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A FURTHER NOTE ON THE P.N.T. ERROR TERM
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Summary. It is shown that the author’s method from the previous paper makes it possible
to obtain much better estimate of the error term in the Prime Number Theorem.
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1. INTRODUCTION

In [1], CiZek proceeds from simple estimates of Riemann’s zeta function, {, and
by way of Fourier transform theory he obtains the class of error terms

(1) n(x) —lix=0(xIn""x) as x—> o, neZ,.

In [2] we note that the O-relation in (1) is not uniform with respect to n, but by
examining the nature of the non-uniformity we deduce the improved result

@) n(x)—lix=0[xexp{—-l—M}] as x> co.

25Inlnlnx

The purpose of this note is to show that our method easily yields a much better error
term than that in (2).

2. THE ERROR TERM

In [2] (14) we quote the underlying Fourier transform theorem in the form
®) o 2 = @] S ol (= 1.2,..)

where f is a function involving {. It emerges that we can choose d, = 2, ¢, = K(Cr)t2r
for some K > 0 and C > 9. The procedure in [2] was to make the positive integer r
depend on a, say r = ¢(|a|). Then (3) yields

4) lal 2 2= |f(a)] = coqapla] 2P,
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where upon we choose the function @ to give an estimate (4) which leads to (2) If o
were able to take any real value in [1, o), the expression

K(Cg(b))”‘(") pe®

would be minimised for every b if we put g(b) = (Ce)™! b'/*? = g,(b), say. The
integer part of ¢, will legitimately serve as ¢ in (4) and we have

(5) lf(a)l = c[m(lﬂl)]lal-[m(lal)] = A, say,
< Covay] |al-tm(lal)l < cm(lan_llall-m(lﬂl) —_
= K{Coy([a]) — 1)}12exteh=1 ||t -esta _
= Kexp [12(es(|a]) — 1) In {C(es(|a]) — 1)} + (1 — ex(|a]) In |a] =

= Kexp [12 (M - 1)1n{c(lflﬁ _ 1)} +

Ce Ce
1/12
¥ (1 - lil_) In Ial:l -
Ce
(6) =B, say.

To assess the last expression we first note that 4 in (5) is K exp { —12]a|'/*?/(Ce)}.
We could reasonably expect B in (6) to be about the same as A for large |a| and

indeed,
1/12 1/12 112
g = exp[12 Jﬂé—{ln (c<|ﬂ|__ - 1)) —1In (C ]ﬂl_)} -

e Ce Ce

- 12In {c(lﬂc%u - 1)} +1n |a|:|.

Using the inequalities

~x"! 2 In (C(x — 1)) ~ In Cx z-(x-1

we thain
' ; 1712 1/12
Eéexp[lZIal ~Ce Yl ppmfcl®) L
A Ce |a] /12 e ]
1/12 -1 1/12 -1
+12(l£lc——l) +ln|a|:|=exp|:12(lﬂlc——l) ]
e e

If we just write B/A = 1 + o(1) as |a| — o, (6) becomes
|f(a) = K exp(-— Z—:Ze- |a[‘“2) {1 + o(1)} = O{exp (—Ll|a|'*?)} as |a] > 0

for some L > 0, and it follows as in [1] and [2] that
(7) n(x) — lix = O{xexp(—LIn'*?x)} as x- 0.
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(7), unlike (2), is an error term of a familiar type, normally obtained by consideration
of zero-free regions in the critical strip — or by ‘“elementary” methods.
Finally we remark that if we have

& {% 1+ (1 + i:)-Z}

J.le
3

dr < K(Cr)*
Y < K(Cr)

for some G 2 1, our method implies that

n(x) — li x = O{x exp (—LIn'/¢ x)} .
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