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FOURIER TRANSFORMS AND THE P.N.T. ERROR TERM
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Summary. This paper shows that under suitable conditions the property f(x) = O(x~") as
x—> 0 for every n implies f(x) = O [exp g—o¢(x)In x}] for some ¢ such that ¢(x)— © with
x—> 0. As an application it is shown that from n(x) — li x = O(xIn~" x) as x— oo for every n

. . 1 (Inln x)?
we can derive n(x) — lix= 0| xexp{— ——% | as x— 0.
25Ininln x
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1. INTRODUCTION

J. CiZek [2] has shown that the Prime Number Theorem error term can be written
in terms of a Fourier transform and that a well-known theorem yields the form

(%) n(x) —lix = O(xIn™"x) as x— oo forany neZ,.

He conjectures that no better error term can be obtained by the same method. It is
shown here that an improvement on the type of error term in (*) is obtainable in
quite general circumstances and that using only those properties of { employed
by CiZek we can obtain

n(x) —lix = O[xéxp{—iM}] as x— .

25Inlnln x

2. THE ASYMPTOTIC BEHAVIOUR OF FOURIER TRANSFORMS

We aim to improve on Lemma 1 in [2]. It is convenient to reformulate it in terms
of the families of functions defined below:

Definition 1. For each neZ% let of, denote the set of all functions fR->C
such that
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@) £S5, f™ areall in £,(R) and

@) £, f" ... f® V) are all absolutely continuous on R (i.e. they are all absolutely
continuous on every closed interval). :

Definition 2. Let of = () o,

n=1

Remark. o, o,, o,, ... are distinct and non-empty. For example if a € Z,(R)
is a discontinuous step function, the convolution a*a* ... *a with n factors is in
-y — A,; and exp (—x?) is in .

Definition 3. Let ¢: R, — R, be monotonic non-decreasmg with (p(t) = 0 for
t€ [0, 1). Then we denote by #, the set of all functions g: R — C such that

o) = Ofexp {~ () In ] as t-> £co.
We can now write Lemma 1 in [2] as

fed,=>fea,.

Here f means the Fourier transform f: R — C given by f(y) = J e(—ty) f(1) dt

(e(a) = exp 2nia) and on the right hand side n denotes the constant function n(u) =
= n. In proving Theorem 1 in [2] CiZek uses this in the form

(1) fE.szl::-fenQ

We might hope to improve on this by finding a- ¢ as in Definition 3 with the further
property '

¥) lim qJ(u)
=+ o0
and such that
3 : fed =>fed,.

Unfortunately, such a function does not éxist, since we have

Theorem 1. For every ¢ as'in definition 3 and satisfying (2) there exists a function
fe oA such that f¢.43

Proof. Let ¢ be as required by the thedrcrh. We _d_eﬁné ;he functions G, T, g and f,
all with domain R, as follows:

o exp { - %fp(lyl D= (vl z1),
@ 0= {; (bl < 1)
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0 (vl z ),

5 T(y) =

(5) ») exp (yz L 1) (¥ < 1).
(6) g=G=*T.

() f) = 4(-v).

The following properties follow from definitions (4) to (7):
® G(-y)=6G((), GeZ,(R), G~ on[3} ), Gy)=0(1) as y—> +o0,
9 Te £4(R), TeC>(R), T~ on[0,1],

(10) f) = 6(=y) T(-y).

First we show that fe &. Differentiating n times under the integral sign (n 2 0)
we have

1) [6(-y]” = U” e(ty) G(1) d:]("’ - J' f e(ty) (2t () d

and

(12) [H(=)]® = J' " efty) (arity T() dr

-0

(4) and (5) imply that " G(r) and ¢ T(t) both belong to #,(R) and that " T(f) is
continuous, so the integrals in (11) and (12) all exist. Hence the basic properties
of Fourier transforms give us

[G(=y)]" =o(1) as y —» + o0

[T(=y)]" e 24(R).
When we differentiate (10) N times we deduce that f™ exists for N = 0, 1,2, ...
with

(13) ™0) =,§:o (IZ) [G(=y]® [T(-»)]""" e £4(R).

and

It follows from (13) that f e &/. Theorem 1 will be proved if we show that f ¢RB,.
From (8) and (9) both G and T belong to #,(RR) and hence so does their convolution g.
Therefore we can apply the Fourier inversion theorem to (7) and obtain

7)) = 49(»)

=(G*T)(»)

-_-r G(y — ) T(1) dt |
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1

P
=| G(y-1)T()dt
J-1
r1/2 :
2 G(y — 1) T(t) dt because G and T are non-negative
J-12
Copy2
2 G(y| + H T@)dt if |y]>2
J-1/2

by the monotonicity properties in (8) and (9)

= exp (—4) G(|y| + 4)
= exp (—%) exp {—1o(|y]) In |y} .

