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SOME REMARKS ON FOURIER SEMINORMS
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Summary. The author shows the equivalence between Fourier and Gaussian classes of semi-
norms on the space of signed measures on R¥, which are nonnegative on the complement of the
zero point.

Keywords: signed measures, Gaussian and Fourier seminorms, convolution powers.

AMS Subject Classification: 60F (28A).

Classical limit problems for convolution powers and convolution products of
measures on finite dimensional spaces can be often successfully studied by using
suitable seminorms on the space of signed measures. H. Bergstrém [1] gave a syste-
matical study of these problems using especially Gaussian seminorms. This note
should support the idea that many of the results of H. Bergstrdm can be also formu-
lated in terms of Fourier seminorms which seem to be in some cases a bit simpler
than Gaussian seminorms. F. Zitek [2] showed that both the seminorms mentioned
are equivalent for signed measures on the real line which are nonnegative on the
complement of the zero point. We shall show a similar result for measures on R*,

Let k € N and denote by .#, the algebra of all finite Borel signed measures on R*
(with natural additivity and convolution products), and by .#," the cone of non-
negative finite Borel measures.

For & > 0 we define

F(u) = sup

[t]<a-1?

J‘ exp (i<t, x)) du(x)|, pe s,
Rk

where [t] = max {|t,], ..., [t|}, t = (t1, ..., t.) e R¥, and -, *) is the scalar product
on R*. We easily see that for any u, ve 4, and ce R

F,(u) 20, F(0)=0,
F(n+v) S F(u) + F(v),
F(en) < |c| F(p).

Thus F, is a (Fourier) seminorm on .#, for each a > 0. We claim that if F,(u) = 0
for all « > 0, then u = 0. Thus (according to the terminology used in [1], see p. 95)
M, is a seminormed algebra under the system {F,: « > 0} of Fourier seminorms.
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Moreover, Fourier seminorms fulfil the inequality

F(p.v) £ F(u) Fv)
for each u,ve A, a > 0.
We shall also use other seminorms; for & > 0 and u € #,, define

4.(p) = max {J‘ d[u®] (x), «~! J. x du¥(x)
(Ix|2a} {Ix] <a}
a? J' 2 dlu®| (), (B, 1= 1, ... k}
{

1x| <a}

(4 denotes the i-th marginal projection of u). It can be also easily verified that g,
are seminorms, & > 0 (we shall call them majorant seminorms), and that ., is
a seminormed algebra under the system {g,: @ > 0}.

Directly from the above definitions we obtain

Proposition 1. For each pe€ #, and ¢ > 0
i) F(uUP) S F(p), i=1,...,k,
ii) q,(¢) = max g,(u®).
15i<k
The next lemma shows that the seminorms g, are really majorant for F,:

Lemma 2. F (1) < (1 + 3k + k?[2) q,(4) whenever A € 4, and « > 0.

Proof. Denote the cube D, = {xeR*: |x| <, i =1,...,k}. The following
inequalities hold:

0 [ anesy[ @ sean,

1=1]J (|x| 2a)

f 2, dA9(x,)
{Ixi] <a} ’

® [REZECEHSH DRI

® <2l < [k ad).

f <ty x dA(x)
Da

53, Slual[ G+ D) S [ 000
Using (1), (2) and (3) we obtain

(4) J‘Rkexp (i, x)) dA(x) +

= Udﬂ.(x)
f [exp (i<, x) — 1] dA(x)
J [exp (1) = 1] 6469)] + J’ 24 s

+ < JARY)| +

+
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< [ARY)] + 2k q,1) +

f it, xy dA(x)| +
+f [exp (i<t, x)) — l‘— it, x)] d|A| (x) = WRk)] +

T 2k q,(2) + [1] ke qu(2) + J' (tx2dA|(x) <

< 0uld) + 2K 0.(2) + [1] ke q,03) + 4[1]? K q,(3)
“For[f] £a7! we thus have by (4)

f exp (i<t, x)) AX)| < (1 + 3k + K2[2) a,(1) ,

which completes the proof.

