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ON «-CONTINUOUS FUNCTIONS

TakAsHI NoIRI, Yatsushiro
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1. INTRODUCTION

In 1965, O. Njastad [12] introduced a weak form of open sets called x-sets. The
present author [16] defined a function f: X — Y to be strongly semi-continuous if
f~1(V)is an a-set of X for each open set V of Y and showed that the images of open
connected sets are connected under strongly semi-continuous functions. Recently,
A. S. Mashhour et. al. [10] have called strongly semi-continuous functions a-con-
tinuous and obtained several properties of such functions. In [10], they stated without
proofs that a-continuity implies f-continuity and is independent of almost-continuity
in the sense of Singal [19]. On the other hand, in 1980 S. N. Maheshwari and S. S.
Thakur [8] defined a function f : X — Y to be a-irresolute if f~*(V) is an a-set of X
for each a-set V of Y and obtained several properties of a-irresolute functions.

The purpose of the present paper is to continue the investigation of a-continuous
functions. In Section 3, we shall investigate the relationships between a-continuous
functions and several known functions, for example, almost-continuous, n-conti-
nuous, d-continuous or irresolute functions. In the last section, we shall obtain some
improvements of the results established in [8] and show that every a-continuous
function is a-irresolute if it is either semi-open due to N. Biswas [1] or almost-open
due to M. K. Singal and A. R. Singal [19].

2. PRELIMINARIES

Throughout the present paper, (X, ) and (Y, o) (or simply X and Y) denote topo-
logical spaces on which no separation axioms are assumed unless explicitly stated.
Let S be a subset of (X, 7). The closure of S and the interior of S are denoted by CI(S)
and Im(S), respectively. The subset S is said to be regular open (resp. regular
closed) if Int(CI(S)) = S (resp. Cl(Int(S)) = S). The subset S is said to be a-open
[12] (resp. semi-open [7], pre-open [9]) if S < Int(Cl(Int(S))) (resp. S = Cl(Int(S)).
S < Int(CI(S))). The complement of an a-open (resp. semi-open) set is called a-closed
(resp. semi-closed). The family of all a-open (resp. semi-open, pre-open) sets of (X, 7)
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is denoted by 1* (resp. SO(X, 7), PO(X, 1)). It is known in [12] that t* is a topology
for X and t* = SO(X, ).

Definition 2.1. A function f : (X, 7) = (Y, ¢) is said to be a-continuous [10] (resp.
semi-continuous [7])if f ~*(V) € v* (resp. f ~1(V) € SO(X, 1)) forevery Ve o.

In [16], the present author called a-continuous functions strongly semi-continuous.
However, in this paper we use the term “‘ax-continuous” following A. S. Mashhour
et. al. [10].

Definition 2.2. A function f: X — Y is said to be almost-continuous (brieﬁy,
a.c.H.) [5] if for each x € X and each neighborhood V of f(x), CI(f ~*(V)) is a neigh-
borhood of x.

It is obvious that a function f : (X, 1) - (Y, o) is a.c.H. if and only if f~}(V)e
€ PO(X, 1) for each Ve ¢. It is reasonable that A. S. Mashhour et. al. [9] called a.c.H.
functions pre-continuous. Example 3.1 and 3.2 of [11] show that the concepts of
““a.c.H.” and ‘‘semi-continuous” are independent of each other.

Definition 2.3. A function f : (X, 7) - (Y, ¢) is said to be almost-continuous (briefly,
a.c.8.) [19] (resp. O-continuous [4], weakly-continuous [6]) if for each x € X and
each Ve o containing f(x), there exists U € t containing x such that f(U) < Int(CI(V))

(resp. £(CI(U)) < CI(V), £(U) = CI(V)).

Definition 2.4. A function f: X — Y is said to be n-continuous [3] if for every
regular open sets U, V of Y,

(1) f74(V) =« Int(CI(f ~*(V))) and

(2) Int(CI(f XU n V))) = Int(CI(f ~*(V))) n Int(CI(f ~*(V))).

Remark 2.5. For a function f : X — Y, the following implications are known ([3],
[19))

continuous = a.c.S. = y-continuous => G-continuous = weakly-continuous.

3. a-CONTINUOUS FUNCTIONS
Lemma 3.1. Let A be a subset of a space (X, 1'). Then A is a-open in (X, r) if and
only if A is semi-open and pre-open in (X, 1).