It follows that f ¢ #, and Theorem 1 is proved. O

Although we have ruled out a theorem which asserts (3), we can at least prove the
following which is our main result.

Theorem 2. For every f € of there exists a ¢ as in Definition 3 and satisfying 2
such that fe B,.

Proof. We have (1), from CiZek’s Lemma 1, whence given fe o there exist
sequences (¢,) and (d,) (* = 1,2,...) of positive numbers such that

(14) la| 2 4, = |f(a)| Selal™ (r=12..).

We shall suppose that (c,) and (d,) are both non-decreasing and that ¢, = d,. We are
certainly free so to choose them. We distinguish two cases:

(i) (c,) bounded as r — oo and

(ii) (e,) unbounded.

Case (i). Let C be an upper bound of the sequence (c,) with C > 1. Then (14)
gives .
la| 2 € =|f(a)] = Cla|™" (r=12..),

SO f is zero outside the interval (— C, C), hence

fea,
for every ¢. v
Case (ii). Define ¢: R, = R, by
(15) o(f) = max{reZ:c, s 1}, taking ¢, =0.

This ¢ satisfies (2). For any a such that |a| 2 ¢, we let r = ¢(|a]) and get from (14)
and (15) that

lf(a)l é C,lal"’ é lal |al_’ = |a|1"¢("l)

= exp [{1 — @(la))} In |a[]
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= Ofexp {~(1 = ) o(la) In|al}] as @~ e
for any &€ > 0, i.e.
feBy-_y, forany ee(0,1]. ‘ 0

Our proof of Theorem 2 is a pure existence proof but will nevertheless help us in
constructing an error term for the Prime Number Theorem. Obviously the theorems
also hold for other definitions of the Fourier transform such as

7o) = “I exp (~ity) f(f) dt (2 =1 or (2m)~?).
-
Ciiek deals with the function f: R —+ C given by

5 = @+ 02T+ 10+ @7 | 01 = 704).

Applying our Theorem 2 to this function we shall obtain

Corollary. There is a function ¢ as in Definition 3 and satisfying (2) such that
9(x) = Y A(n)InZ = O[xexp{—o(lnx)Inlnx}] as x— .
nsx n

(cf. [2], p. 396, Theorem 1.)

Proof of Corollary. In this proof we follow CiZek and define the Fourier transform
by :

o) = J.w f(t) exp (~ity) dt.
-
In proving his Theorem 1, CiZek shows that f € o/ and deduces that
J) = (—i)’)'"'fao F™(f) exp (—ity) dt
for every m e Z .. So for the sequence (c,) ;on the proof of our Theorem 2 we can take

¢, = max {1 ,J‘w |7(0)| dt} , r=1,23 ...,

- 0

with (c,) non-decreasing. By Theorem 1 there is a ¢: R, — R, non-decreasing an_d
unbounded, such that

(17) 7(») = O[exp{—o(y)Iny}] as y - oo.
Hence, as in the proof of CiZek’s Theorem 1,
(18) g(x) = O[xexp{—¢(Inx)Inlnx}] as x— 0. O

In the next section we find a ¢ for which (18) holds.
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3. THE PRIME NUMBER THEOREM ERROR TERM
We shall need two lemmas:

Lemma 1. Let A€ R’ be fixed and let f be any function analytic on [— A A]
Then there is a number f > 0 such that

(19) J'_A\f(')(t)] dt=0(r!p) as r- o,

where r takes the values 1,2,3,....

Remark. This lemma does not hold for every C* function on [—4, 4]. See for
example [5] p. 418 ex. 13, which shows how to construct a C* function for which
(19) does not hold.

Proof of Lemma 1. Our proof is similar to that of Mandelbrojt ([4] p. 49) who
is proving a related theorem.

