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Časopis pro pěstování matematiky, roč. 96 (1971), Praha 

GROWTH ESTIMATES FOR NON-OSCILLATORY SOLUTIONS 
OF A NON-LINEAR DIFFERENTIAL EQUATION 

HERMAN E. GOLLWITZER, Philadelphia1) 

(Received August 7, 1969) 

Introduction. In the real non-linear differential equation 

(1) y' + q(t)\y\'sgny = OC = dldt) 

let a > 0, a =# 1 and assume that q is non-negative and continuous on the half line 
<1, oo). A non-trivial solution of (l) is called non-oscillatory if it is eventually of one 
sign for large t. Our main purpose in this paper is to establish new growth estimates 
for a non-oscillatory solution of (1) which are similar to previous results of MOORE 
and NEHARI [ l l , Theorem IX, p. 50] and BELOHOREC [3, Theorem 4, p. 14]. Our 
estimates are of general interest since they are phrased in terms of the known necessary 
conditions for (1) to be non-oscillatory. We also develop new estimates for non-
oscillatory solutions of more general differential equations. 

We begin with a few related facts. A solution which exists on <1, oo) is said to be 
extendable (continuable). As remarked by Nehari [12], the concavity of the solution 
curve of any non-oscillatory solution implies that the solution is extendable. Further 
properties of solutions of (1) are given in [ l ] , [2], [8], [9], and the problem of 
continuing all solutions is discussed in [4], [6], [7], [10]. 

If y(t) is a positive non-oscillatory solution of (1) on <1, oo), then the concavity 
of the solution curve implies that y(t) ^ Ct where C is a positive constant. However, 
it is known that some non-oscillatory solutions of (1) are either bounded or grow like 
a fractional power of t. Bounds for non-oscillatory solutions y(t) which are of the 
form y(t) g Ctx or y(t) ^ Ct\ 0 < X < 1, were previously established by Moore and 
Nehari, Belohorec, respectively. We reproduce their results here for the sake of 
completeness. 

Theorem 1. // a > 1, 0 < X < 1, 

(2) liminf tA(a"1) + 1 | q(s)ds > 0 

1) This work was supported in part by National Science Foundation grant GP-9575. 
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and y(t) is a non-oscillatory solution o/(l), then 

KOI s Ct* 
where C is a positive constant. 

A proof of this result is given in [11, p. 50]. 

Theorem 2. Let 0 < a < 1. / / there exists a number /?, 0 < /? ^ 1 such that 

(3) lim inf tp Pq(s) ds > 0 
t-ao J r 

#nd _y(f) is a non-oscillatory solution o / ( l ) , then 

\y(t)\>c(t~ ly1-'>/<*-«> 

where C is a positive constant. 

A proof of this result is given in [3, p. 14]. 

Main Results. The main results of the paper are given in Theorems 3 and 4. These 
results are but a special case of Theorem 5. 

Theorem 3. In (1) let a > 1 and assume that y(t) is a non-oscillatory solution on 
<1, oo). Then for t _ 1, 

(4) rsq(s)ds\y(t)\*-1 ^ C , 

where C is a positive constant. 

Theorem 4. In (1) let 0 < a < 1 and assume that y(t) is a non-oscillatory solution 
on <1, oo). Then for t ;> 1, 

(5) tl~* r°°saq(s)ds|y(r)la-1 ^ C 

where C is a positive constant. 

Remark. The estimates given here provide no information if the improper 
integrals vanish for any t0 ^ 1. In this case q(t) = 0 for t ^ t0 and (1) reduces to 
a trivial case. 

These estimates are of interest since they are phrased in terms of the known 
necessary conditions for (1) to be non-oscillatory. 
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By considering the equation 

y" + %~i)t\\y\°szny = 0> a > 0 ' O < A < I , 

and comparing the non-oscillatory solution y(i) = tx with the estimates given in 
Theorems 3 and 4, we see that the results are in general sharp with respect to the 
exponent X. However, the estimates given in Theorems 1 and 2 are also sharp for the 
same reasons. Thus the main interest in the estimates given in Theorems 3 and 4 is 
due to their form. In order to compare our results with those given in Theorems 1 
and 2, we will state two simple corollaries. 

Corollary 1. If for some X, 0 < X < 1, 

/ •OO 

(6) l i m i n f r ^ " 0 s a ( s ) d s > 0 , 
r^*> J t 

then every non-oscillatory solution of (\) with a > 1 satisfies 

KOI < c<x 

where C is a positive constant. 

The proof of the corollary follows from (4). We note that (2) implies (6) and hence 
Corollary 1 is a slight improvement of the original result of Moore and Nehari. 

Corollary 2. If for some X, 0 < X < 1, 

(7) liminf t(1-A)(1"a) | sa q(s) ds > 0 
l -ao J t 

then every non-oscillatory solution of (1) with 0 < a < 1 satisfies 

\y(t)\ * a* 

where C is a positive constant. 

The proof of the corollary follows from (5). We note that (3) implies (7) and hence 
Corollary 2 is also a slight improvement of the original estimate of Belohorec. 

Upper and Lower Estimates. In [5] we studied the oscillatory behavior of solutions 

of the equation 

(8) / + (g1(0Ha + ^(0Hff)sgny = O 

where qu q2 are non-negative and continuous on the half line <1, oo) and 0 < a < 
< 1 < a. Upper and lower estimates for a non-oscillatory solution of (8) are given 
in the following 
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Theorem 5. In (8) let 0 < a < 1 < a and assume that gi, q2 are non-negative and 
continuous on the half line <1, oo). // y(t) is a non-oscillatory solution on <1, oo), 
then 

(?) rsqi(s)ds\y(t)\*-lSC, 

(10) ^-"fVg^dslX^-'̂ C 

where C is a positive constant. 