Proof. Necessity. Let Aet® By the definition of z-open sets, we have 4 <
< Int(Cl(4)) and A = Cl(Int(A)). Therefore, we obtain A € SO(X, ) N PO(X, ).

Sufficiency. Let A€ SO(X, 1) n PO(X, 1). Since 4€SO(X,1), A = Cl(Int(A4))
and hence it follows from 4 € PO(X, ) that

A < Int(CI(A)) < Int(CI(CI(Int(4)))) = Int(CI(Int(4))) .

Therefore, we have 4 € 7°.
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In [17, Theorem 1], V. Popa showed that every a.c.H. and semi-continuous
function is weakly-continuous. Furthermore, in [10, Theorem 3.2] A. S. Mashhour
et. al. obtained the result that every a.c.H. and semi-continuous function is «-con-
tinuous. As an improvement of these results, we have ‘

Theorem 3.2. A function f : X — Y is a-continuous if and only if f is a.c.H. and
semi-continuous.
Proof. This is an immedaite consequence of Lemma 3.1.

Definition 3.3. A function f: (X, 1) - (Y, 0) is said to be strongly n-continuous
if f is a.c.H. and for every U, Ve o,

Int(CI(f ~*(U))) n Int(CI(f ~*(V))) = Int(CI(f ~*(U n V))).

Lemma 3.4. A function f : (X, 1) - (Y, o) is strongly n-continuous if and only if
for every U, Ve o,

(1) f7Y(V) « Int(CI(f~(V))) and

(2) Int(CI(f ~*(U n V))) = Int(CI(f ~}(V))) n Int(CI(f ~*(V))).

Proof. It is obvious that f is a.c.H. if and only if f satisfies (1). We assume that f

is strongly n-continuous, and show equality (2) For any U, Ve o, it follows from (1)
that

YU n V) = Int(CI(f~1(U))) n Int(CI(f~1(V))) .
Since the intersection of two regular open sets is regular open, we obtain
Int(CI(f ~Y(U n V))) = Int(CI(f ~*(U))) » Int(CI(f ~1(V)) .
Hence, equality (2) holds.

Lemma 3.5. Let A and B be subsets of(X, 7). If either A € SO(X, ) or B € SO(X, 1),
then

Int(CI(4 n B)) = Int(CI(4)) n Int(CI(B)).
Proof. For any subsets A, B = X, we generally have
Int(CI(4 n B)) < Int(Cl(4)) N Int(CI(B)) .
Assume that A € SO(X, 1). Then we have Cl(4) = Cl(Int(A4)). Therefore,
Int(Cl(4)) N Int(CI(B)) = Int(Cl(Int(Cl(4)) n Int(CI(B)))) <
< Int(CY(CI(4) A Int(CI(B)))) = Int(CI(CI(Int(A)) A Int(CI(B)))) <
< Int(Cl(Int(4) n CI(B))) < Int(Cl(Int(4) N B)) < Int(Cl(4 N B)).

This completes the proof.
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Theorem 3.6. If a function f : (X, t) = (Y, o) is a-continuous, then f is strongly
n-continuous.

Proof. Since f is a-continuous, by Lemma 3.1 f~(V) < * € PO(X, 1) for any
Veo and hence f~Y(V) < Int(CI(f~*(V))). Furthermore, f~Y(U), f~(V)et* <
c SO(X, r) for any U, Ve o, and hence by Lemma 3.5 we have

Int(CI(f (U ~ V))) = Int(CI(f ~Y(U))) ~ Int(CI(f ~1(V))) .

It follows from Lemma 3.4 that f is strongly #-continuous.

A strongly n-continuous function need not be o-continuous as the following
example shows.

Example 3.7. Let X = {a, b,c,d} and = = {0, {d}. {a, ¢}, {a, ¢, d}, X}. Let Y =
= {x,y,z} and o = {0, {x}, {z}, {x, z}, Y}. Define a function f:(X, 7) - (Y, o)
as follows: f(a) = x, f(b) = f(c) = y and f(d) = z. Then f is strongly n-continuous
but is neither a-continuous nor a.c.S.

Theorem 3.8. Every strongly n-continuous function is n-continuous.

Proof. Since every regular open set is open, this follows immediately from Lemma
34.

