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DISTANCES BETWEEN DIRECTED GRAPHS
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Summary. The concepts of the edge distance and of the edge rotation distance introduced by
other authors for undirected graphs are adapted for directed graphs.
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In this paper we shall modify the concepts of the edge distance (introduced by
V. Kvasnitka, V. BaldZz, M. Sekanina and J. KoZa [2]) and of the edge rotation
distance (introduced by G. Chartrand, F. Saba and H.-B. Zou [1]) for directed
graphs. We shall consider finite directed graphs without loops in which there exist
no two edges with the common initial vertex and with the common terminal vertex.

Let G,, ®, be two isomorphism classes of directed graphs, let G, € ®,, G, € 6,.
Let G4, be a graph which is isomorphic simultaneously to a subgraph of G; and to
a subgraph of G, and has the maximum number of edges from all graphs with this
property. Let ¥, (or V) be the vertex set of G, (or G,, respectively). Let E; (or E;,
or E;,) be the edge set of G, (or G,, or Gy,, respectively). Then the edge distance
of G, and G, is

d(61, 6,) = |[Ey| + |Es| = 2(E| + ||[Vi| = |V2]] -

In the sequel we shall use such pairs ®,, 6, that |V;| = |V;| = n, |E,| = |E;| = m.
Then we have

(1) de(®l’ 62) = 2m - 2|E12| .

In this paper the edge distance will be used only as an auxiliary concept. The main
concept will be the edge rotation distance.

As we work with directed graphs, we may introduce two types of the edge rotation.
Let x, y, z be three distinct vertices of a digraph G such that the edge xy is in the
edge set E(G) of G, while the edge xz is not. (We omit arrows over the symbols of
edges for typographical reasons.) A rotation of the edge xy around its initial vertex
(shortly I-rotation) is a transformation of G by deleting the edge xy and adding the
edge xz. If we suppose that the edge zy is not in E(G) (the edge xz may be), then
a rotation of xy around its terminal vertex (shortly T-rotation) is a transformation
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of G by deleting xy and adding zy. An edge rotation is either an I-rotation, or a T-
rotation.

Let ®,, ®, be two isomorphism classes of directed graphs such that any graph
G, € G, has the same number n of vertices and the same number m of edges as any
graph G, € 6,. We define the edge rotation distance d,(®,, ®,) as the minimum
number of edge rotations which are necessary for transforming a graph from &,
into a graph from ®,. Instead of speaking about the distance between isomorphism
classes of graphs we shall sometimes speak about the distance between graphs. The
distance between the graphs Gy, G, is the distance between isomorphism classes
®,, ®, such that G, € 6, G, € 6,.

Now we define the degree vectors of a digraph. Let G be a digraph with n vertices.
For i = 0,1,...,n — 1 let v/ (G) (or v; (G)) be the number of vertices of G of the
outdegree (or indegree, respectively) equal to i. Now we have two n-dimensional
vectors

v*(G) = (v5(G), v1'(G), ..., v,-4(G))

v(6) = (43(G), 57 (G, - 171(G))
The vector v*(G) (or v~(G)) is called the outdegree (or indegree, respectively) vector
of G. Both these vectors are called degree vectors of G.

Theorem 1. Let G,, G, be two digraphs with the same number n of vertices and
the same number m of edges. Then the following two assertions are equivalent:

(i) v*(G,) = v*(Gy). :

(ii) The graph G, can be transformed into a graph isomorphic to G, by a se-
quence of I-rotations.

Proof. (i) = (ii). If v*(G,) = v*(G,), we may find a one-to-one correspondence
between the vertex sets of G; and of G, such that the corresponding vertices have
equal outdegrees G, and in G,, respectively. Now we identify each vertex of G,
with the corresponding vertex of G,; then G, and G, may be considered as graphs
with the common vertex set. Let u be a vertex of this set; then the set of edges
outgoing from u, belonging to G, and not belonging to G,, has the same cardinality
as the set of edges outgoing from u, belonging to G, and not belonging to G,. Thus
each edge from the first set can be transferred by an I-rotation into an edge of the
second set. If we do this for all vertices u, the graph G, is transformed into G,.

(i) = (i). After performing an I-rotation, evidently the outdegree vector of the
graph remains unchanged; this implies the assertion.

Theorem 1'. Let G,, G, be two digraphs with the same number n of vertices and
the same number m of edges. Then the following two assertions are equivalent:

(i) v°(6,) = v(Ga).

(i) The graph G, can be transformed into G, by a sequence of T-rotations.

Proof is dual to the proof of Theorem 1.
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If v*(G,) = v*(G,) (or v (G,) = v~(G,)) for graphs G,, G,, we say that G,, G, are
outdegree equivalent (or indegree equivalent, respectively). Two isomorphism classes
®,, ®, of digraphs are called outdegree equivalent (or indegree equivalent, respec-
tively), if so are the graphs G, € ,, G, € 6,.