Theorem 3(4) follows from Theorem 5 by taking q2 = 0(q1 = 0). 
The estimates given in this theorem are in general sharp since y(t) = tk (0 < k < 1) 

is a non-oscillatory solution of 

/ + %}—£ t*~2 (r«A \y\* + f°x \y\°) sgn y = 0 . 
-_> 

Before giving the proof of Theorem 5 we want to point out a few well known 
properties of a non-oscillatory solution y(t) of (8). These properties will be used in 
the sequel without further comment. Since — y(t) is also a solution of (8) we can as­
sume that y(t) is positive for large t. We can also assume, without loss of generality, 
that y(t) is positive on <1, oo). If y(t) is a positive non-oscillatory solution of (8) then 
y'(i) is positive since —y"(i) is non-negative. If y(i) is a positive non-oscillatory solu­
tion of (8) on <1, oo), then 

(11) ty'(t)y(t)-l<k, fc = (l + / ( l ) X l ) - 1 ) -

This is true since 

('y'(t) - y{t))' = -t(q,(t) y(tf + q2(t) y(t)°) S 0. 

Proof of Theorem 5. Let y(t) be a positive non-oscillatory solution of (8) on <1, oo). 
It was shown in [5, p. 388] that J00 [sql + s<Tq2} < oo was a necessary condition for 
(8) to be non-oscillatory. From (8), 

, y"(t) + qi(t)y(t)*^o 

on <1, oo). Multiply by t y(t)~x and integrate by parts to obtain 

'P1 
-ł- sq!(s)ds g 

f Jf 

(s)2 X в ) — 1 ds + ( - a + l ) " 1 y(s)-*+i 
t < x 
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Since a > 1 and y'(s) > 0 we can let x approach infinity to obtain 

rsqt(s)ds = ty(t)-*y'(t) + (a - l)"1 y(t)~*+1 . 

Since t y'(t) y(t)~l is bounded (see (11)), the previous estimate leads to the final 
estimate 

(4) rsqi(s)ds£Cy(t)-'+1, r 
where C is a constant. 

From (8), 
y"(<) + ?i(0 y(tY = o 

on <1, co). Multiply by y'(i)~ff, integrate and use (11) to obtain 

1 - o J , 1 - a 

Since 0 < a < 1 and y'(x) is positive we can let x approach infinity in the previous 
inequality to obtain 

fV«j2(s)dsgC/(01-* 
or mOO \ 1 / ( 1 - < T ) 

xffq2(x)dx\ ds + y(l)^y(t) 
where C is a positive constant which is not necessarily the same in each estimate. It 
remains to estimate the integral in (12). However, an integration by parts shows that 

m oo \ l / l - < r ) foo If 

xffq2(x)dx\ ds = s xff q2(x) dxiK1~ff) + 
r*/ r™ \<r/(i-<r) 

+ ( l - ( j ) - 1 j xffq2(x)dx\ sff + 1q2(s)ds. 

Consequently (12) can be written as 

Ct ( | " V q2(s) ds\K1 *£ y(t) + f V q2(s) d s 1 ^ 1 " ^ ^ C. Xt) 

since 0 < a < 1 and y(t) i_ y(l). The estimate given in (5) is now clear and the proof 
of Theorem 5 is complete. 

Generalizations and a conjecture. Growth estimates for non-oscillatory solutions of 

the non-linear self-adjoint equation 

(r(t) y')' + {qi(t) \y\' + q2(t) \y\'} sgn y = 0 
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oo 

can also be given. Here 0 < a < 1 < a, ql9 q2 are non-negative and continuous on 
the half line <1, oo) and r is positive and continuous on the half line <1, oo). Standard 
transformations *[l 3, p. 227] reduce this equation to the type considered in (8) and 
corresponding estimates can be given. We omit the details. 

All of the previous work presented in this paper dealt with solutions of a differential 
equation on the half line <1, oo). The properties of some solutions of 

(1)' y" + q(0 lyhgn y = 0 , a > 1 

on the line (-co, oo) are largely determined once we have information concerning 
solutions on the half line <0, oo). The transformation T = -t in (l)' can be used in 
conjunction with Theorem 3 to give estimates for a non-oscillatory solution on (— oo, 
0> since the Atkinson condition 

(13) V \s\ q(s) ds = lim ( f + !") \s\ q(s) ds = 
J -oo m,n-oo \ J _m J 0 / 

is clearly a sufficient condition for all non-trivial solutions to be oscillatory (e.g., 
given N > 0, there exist positive and negative values off such that y(t) = 0, \t\ _ N). 
However, it is somewhat surprising that it is not clear whether (13) is a necessary con­
dition for oscillation if we, by definition, assume that a non-trivial solution y(t) is non-
oscillatory if \y(t)\ 4= 0 when |f| is large. The argument given by ATKINSON [1] only 
shows that (1)' has a solution on ( — oo, oo) which satisfies y(t) > 0 if t is large. Since q 
is positive, the concavity of the solution curve of any non-oscillatory solution y(t) 
implies that the solution must have at least one zero on (-co, oo). Thus the non-
oscillatory solution constructed by Atkinson for a half line has at least one zero on 
(—oo, oo), but its behavior for negative t is not known. A necessary and sufficient 
condition for all non-trivial solutions of (1) to be oscillatory on (— oo, oo) is presently 
lacking. We conjecture that (13) is also a necessary condition for all solutions of (1)' 
to be oscillatory on ( — oo, oo). The question is also open when 0 < a < 1. 
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