Since every a.c.S. function is n-continuous [3, Proposition 3.3], the following
example shows that the converse to Theorem 3.8 is not true in general.

Example 3.9 (Singal and Singal [19]). Let X be the set of real numbers and t the
co-countable topology for X. Let Y = {a, b} and ¢ = {0, {a}, Y}. Define a function
f:(X, 1) > (Y. 0) as follows: f(x) = a if x is rational and f(x) = b if x is irrational.
Then, fis a.c.S. [19, Example 2.1]. However, since f is not a.c.H., it is neither strongly
n-continuous nor o-continuous.

Examples 3.7 and 3.9 show that ‘“‘strongly n-continuous’’ and “‘a.c.S.” are indepen-
dent of each other. Futhermore, the following example and Example 3.9 show that
“ai-continuous” and ‘‘a.c.S.” are independent of each other.

Example 3.10. Let X = {a, b, ¢, d} and

v ={0,{c},{d},{a, c},{c,d}, {a,c,d}, X} .

Let Y = {x, y,z} and o = {0, {x}, {y}, {x, y}, Y}. Define a function f:(X, 1) —
- (Y, o) as follows: f(a) = z and f(b) = f(c) = f(d) = y. Then f is a-continuous
but it is not a.c.S.

A function f : (X, 1) - (Y, o) is said to be irresolute [2] if f~*(V) e SO(X, 1) for
every Ve SO(Y, ). We shall show that ‘“‘a-continuous” and “‘irresolute” are in-
dependent of each other.
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Example 3.11. Let X = {a, b,c}, 7 = {0, {a}, {b}, {a, b}, X} and o = {0, {a},
{b, ¢}, X}. Let f : (X, 1) - (X, o) be the identity function. Then f is irresolute but it
is not a-continuous.

Theorem 3.12. Not every x-continuous function is irresolute.

Proof. Assume that every a-continuous function is necessarily irresolute. Let
f:X — Y be a-continuous. Let x € X and let V be any open set of Y containing
f(x). Since f is irresolute and Int(CI(V)) is semi-closed in Y, f~*(Int(CI(V))) is semi-
closed and hence

Int(CI(f ~*(Int(CI(V))))) = f~*(Int(CI(V))) .
By Theorem 3:2, fis a.c.H. and hence

xef~YV) < f~Int(C(V))) = Int(CI(f ~*(Int(CI(V))))) -

Put U = Int(CI(f ~*(Int(CI(¥))))), then U is an open set of X containing x and
f(U) = Int(CI(V)). This shows that every a-continuous function is a.c.S. This
contradicts Example 3.10.

A function f: X — Y is said to be d-continuous [14] if for each x € X and each
open neighborhood ¥V of f(x), there exists an open neighborhood U of x such that
f(Int(CI(U))) < Int(CI(V)). In [14], it is shown that every d-continuous function is
a.c.S. and d-continuity and continuity are independent of each other. Example 4.4
of [14] shows that there exists a d-continuous function without being x-continuous.
Furthermore, Example 4.5 of [14] shows that a continuous (hence a-continuous)
function is not necessarily J-continuous. Therefore, we see that the concepts of
a-continuity and Jd-continuity are independent of each other.

4. «-IRRESOLUTE FUNCTIONS

Definition 4.1. A function f :(X, 1) — (Y, 0) is said to be a-irresolute [8] if
FY(V) e for every Ve o™

Every a-irresolute function is a-continuous but a continuous function is not neces-
sarily a-irresolute [8, Example 1]. Therefore, the concept of a-continuous functions
is strictly weaker than that of a-irresolute functions.

In [16, Theorem 3.6], the present author showed that the images of open connected
sets are connected under a-continuous (strongly semi-continuous) functions. In
[8, Theorem 2], it is shown that if a function f : X — Y is a-irresolute and 4 is a-open
and closed in X then the restriction f ( A 1 A - Yis a-irresolute. We shall obtain the
improvements of these results. For this purpose, the following lemma is very useful.

Lemma 4.2. (Mashhour et. al. [10]). Let 4 and V be subsets of (X, t). If A€ PO(X, 1)
and Ve, then A n Ve (1/A), where (tA)* denotes the family of all a-open sets
in the subspace (A, t/A).
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Theorem 4.3. If f : (X, 1) > (Y, 0) is a-continuous and A is a pre-open and con-
nected set of (X, 7), then f(A) is connected.