Now we may define the distances d,,, dr,. If ®,, , are outdegree (or indegree)
equivalent isomorphism classes of digraphs, then their I-rotation distance d,(®,, ,)
(or their T-rotation distance dr(®,, ®,)) is the minimum number of I-rotations
(or T-rotations, respectively) which are necessary for transforming a graph from 6,
into a graph from ®,.

The fact that d,, dy,, dr, are metrics can be easily proved analogously as in [1]
for undirected graphs.

The following two assertions are evident, because any I-rotation and any T-rotation
is an edge rotation.

Proposition 1. Let &, ®, be two outdegree equivalent isomorphism classes of
directed graphs. Then
' dlr(gls ®2) g dr((bl’ (52) .

Proposition 1'. Let ®,, &, be two indegree equivalent isomorphism classes of
directed graphs. Then

dr(64, 6,) 2 d(6,, 6,).

It might seem that d;, and dy,, if they are defined, are always equal to d,. But the
following theorem shows that it is not so.

Theorem 2. There exist outdegree equivalent isomorphism classes &,, ®, of
directed graphs such that
dn(6,, 6,) > 4,(6,, 6,).

G ! , G, ¢

Fig. 1

Proof. In Fig. 1 we see a graph G, € , and a graph G, € ®,; we consider them
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as graphs with the common vertex set. Evidently
(6, 6,) =1,

because G, is obtained from G, by a T-rotation of the edge yx to the position zx.
For the graphs G,, G, we have

v*(G,) = v*(G;) = (2,4,3,0,0,0,0,0,0)

and hence d;,(®,, ®,) is defined. It is equal to 2, because G, can be obtained from G,
by the I-rotation of uz into the position uy and by the I-rotation of vy into the position
vz, while by one I-rotation it is evidently not possible.

Theorem 2'. There exist indegree equivalent isomorphism classes ®,;, ®, of
directed graphs such that

drr(®1a (52) > dr(®la 632) .

Proof. These classes are those containing the graphs obtained from the graphs,
in Fig. 1 by reversing the orientations of all edges.

Consider again two outdegree equivalent isomorphism classes &, G, and graphs
G, € 6,, G, € ©, such that G, is obtained from G, by dy,(6,, ®,) I-rotations. Thus
G, and G, have the common vertex set V. Let E, (or E,) be the edge set of G, (or G,,
respectively). Denote Fy = E, N E,, F, = E; — E,, F, = E; — E,. If an edge e, is
obtained from an edge e, by I-rotations, then evidently it can be obtained from e,
by one I-rotation. Thus |F,| = |F,| = d,(®,, ), because each edge from F, is
obtained by an I-rotation of one edge from F, and the edges from F, may remain
unchanged. The graph G, with the vertex set ¥ and with the edge set F, has m —
— d;(®,, ©,) edges, where m is the number of edges of G, and of G,. The graph G,
has the property that it can be embedded into a graph G, € ®, and simultaneously
into a graph G, € G, in such a way that in both the cases each vertex of G, is mapped
onto vertices of equal outdegrees in G, and in G,. The class of such graphs will be
denoted by 0C(®,, G,). Analogously we define the class IC(®,, ®,) by replacing
the word “‘outdegrees” by “indegrees”.

Theorem 3. Let ®,, ®, be two outdegree equivalent isomorphism classes of
directed graphs with m edges. Then the maximum number of edges of a graph
Sfrom 0C(G,, 6,) is equal to m — dp(®,, 6,).

Proof. From the above considerations we have seen that G, € 0C(64, ,) and
has m — d,(®,, ®,) edges. On the other hand, suppose that there exists F!e
€ 0C(64, ®,) with m’ edges. We embed F’ into G, € &, and into G, € ®, and then
we choose a one-to-one correspondence between the vertex sets of G, and G,, such
that if a vertex x, of G, and a vertex x, of G, are images of the same vertex of F’
in both the embeddings, then they correspond to each other. If we identify each pair
of the corresponding vertices, the graphs G,, G, become graphs with the common
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vertex set and with the common subgraph F’. There are m — m’ edges of G, not
belonging to F’ and also m — m’ edges of G, not belonging to F'. As v*(G,) =
= v*(G,), for each vertex x the number of edges outgoing from x which belong
to G, and not to F’ is equal to the number of edges adjacent to x which belong to G,
and not to F’. Thus each edge belonging to G, and not to F’ either belongs also to G,,
or can be transferred by an I-rotation into an edge of G, not belonging to F’. As
there are m — m’ edges belonging to G, and not to F’, there exist I-rotations which
transform G, into G, and whose number is less than or equal to m — m’. Thus
dn(6,, ®,) < m — m’, which implies

m’ _S.. m — dlr((ﬁl’ (52) .

