of M into F 4.

Proof is straightforward.

Theorem 2. If Q is a vector space and q = 0, then Jy is a prolongation cofunctor
of M into V'A.

Proof. In this case, J(M, Q), is a vector bundle by
o+ i =je +¥), k.jip=jke, keR.
For any f: M; - M, f(y) = x, we have
(2 +JW) o iyf =@ of + ¥ of) =59 of) + i S),
(J3k@) o jyf = k.j)(@ o f), QED.

415



Remark 1. Let V be a manifold. If we associate with any manifold M the fibred
manifold J'(M, V) > M and define the induced map f~'J(M,, V) - J(M, V)
for any f : M~ M, similarly to (4), we also obtain a prolongation cofunctor J, :
M FM.

Letn:E— M, n, : E; - M, be vector bundles and ¢ : E — E, a linear morphism
over f: M — M,. Let

0%+ (JE,)* — E*
be the mapping defined by
o*(x, w) = ¢¥(w), mo=f(x), xeM,

where ¢? is the dual map to ¢ | E.. It is easy to verify that ¢* is also a differentiable
map.

Considering a prolongation functor p:.# — ¥'%#, we define p*M = (pM)*
(= the dual bundle of pM) for any manifold M and

(%) p*f = (of)* :f'p*M, - p*M
for any f : M — M,. One easily finds

Lemma 2. For any maps f: M - My, g : M, - M, we have

p*gof) = p*ff'p*g.

Thus, p* is a prolongation cofunctor # — ¥ 2. We shall say that the prolongatlon
cofunctor p* is dual to the prolongation functor p.

Conversely, given two vector bundles E - M, F - M,, a map f: M - M, and
a base-preserving linear morphism ¢ : f~'E — F, we define y* : E* — F* by re-
quiring that
(6) Yy Ef - Fjy

be the dual map to Y, : (f 'F)x = E,. Using local coordinates, we directly
deduce
Lemma 3. y* is differentiable.

Let g : . # — ¥'# be a prolongation cofunctor. Define g*M = (¢gM)* for any
manifold M and g*f = (g¢f)* for any f : M- > M. One verifies easily that g*(g . f) =
= (9*g) - (g*f), so that g* : # — ¥"# is a prolongation functor.

Definition 3. The prolongation functor q* will be called dual to the prolongation
cofunctor q.

Theorem 3. For any prolongation functor p: M — V' A# and any prolongation
cofunctor q : M — VB we have

(p*)* =p, (q*)* =gq.
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Proof is straightforward.
Let M be an n-dimensional manifold.

Definition 4. Any jet A e J(M, R), of M into reals with a source x and target 0
will be called an r-covector on M at x. The vector bundle J'(M, R), — M will be de-
noted by T"™*M and called the r-th order cotangent bundle of M.

Let A = ji F € T™*M. Without loss of generality we may assume that the coordi-
nate form of F is

. 1 . .
F=ax'+...+—a; ;x'...x".

' Bgecely

In this way, any local chart (x') on M induces a local chart (x4, x;..., X;,...;,)
on T™M.

By Theorem 2, T™ is a prolongation cofunctor of ./ into "% and we can construct
the dual prolongation functor T": .# — ¥ 4.

Definition 5. The dual vector bundle
M = (T’*M)*

is called the r-th order tangent bundle of M and the induced map T'f : T'"M — T'M,
is said to be the r-th order tangent map of f : M - M,.

By dualization, any local chart (x') on M induces a local chart (x), x', ..., x'"""*)
on T'M.

We remark that one also can construct the r-th order téensor bundles over M,
see [6]. ‘

2. LINEAR MAPPINGS BETWEEN HIGHER ORDER TANGENT SPACES

Let B; denote the canonical projection of r-jets into k-jets, r > k. The kernel of
Bi_y: T™M — T"~'*M is naturally identified with the r-th symmetric tensor power
O'T*M, so that we have an exact sequence

0 0 O'T*M - T*M 224 T~ 1*M 5 0.,

The dual sequence is N

(8) 0-T"'M>TM->OTM - 0.

In particular, we have »
IMcTMc..cT 'McTM.

For any f : M — M,, the following diagram commutes:
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o) 0> T 'M > T'M > O'TM - 0
lrly Arr lor
0->T"'M, > TM, - OTM, -0,
see [3], [7]-
- Let g, h be real functions on M, g(x) = h(x) = 0. Since the r-th order partial

derivatives of the product g . h at x do not depend on the r-th order partial deri-
vatives of g and h at x, we have a well — defined map

pi (T *M) x (T~ M) > TI*M ,
(59, J5 " h) = jig - h) .
Since u is symmetric and bilinear, it can be viewed as a map pu: O?’TI™"*M -

- Ti*M.

Lemma 4. The sequence

O Ty M s TPM - TH*M — 0
is exact.

Proof. As g and h vanish at x, g . h has all the first order partial derivatives at x
equal to zero. Hence Im u <= Ker B7. Conversely, if C e Ker B}, it can be written
in the form

C = jo(x* hy(x))
with h,(0) = 0. This implies C e Im u, QED.

Let KM = Kerpy and S*M = O*T;""*M | K M. Then we have an exact
sequence

(10) 0-S*M > TI*M - T)M -0 -
and its dual )

(11) 0 T.M—TIM - STM -0,
where '

StM = (SFM)* <« O*T;"'M.
Lemma 5. Let f : M, - M, f(y) = x. Then
O*T™~1%f(K"M) = KM, .
Proof. Let u = (j;"lg?j;"h)eK;M, ie. 0=j(g.h)e T{*M. If

O™ f(u) = (" a(f) ;™" h())
then |

55" a(f), 5" W) = a(f) - W) = 15a - W) (f) = Jlg - B) e J5f »
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where . denotes the composition of jets. The coordinate formula yields

0=jg.h)oj;fe ,;*M,, QED.