Proof. Let f4 : (4, 14) - (f(4), o]f(4)) be a function defined by f,(x) = f(x)
for every x € A. We show that f, is a-continuous. For any V, € o/[f(A), there exists
Ve o such that ¥, = V n f(A). Since f is a-continuous, f~!(¥) € 1* and hence by
Lemma 4.2, (f,)"* (V) =f"YV) n Ae(t/A)". Therefore, f, is a-continuous and
hence f,(4) = f(A) is connected [16, Theorem 3.1].

Theorem 4.4. If f:(X,1) > (Y, 0) is a-irresolute and AePO(X, 1), then the
restriction f| A :(4,1]4) > (Y, 0) is a-irresolute.

Proof. Let Ved" Since f is a-irresolute, f~!(V)et® By Lemma 4.2,
(f]4)7* (V) = f"'(V) n Ae(t]A)* because AePO(X, 7). This shows that f|A
is oa-irresolute.

A point x € X is said to be a 5-cluster point of a subset S = X [20]if SNV + 0
for every regular open set V containing x. A subset S is called §-closed if all d-cluster
points of S are contained in S. The graph G(f) of a function f : X — Yis said to be
d-closed if G(f) is d-closed in the product space X x Y.Itis known thatif f: X - Y
is 5-continuous and Y is Hausdorff then G(f) is J-closed [14, Theorem 5.2]. As an
improvement of this result, we have

Theorem 4.5. If a function f : X — Y is O-continuous and Y is Hausdorff, then
G(f) is d-closed.

Proof. Let (x, y) ¢ G(f). Then y % f(x) and there exist disjoint open sets V, W
of Ysuch that f(x) e Vand y € W. Since V' and W are disjoint open, we have CI(¥V) n
n Int(CI(W)) = 0. Since f is 6-continuous, there exists an open set U containing x
such that f(CI(U)) < CI(V). Therefore, we obtain f(Int(CI(U))) n Int(C(W)) = 0.
1t follows from [14, Theorem 5.2] that G(f) is é-closed.

Corollary 4.6. If f : X — Y is a-continuous and Y is Hausdorff, then G(f) is 5-closed.

Proof. Every a-continuous function is #-continuous by Theorems 3.6 and 3.8 and
every n-continuous function is 6-continuous [3, Proposition 3.3]. Thus, this im-
mediately follows from Theorem 4.5.

Corollary 4.7. (Maheshwari and Thakur [8]). If f: (X, 1) - (Y, o) is a-irresolute
and (Y, ¢®) is Hausdorff, then G(f) is a-closed.

Proof. We show that if (Y, 6%) is Hausdorff then so is (Y, ¢). Since (Y, ¢%) is
Hausdorff, for distinct points x, y € Y there exist U, Ve ¢* such that xeU, yeV
and U n V = 0. Then we have Cl(Int(U)) N Int(V) = 0 and hence

Int(Cl(Int(V))) A Int(Cl(Int(V))) = 0.
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Moreover, x e U < Int(Cl(Int(U))) and y e V < Int(Cl(Int(V))). This shows that
(Y, o) is HausdorfT. It is obvious that 5-closedness implies closedness and closedness
implies a-closedness.

Remark 4.8. In [18], I. L. Reilly and M. K. Vamanamurthy showed that if (Y. ¢*)
is HausdorfT then so is (Y, 6). However, as their proof is complicated, we gave a simple
one.

Theorem 4.9. If f, g : (X, 7) - (Y, 0) are a-continuous and (Y, ) is Hausdorff,
then the set {x € X | f(x) = g(x)} is a-closed.

Proof. A function f : (X, t) - (Y, ¢) is a-continuous if and only if f, : (X, ") -
- (Y, 0) is continuous, where f, is the function defined by f,(x) = f(x) for every
x e X. Since (Y, o) is Hasudorff, the set {x e X If,(x) = g,(x)} is closed in (X, 7*).
Therefore, {x € X | f(x) = g(x)} is a-closed in (X, 7).

Corollary 4.10. (Maheshwari and Thakur [8]). If f,g:(X,1) > (Y, 0) are a-
irresolute and (Y, 6*) is Hausdorff, then the set {xe€ X If(x) = g(x)} is a-closed
in (X, 7).