For every a e [—A, A] there is an open disc B(a;¢) = {s€C; |s — a| < ¢} in
which f'is analytic. If we choose one such disc for every a, they form an open covering
of the interval [ — 4, 4], which is compact in C. Hence there is a finite subcover
comprising, say, the open discs

B(al s 91) (a;, Q;.)

withay = —4 < a;, £... 2 a; £ A=a,;,,. The boundary of the union of these
discs comprises arcs of a finite number of circles and does not intersect [ — 4, 4].
Hence it is the image of a closed loop y: [0, 1] — C. 7 is continuous, hence so are
Rey, Imy, |y — A| and |y + A|. The distance from a point of im y to the nearest
point of [ — 4, 4] is given by the function é: [0, 1] —» R% with

[p(u) + 4] if Reyu) < -4,
. 8(u) = {|Imy(u)| if —AZReyu)< 4,
[r(w) — A| if Rey(u)> A.
§ is continuous and since [0, 1] is compact, & has a positive minimum, say 6(u) 2 e.
There is therefore a loop I' with [ — A4, 4] in its interior and with f analytic on im I'.

For example we take im I' to be the closed curve which is everywhere distant 1e
from the nearest point of [.— A4, A]. We integrate around I' to get

ae[—A4, 4] = fa) = 2mJ. _S») dw

r (W - a)r+1

= lf(r)(a)l < (“L;:L)r_' M(%s)-r—l

where 44 + ¢n is the length of im I, ¢ is inf |w - a| for weim I', and we have

342



defined

M = sup |f(w)].
Hence
JM Ifm(‘)l dt < gi(ﬁis_") r! M(3e)™""! = Br! pr, say,
) -4 2n
l.e.

I |fO@)|dt = 01 p) as r—> . O

Lemma 2. Let T,; n = 0,1, 2, ... be the Bell numbers defined by T, =1, T, =
= Y Si(n = 1), where S} are Stirling numbers of the second kind (S} = S, = 1,
k=1

=kS; '+ S)Ch k=2,3,...,n— 1, n = 3 — see [6] p. 230 ex 6.94). Then
we have T, < n! for all n greater than some number N,

Proof. A well-known generating function is

exp(ef — 1) = Z

n= on'

See for exampe [1] p. 216. As the left-hand side is an entire function, Hadamard’s
formula for the radius of convergence of a Taylor series gives

n\/‘L—’O as n-— oo.
n!

It follows that T,/n! < 1 for all large enough n. ‘ Od
We cannot extend Lemma 1 directly to the interval in (16) because the lemma does
not in general hold uniformly for A € [A,, +), but we shall use the lemma in

o
conjunction with a separate estimate of I | £®(¢)| dt. The fact that for our particular
A

function f

f(=9) =10
implies that |f®(—1)| = |f®(¢)| for r = 0, 1,2, ..., so we do not need to consider
I-Al f@(t)| dt separately. We shall take A = 3 and first deal with the second term

on the right-hand side of the following inequality:

(20) [revas 7|20 v+

+ L “2}| de

dt +
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We have

(21) [ -2}

=[E(0)Fo g=u+
g

i (T) i_l(_l)r p! t—v-lir—u(r -0+ 1)| (1 + it)—r+v—2
0=0 \"?, .
éj i (:) v! (r —o+ N3 de S (r + 2)!J 3 dt = (r + 1)137772,

dt =

dt <

3 v=0 3

which is similar in magmtude to the integral in Lemma 1. Finally we apply a similar
method to the first term on the rlght-hand side of (20) We write

CI k-1)
(E) =(ln°C)(k); k= 1;2’.3""'

It is easily shown by induction that
k
(22) (Ino)® = jZleFH 1—; P,

where S"; are Stirling numbers of the second kind and the function F, is a weighted
average of products of the type

C(a)c(ﬁ) . C(")
where « + B + ... + v = k and max (a, B, ..os v) < n. We use the same estimates
as CiZek in [2] p. 396, namely

|C(k)(s)| < pIn**'t and

(23)

(s=1+it,t=3
<qln’t (s +1 23

C(S)
for some constants ¢, p,, p,,.... Ingham’s method of deriving the first inequality
in (23) (see [3] p. 28), using Cauchy’s integral formula, shows that we may take
px = k! p;,. We substitute (23) into (22) to obtain