Corollary 1. The mapping T'f dual to T™f has the property
T'f(S;M,) = StM .

Coordinate formulae for mapings T"*f, T'f.

Let (x) or (y*) be local coordinates on M or M, respectively. Consider F : M — R,
F(x) = 0 and a mapping f: M; -» M with the coordinate form x’ = fi(y*). Let
];f = (yaa xi’f:a ;‘ln’ --"fail...ar) ’

JoF = (¥, % .0 X, 1 ) e TOIM
Tr*f(xi’ xi’ ey J—ci;...x‘,) = (ya’ yas ey izg...a,-) .
From the coordinate formula for the composition of jets, we obtain
Vo= i"-ifai ’
Vasar = Eiyisfarfar + %ifates »
Verar = Zigifas S + Zigipe el fay - S+ oo
Sa SO R ot I SR B T

Dualization yields the following coordinate formula for Tf:

x! =f:y¢ +f:m2ya1¢z + ... +f¢ilmaryax...a,. ,

(12) T
ilecir-1 . fi1 fpm 1 Al eeelp=1 iy i2 ip=1
. xiebrmt = fl | formtytiedeet o (f S ST

. + i1 iz . ir—)) yal...ar s

ap-1ap/ay *Jar-2

ia.dp __ giy ip A1e0lp
X = Jay oo Gry .

Let
L:T/M, »TM

be an arbitrary linear mapping with the coordinate form

(13) RS

xi;...ir = a:...i,yal + ..o+ a:g]......:ryux...a.- .

Definition 6. We shall say that L' is an r-mapping with respect to L~ ! : T,’"M -
- TI"'M, if I/ can be restricted to T,M, —» T,M and the factor map

T, My|r, = TiM|r  coincides with O2L~!g, . .
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Theorem 4. A linear mapping L' = TM; — T;M is of the form T;f iff
a) I can be restricted to L™' : T;”'M, - T;"'M,

b) L~ is of the form T, 'f,

c) L is an r-mapping with respect to L™ !.

Proof consists in direct evaluation in local coordinates, which we omit here.

3. REGULAR CONNECTION ON'T'M

Given a vector bundle E — M, its first jet prolongation J!E is also a vector bundle
over M. A connection on E means any linear morphism I : E — J'E satisfying
B4 o I = idg. If we have some local coordinates x’, y* on E, then the equations of I’
are
(14) yi = Tp(x) ¥,
where y} are the induced coordinates on J'E, [1], [5].

The set LE of all linear isomorphisms between the individual fibres of E is a Lie
groupoid in the sense of Ehresmann. For every ® € LE, ¢ : E, - E,, we set ad = x,
b® = y. Let QLE — M be the fibred manifold of all (first order) elements of con-
nection on LE, i.e. every A € (QLE), is the 1 — jet at x of a local map ¢ of M into LE
satisfying a ¢(f) = x, b ¢(f) = ¢ for all ¢ and ¢(x) = idy_. Every section y : M —
— QLE determines a connection I' on E as follows. If y(x) = ji &(z), then y(r) (y)
is a local section of E for every y € E, and we put I'(y) = j1[#(¢) ()] Given a sub-
groupoid Q < LE, a connection I' on E is said to be an Q — connection, if it is
generated by a section y : M — Q, i.e. for every x € M there is a local map ¢ of M
into Q with a ¢(f) = x, b ¢(t) = t and ¢(x) = idg_ such that I'(y) = ji[e(t) (¥)]
for all yeE,.

In particular, let n"(M) denote the groupoid of all invertible r-jets of M into itself.
Every element of n'(M) with a source x and target y determines a linear map of T{M
into TyM, so that n"(M) is a subgroupoid of L(T"M). A connection on T"M will be
called regular, if it is a 2"(M) — connection in the above sense. Using Theorem 4,
we shall characterize the regular connections. However, we first explain some neces-
sary general ideas. .

Let E; - M be another vector bundle and I'; a linear connection on E; with the
equations

(15) ‘ zi = Iy(x) 2*

in some local coordinates x‘, z* on E,. According to [2], I' and I'; determine a con-
nection I' ® I'; on the tensor product E ® E, with the following equations:

(16) wit = Ipwf* + riw™,

provided w** are the induced coordinates on E @ E,.
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Consider further an exact sequence of vector bundles over M
_ ‘ .
O-E,—=E—>F-0.

A connection I on E is called reducible to the subbundle E,, if I'(Ey) = J'E,.
If x, y°, y? are some adapted coordinates on E, then any I' has the coordinate form

(17) yi =T;y" + Iy,
yi =I5y + I'}y?,

and I is reducible to E, iff I'?;, = 0. On the other hand, I' will be said to be
factorizable to F, if we have the same induced 1-jet at a point ue€ E, for all ve
€ ¢~ !(u), i.e. y? depends only on y? and not on y*. Hence we have deduced a simple

Lemma 6. Connection I' is reducible to E, iff it is factorizable to F.

In particular, the connection ' ® I' on E ® E is always reducible to O%E; the
reduced connection will be denoted by Or.
Using Theorem 4 and direct evaluation, one deduces

Theorem 5. A connection I' on T'M is regular iff
a) T is reducible to T""'M,
b) the reduced connection I',_, is regular on T""'M,
C) the factor connection on S'M = U SLM coincides with O?I,_,.
xeM
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