Proof. Since (Y, 6*) is Hausdorff, (Y, o) is Hausdorff. Thus, this is an immediate
consequence of Theorem 4.9.

We shall conclude the section by giving two sufficient conditions for an a-con-
tinuous function to be a-irresolute. A function f : X — Y is said to be almost-open
[19] if f(U) is open in Y for every regular open set U of X. A function f: (X, t) >
(Y, 0) is said to be semi-open [1] (resp. pre-open [9]) if f(U)e SO(Y, o) (resp.
f(U)e PO(Y, o)) for every U e . In [9], it is noted that pre-openness is equivalent
to almost-openness in the sense of Wilansky [21]. It is known that every a-continuous
pre-open function is a-irresolute [10, Theorem 3.3]. We shall show that an a-con-
tinuous function is a-irresolute if it is either almost-open or semi-open. For the rela-

tionship between ‘‘almost-open”, ‘‘semi-open” and ‘‘pre-open” we have

-

Remark 4.11. In |[15], it is shown that for a function f: X — Y the concepts of
almost-openness, semi-openness and pre-openness are independent of each other.

Lemma 4.12. Let A and B be subsets of (X, t). Then
(1) Ae® if and only if there exists Ve t such that V < A < Int(CI(V)).
(2) If Ae1* and A = B < Int(Cl(A)), then Be 1°.
Proof. Since (1) is obvious, we prove (2). Since 4 € 1%,
B < Int(Cl(4)) = Int(Cl(Int(Cl(Int(A))))) =
= Int(Cl(Int(4))) = Int(Cl(Int(B))) .
This shows that B e 1°
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Theorem 4.13. If f:(X,t) - (Y, 6) is almost-open and a-continuous, then f is
a-irresolute.

Proof. Let B be any a-open set of (Y, o). By Lemma 4.12, there exists Ve o such
that V < B < Int(CI(V)). Since f is a-continuous, f ~*(V) € t* = SO(X, 7) and hence
f7Y(V) e Cl(Int(f ~*(V))). Put

F=Y-f(X — Ci(Int(f ~}(V))).
Then F is closed in Y because f is almost-open and CI(Int(f ~*(V))) is regular closed.
Furthermore, we obtain V < F and f~'(F) = Cl(Int(f ~*(V))). Thus, f~Y(CI(V)) =
< Cl(Int(f ~*(V))) which implies
V) = f7YB) = f(Int(CI(V))) =
< Int(Cl(Int(f ~*(Int(CI(V)))))) = Int(CI(f ~*(V))).
1t follows from Lemma 4.12 that f ~!(B) € t*. This shows that f is a-irresolute.

Let S be a subset of X. The intersection of all semi-closed sets containing S is called
the semi-closure of S and denoted by sCI(S).

Lemma 4.14. If S is a subset of X, then Int(CI(S)) < sCI(S).

Proof. Let x € Int(CI(S)) and let G be any semi-open set of X containing x. There
exists an open set U of X such that U = G = CI(U). Since xe G = CI(U) and
x e Int(CI(S)),

0+ Int(CI(S))nU = CI(S)n U = CI(Sn ).
Therefore, we have S A U # 0 and hence S 0 G + 0. This shows that x e sCI(S)

Lemma 4.15. (Noiri [13]). A function f:X — Y is semi-open if and only if
f~Y(sCI(B)) = CI(f~*(B)) for every subset B of Y.

Theorem 4.16. If f:(X,7) - (Y, 0) is semi-open and a-continuous, then f is
a-irresolute.

Proof. Let B be any «-open set of (Y, o). By Lemma 4.12, there exists Ve ¢ such
that V < B < Int(CI(V)). Since f is a-continuous, f ~*(Int(Cl(V))) € z*. It follows from
Lemmas 4.14 and 4.15 that

f _I(Int(Cl(V))) < Int(Cl(Int( f —1(Int(Cl(I/')))))) c
< Int(Cl(Int(f ~*(sCI(V))))) < Int(CI(f (V) .

Therefore, we obtain (V) < f~Y(B) < Int(Cl(f~*(V))) and f~'(V)e* By
Lemma 4.12, f ~!(B) € v*. This shows that f is a-irresolute.

The author is grateful to Dr. V. Popa for sending him the English version of [17].
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