Theorem 3'. Let ®,, ®, be two indegree equivalent isomorphism classes of directed
graphs with m vertices. Then the maximum number of edges of a graph from
IC(®,, ®,) is equal to m — dr,(6,, G,).

Proof is dual to that of Theorem 3.

We shall compare this with the definition of d,. By C(®,, ®,) we denote the class
of all graphs which are isomorphic simultaneously to a subgraph of a graph from ®,
and to a subgraph of a graph from ,. Obviously 0C(6,, 6,) = C(6,, 6,),
1C(6,, ,) = C(6,, ©,). Thus the maximum number m, of edges of a graph from

C(®,, ,) is greater than or equal to the maximum number myc of edges of a graph
" from 0C(6,, G,) and also greater than or equal to the maximum number my¢
of edges a graph from IC(G,, 6,).

We have another theorem.

Theorem 4. For two outdegree equivalent isomorphism classes &,, ®, of directed
graphs we have
dlr((ﬁv 62) _2.. %de((ﬁl’ (62) .
Proof. We have
de((ﬁl’ 62) = 2m - 2mc
by the definition. Further, Theorem 3 implies that
dlr((51a 62) =m — Mgc.

From these two equalities we obtain the assertion.

Theorem 4'. For two indegree equivalent isomorphism classes ®, ®, of directed
graphs we have '
dTr((ﬁb 62) g %de(ﬁli 62) .

Proof is dual to the proof of Theorem 4.
Now we shall .consider d,(6,, ®,). We shall again consider two isomorphism
classes ®,, ®, of digraphs with the same number n of vertices and the same number m

363



of edges. Let G, € ®,, G, € , and let C, be obtained from G, by d(6,, ®,) edge
rotations. Thus G,, G, have a common vertex set V. Similarly as above we denote the
edge sets of G,, G, by E,, E,, respectively, and further, Fy = E,nE,, F, =
= E, — E,, F, = E, — E,. Evidently there exists a mapping ¢ of F, onto F, such
that when transforming G; into G, by the minimum number of edge rotations the
edge e € F, is transferred by edge rotations to ¢(e) € F,. The mapping ¢ is one-to-one.
Now we prove a lemma.

Lemma. Let Xy, y,, X3, Y, be vertices of a digraph G (having at least three
vertices) such that the edge x,y, belongs to G and x,y, does not. If x,  y, or
Y2 % X, then the edge x,y, can be transferred into x,y, by one or two edge rota-
tions. If x, = y, and y, = x,, then this can be done by three edge rotations.

Proof. If x; = x,, the edge x,y, can be transferred into x,y, by one I-rotation
around x,. If y, = y,, this can be done by one T-rotation around y,. Let x, * x,,
Y1 F Y. Suppose x, + y,. If x,y; does not belong to G,, we perform the T-rotation
of x,, into the position x,x, and then the I-rotation of x,y, into the position x,y,.
If x,y, belongs to G,, we perform first the I-rotation of x,y, into x,y, and then the
T-rotation of x,y; into x,y,. If x, = y, but x, + y,, we may proceed dually. Now
the case x, = y;, y, = Xx; remains; then x,y, is oriented inversely to x,y,. Choose
a vertex z different from x,, y,. If neither zy, nor zx, is in G, then we perform
a T-rotation R, of x,y, into zy,, an I-rotation R, of zy, into zx, and a T-rotation R;
of zx, into y,;x; = Xx,y,. If zy, is in G and zx, is not, we perform first R,, then R,
and R,. If both zy,, zx, are in G, we perform the rotations in the order R, R;, R;.
If zx, is in G and zy, is not, we perform them in the order R,, R;, R,.On the other
hand, we see that two edge rotations are not sufficient, because we do not admit
loops.

Theorem 5. Let &4, ®, be isomorphism classes of directed graphs with the same
number n of vertices and the same number m of edges. If d(6,, ®,) > 2, then
%de(ﬁla 62) é dr(ﬁl; (52) é de($1; (52) .

If de(ﬁls 62) = 2, then
1< d(6,,6,)<3.

Remark. As we see from (1), the value of d,(6;, 6,) under the described con-
ditions is always even.

Proof. The formula (1) can be rewritten with the new notation:
de(ﬁl’ @2) = 2m - 2mc .