{In o Z(s)}®] < Trpkk! In? f]In® o ¢(s)],

where K is that value of j which gives the largest value of the last factor on the right
hand side, and T, is the kth Bell number.
We also have In® o { = (—1)"1(k — 1)!1{7% so
[In® o ¢(s)] < (K = 1)1 g In™t < (k — 1)! g In7z.
Thus we get
(24) [{In o Z(s)}®] < Tik! p§ In**¢(k — 1)! g In™¢ <
< rpiq(k!)? (k — 1)! In®*t for some r > 0
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by Lemma 2, where r does not depend on k. Now we return to (20) and estimate
{0y (1 +i} (1 + i)™ =
=Y <Z) *(In o %V (1 + if) (=i % (n — k + D) (1 + if)7"+5-2,
k=0
We have, using (24), '
Koy (1 + i} (1 +if)~2]™)| <
=& (D P ar{(k + D2 K I 0(n — & + D)|(L + i)72 <
=

2 (Z) P igr{(k + D2 k1 In®*%(n — k + 1)1 e7"+-2,

(t=z3)
So

I o 0y (1 + i} (1 + i0)"7]®|dt <

=
K

ire

(":) P igr{(k + )Ykl (n — k + 1)!-[ In%+% t=n+k=2 4y |
3

Because

'[w(ln9k+9t) t—n+k—2 d¢ éjw(m9k+9t) t_"+k—2 dt é

= jw(1n9k+91) t72dt = (9% +9)!, 0<k<n,
we have 1 o
[Tt oty (v iny o + igoar s

(:) A tar{(k + ) K(n = k + 1)1 J (In¥%+91) £77+4-2 ¢ =

3

=
k

ab1=

= qrn!ép’{“{(k + )2 (n—k+ 1) (9 + 9)! £
S(n+2)pitar{(n + 1)} (9n + 9)' (assuming that p, 2 1) =
(25) = 0{(Cn)'*"} as n- oo,

which is enough to absorb the other terms (21) and (19). So in (16) we can choose
¢, = K(Cr)'? for some constants C > 9 and K. We have case (ii) in the proof of
theorem 2 and we look for a function ¢* such that ¢*(f) < ¢(t) for all large enough ¢,
with ¢ defined by (15) and ¢* having an elementary form. It is not difficult to see that
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a suitable expression is

2 Iny
26 *) == .
(26) , 0= Sy
(17) and (18) are therefore satisfied for ¢ = (1 — &) p*.

At this stage we can make use of Walfisz’s Lemmas 14—16 in V. 3 [7]. For this
purpose we need to verify that our function ¢(In x) In In x (see (18)) has the same
properties as Walfisz’s 2 a(x), so we define

2
ox) =31-¢e*(Inx)Inlnx = (1 - s)l(_l_nln_x)_
25Inlnlnx
and note that for all x = exp exp e we have both
(@) 0< w(x) _S_ilnx
48
and (b) 418 In x — o(x) is increasing.
We then obtain from (18) our
Theorem 3.
2
n(x) —lix = O| xexp _ L(nnx)* as x—» 0. a
25Inlnlnx
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Souhrn

FOURIEROVA TRANSFORMACE A ZBYTEK V PRVOCISELNE VETE
ANDREW GRANT
V préci je dok4zano, Ze za jistfch podminek z vlastnosti f(x) = O(x~") pro x—  pro viechna

n plyne f(x) = Olexp g—eo(x) In x}] pro jisté @, @(x) > 0o pro x— 0. Jako aplikace je ukazano,
Ze ze vztahu 7(x) — lix= O(xIn™" x) pro x— © pro v¥echna n plyne #(x) — lix =

ol ey LY
a xexp 25Ininin x pro x )

Pe3ome

IMPEOBPA3OBAHUE ®VPBE M OCTATOK B TEOPEME O ITPOCTBIX YUCIIAX

ANDREW GRANT

B cTaThe 0KA3aHO, YTO NPH HEKOTOPHIX YCIOBHAX H3 CBO#CTBA f(X) = O(x ") mpu x — 0 ms
BCex n crnenyeT f(x) = Olexp {g—q:(x) In x}] IIIL HEKOTOpOit dyHKumH @ co CBOMCTBOM @(x)—> @O
OpH X — 00, B KauecTBe IPHJIOKEHHA 3TOrO pe3y/bTaTa IIOKa3aHo, YTO M3 COOTHOMIECHHSA 7(x) —

- 1 (In In x)?
—lix= O(xIn"™" x) mpr x —> 0 ana Bcex n cneayer n(x) — li x = O| xexp __(_n—x)
25Inlnln x

opH x — O,
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