As to the converse relation, the seminorms F, are not majorant for g, in the general
case. Thus we shall limit ourselves to the measures of the form A = u — e, where p
is a nonnegative measure and e is the Dirac measure concentrated at the zero pOmt

Lemma 3. Let A€ ./, have the form . =y — e, where ue./ﬂ”' Then q,fl)
< 286 F,(A), a.> 0. o

. Proof — see [2].

Lemma 3 can be easnly generallzed to the multldlmensmnal case: -

Lemma 4. Let Ae .#,, ke N, A = ;1 — e where pe./llk s and let « > 0. Then
a.(4) = 286 F, ().

Proof. Usin'g"Pfoposition 1 and I:émma, 3 we get

q,(7) = max g, (l“’) < 286 max F Q(") S 286 F,(%).

I<|<L 15igk

Now we mtroduce the Gaus51an seminorms on .//lk (sce (1], pa.ge 112); we define

G (,1) sup

J{D((x - y)/a) dl(y) for.7a > 0 JEV://k

(@ is the distribution function' of the Gaussian measure on R* with the density
function &(x) = (21)~%2 éxp (— |x||?/2))- 4, is a seminormed algebra under the
system {G a > 0} of Gaussian seminorms. For comparing Gaussian and majorant
seminorms we shall use some results from [1].

Lemma 5. a) For A€ .#, the margijns satisfy G,/2") < G,/1), « > 0.
b) For A=p—e peMf ,andfora> 0 we have
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(i) | j'”ylza}dx(y')' <C,G (A)

(i) . | j ydx<y>| C. G,(2),
|yl <a}
(i) a? J ¥ di(y) £ C5 GA(2),
{lyl <a} ) (1
(iv) Gli) < J diy) + |A(R)| +
(viza)

o

[ yai) + Lo} j i)
{Iyl <a} {lyl <a}

c) For/l=u—e,ue.//k+,andoc>Owehave

G (,1) C4k Z G m‘”)

Cy, Cy, C;3, C, are absolute constants. - -
Proof — see [1] pages 112—116

Lemma 6. T‘here ‘exist constants’ yl(k) and ?2 such that for dny measure A =
=pn—e ped’,andgora >0, . S APTLIOIES
(i) G (i) = m(k) qﬂ)
(i) 02 =7, G(4).
Proof. i) Using Lemma 5 ¢) and b) (iv) we get
G (1) £ C4k? max G,(A9) <

1<i<k
l)lmax 4(A?) = 74(k) q,(%) ,
<isgk

where we put y,(k) = C,k*(2 + ||[@'| + 1| ®"]).

ii) According to Proposition 1 and Lemma 5 a) it will be sufficient to find a con-
stant y, such that g,(1) < y, G,(4) for measures on the real line A = pu — e, pe M7 .
If x tends to + oo in the definition of G,(1) we see that |A(R)| £ G,(4). Using this
fact together with b) (i), (ii) and (iii) from Lemma 5, we can put y, = max {1, C,,
C,, Cs3}.

Finally, we see that the Gaussian and Fourier seminorms are equivalent on the
space of signed measures on R* which are nonnegative on the complement of the
zero point. This implies, for instance, that the stability condition for convolution
products of probability measures (see [ 1], page 97) is the same for the both seminorms,
and that many results could be formulated using both Gaussian and Fourier semi-
norms.

S G2 + |2 + 3|9
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Souhrn

POZNAMKY K FOURIEROVSKYM SEMINORMAM

JAN RATAJ

V ¢lanku je ukdzdna ekvivalence mezi fourierovskou a gaussovskou tfidou seminorem na
prostoru znaménkovych mér v R* nezapornych vn& nuly.

Pesome

3AMEYAHUSA O CEMMHOPMAX ®VPBE

JAN RATAJ

B paGore moka3sBaeTcs, YTO Ha HPOCTPAHCTBE KOHEYHHIX HEOTPHIQATEJLHHX BHE HYJECBOK
TOYKH MeEp B R* xnacc cemuHopM I"aycca | K1acc ceMHHOPM Pypbe SKBHBATICHTHEL.
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