Let G, € ®,, G, € 6,. Let G, € C(6,, ®,) and let G, have m edges. We perform
the same procedure with G,, G,, G, as with G,, G,, F’ in the proof of Theorem 3.
Then G,, G, have the common vertex set ¥ and a common subgraph G,. Use again

364



the notation E,, E,, Fo, Fy, F, as above. We have |F,| = |F,|=m —m; =
= 4d(®,, ®,). Choose a one-to-one mapping ¢ of Fy onto F,.If |F,| 2 2, this
mapping can be chosen is such a way that no edge is mapped onto the edge ob-
tained from it by reversing the orientation. Now each edge e € F, will be trans-
formed into its image ¢(e) € F, by edge rotations. If ¢(e) is not obtained from e
by reversing the orientation for any e, then, according to Lemma, the number of the
necessary edge rotations is greater than or equal to |F 1] and less than or equal to 2|F l|.
Thus

1d(6,, 6,) < d(6,,6,).

If |Fy| = 1, then the element of F, can be transferred (again according to Lemma)
into the element of F, by one, two or three edge rotations, and thus

15d(6,,6,)<3.

Theorem 6. Let o, B be positive integers such that o < B < 2a. Then there exist
isomorphism classes &4, ®, of digraphs with equal numbers of vertices and equal
numbers of edges such that

d(6,, 6,) = 2,
d(6,,6,) = B.

Proof. First construct the graph G,. Its vertex set is {u,, ceey Uggs Uty eoes vz,}and
its edge set consists of the edges uu;, vv; for 1 £ i < j < 2a. (Thus G, consists of
two connected components which are acyclic tournaments.) The graph Gi contains
all vertices and edges of G, and, moreover, the edges u,;v,; for i =1, ..., a. The
graphs G, contains also all vertices and edges of G, and, moreover, the edges
Upj—qUyi—q fori=1,..., 8 — a and u,;v,;—, for i = f — « + 1,..., a. The reader
may verify himself that G, is a graph from C(G,, ®,) (where 6,, ®, are the iso-
morphism classes containing G,, G,, respectively) with the maximum number of
edges; there are o edges belonging to G, and not to G,, hence '

de(ﬁl’ 62) =a.

Any edge u,v,; for i = 1,..., — a can be transferred by two edge rotations
Uy;—1U,;—1 and any edge u,;v,; fori = f — a + 1, ..., a can be transferred by one
I-rotation into u,;,;-,; the total number of these edge rotations is f and this is
evidently the minimum number of edge rotations necessary to transform G, into G,.

At the end we shall consider outdegree regular graphs and indegree regular ones.
A directed graph is called outdegree regular (or indegree regular), if all of its vertices
have equal outdegrees (or indegrees, respectively).

Theorem 7. Let ®,, &, be two isomorphism classes of outdegree regular directed
graphs with the same number n of vertices and the same number m of edges. Then
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®,, ®, are outdegree equivalent and
(64, 6,) = dr(6,, 6,) = 14(6,, 6,).

Proof. Let G, € ®,, G, € G,. As G,, G, have the same number n of vertices and
the same number m of edges and are outdegree regular, all vertices of G, and all
vertices of G, have the same outdegree m[n. From the definitions it is evident that
0C(6,, ,) = C(6,, 6,) and thus myc = mc. As

Moc = m — dh((ﬁl, (52) s
de(Gl’ 62) = 2m - 2mc >
we have
‘ dlr(ﬁb (52) = %de(ﬁl’ (52) .
As, according to Proposition 1,
dr(@li (52) é dlr(ﬁla 032)
and according to Theorem 5
) ‘}de(Gjl’ (52) é dr((ﬁl’ 62) ’

we have
dr(G’p 62) = '}de((ﬁl’ (52) .

Theorem 7'. Let &,, ®, be two isomorphism classes of indegree regular directed
graphs with the same number n of vertices and the same number m of edges. Then
®,, ®, are indegree equivalent and

dr(ﬁla (62) = dTr((Bla 62) = %de((b’l’ ®2) .

Proof is dual to the proof of Theorem 7.

Theorem 8. Let &,, &, be two isomorphism classes of directed graphs with the
same number n of vertices and the same number m =+ 0 of edges. Then

d(6;,6,) <2m — 2
and this bound cannot be improved.

Proof. If m # 0, then the graph consisting of two vertices and an edge joining
them belongs to C(6,, ,) and thus m¢ > 1 and d(®,, 6,) < 2m — 2. An example
of classes ®,, ®, for which d(6;, ®,) = 2m — 2 are the classes containing the
graph G, which is a directed path of the length m and the graph G, which is a star
with m edges directed from the center.

Note that for the classes ®,, &, from the proof of Theorem 8 we have d,(6,, ©,) =
= m — 1, because they are classes of indegree regular graphs. This leads us to
a conjecture. :
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Conjecture. Let G, ®, be two isomorphism classes of directed graphs with the
same number n of vertices and the same number m of edges. Then

d(6,6,)<m—1.
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Souhrn
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neorientované grafy jsou modifikovany pro pfipad orientovanych grafu.
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