Štefan Schwabik
On the linear control problem $\dot{x} = Ax + Bu$

Časopis pro pěstování matematiky, Vol. 93 (1968), No. 2, 141--144

Persistent URL: http://dml.cz/dmlcz/108578

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON THE LINEAR CONTROL PROBLEM $\dot{x} = Ax + Bu$

Štefan Schwabík, Praha

(Received January 16, 1967)

NOTATIONS AND DEFINITIONS

Let K be a compact subset of E_k (E_k is the k-dimensional Euclidean space). $(,)$ is the scalar product in E_k. The hyperplane $(\varphi, x) = y$ will be called the support hyperplane of K if $(\varphi, y) \leq y$ for all $y \in K$ and if there is a $z \in K$ such that $(\varphi, z) = y$ (then we write $y = \max_{y \in K} (\varphi, y)$). For any $\varphi \in E_k$, $\varphi \neq 0$ a support hyperplane of K is determined, namely the hyperplane $(\varphi, x) = \max_{y \in K} (\varphi, y)$. The point $p \in K$ will be called an exposed point of K if there is a $\varphi \in E_k$ such that $(\varphi, p) = y$ and $(\varphi, y) < y$ for all $y \in K$, $y \neq p$. The set of all exposed points of K will be denoted by $A(K)$; further $\text{conv } K$ let be the convex hull of K and ∂K the boundary of K. For a set $M \subset E_k$, \overline{M} is the closure of M in E_k. If K is a convex set then to each point of ∂K there is a support hyperplane which passes through this point. This fact is known in the case that K contains an interior point in E_k; if the dimension of K is less than k then the whole set K is contained in any hyperplane of the form $(\varphi, x) = y$, $\varphi \neq 0$. Evidently is $A(K) \subset \partial K$. STRASZEWICZ in [1] proved the following properties of the convex hull and the exposed points:

1. $\text{conv } K = \text{conv } A(K)$; 2. $A(K) = A(\text{conv } K)$; 3. the minimal set (in the sense of inclusion) in the system of all compact sets with the property that their convex hull is $\text{conv } K$ is the set $A(K)$.

In this note we consider the linear control system

\begin{equation}
\frac{dx}{dt} = Ax + Bu
\end{equation}

where $x \in E_n$, $u \in U \subset E_r$, A is an $n \times n$ matrix, B is an $n \times r$ matrix and the set $U \subset E_r$ is compact. We suppose that $T > 0$ is fixed.

The control $u(t) : 0 \leq t \leq T$ will be called admissible if the function $u(t)$ is measurable and $u(t) \in U$ for almost all $t \in \langle 0, T \rangle$. The set of all admissible controls (with values in U for almost all $t \in \langle 0, T \rangle$) is denoted by $\Omega(U)$.

141
Definition. The control \(u \in \Omega(U) \) will be called an extremal control corresponding to \(\psi \in E_n, \psi \neq 0 \) if

\[
(e^{-A^t}\psi, Bu(\tau)) = \max_{u \in U} (e^{-A^t}\psi, Bu)
\]

holds for almost all \(\tau \in (0, T) \) (\(A' \) is the transposed matrix to \(A \)).

Remark. Each \(\psi \in E_n, \psi \neq 0 \) determines at least one extremal control which corresponds to \(\psi \); this control certainly need not be unique.

In the following we consider the set

\[
A_T(U) = \left\{ y \in E_n, y = \int_0^T e^{-A^t}Bu(\tau) \, d\tau, u \in \Omega(U) \right\}.
\]

By means of the set \(A_T(U) \) we can express the set \(S_T(U) \) of all points in \(E_n \) that can be reached from the point \(x_0 \) in the time \(T \) with some control from \(\Omega(U) \) in the following way:

\[
S_T(U) = e^{AT}(x_0 + A_T(U)).
\]

PROPERTIES OF THE SET \(A_T(U) \)

L. W. Neustadt in [2] proved the following

Proposition 1. \(A_T(U) \) is convex and compact.

Let us now introduce

Proposition 2. Let \(y^* \in A_T(U) \) and let \((\psi, x) = y, \psi \neq 0 \) be a support hyperplane of \(A_T(U) \) where \((\psi, y^*) = \gamma \). Then

\[
y^* = \int_0^T e^{-A^t}Bu^*(\tau) \, d\tau
\]

where \(u^* \) is an extremal control corresponding to \(\psi \).

If conversely \(y^* \) is given by (3) where \(u^* \) is an extremal control corresponding to any \(\psi \in E_n, \psi \neq 0 \) then \(y^* \) is a common point of the set \(A_T(U) \) and the support hyperplane of \(A_T(U) \) which is determined by \(\psi \).

Proof. Since \(y^* \in A_T(U) \) there is \(y^* = \int_0^T e^{-A^t}Bu^*(\tau) \, d\tau \) with \(u^* \in \Omega(U) \). It holds

\[
(\psi, y^*) = \int_0^T (e^{-A^t}\psi, Bu^*(\tau)) \, d\tau = \gamma = \max_{x \in A_T(U)} (\psi, x).
\]

If (2) is not fulfilled by \(u^*(\tau) \) on any part of \((0, T) \) with positive measure then \((\psi, y^*) \) cannot reach its maximal value \(\gamma \) in \(A_T(U) \). Hence \(u^* \) must be an extremal control corresponding to \(\psi \).

142
Conversely if u^* is an extremal control corresponding to ψ then y^* given by (3) is contained in $A_T(U)$. For an arbitrary $y \in A_T(U)$ there is $y = \int_0^T e^{-A^*Bu} \, d\tau$ where $u \in \Omega(U)$ and $(e^{-A^*\psi}, Bu(\tau)) \leq (e^{-A^*\psi}, Bu^*(\tau))$ holds for almost all $\tau \in \langle 0, T \rangle$. Hence

$$ (\psi, y) = \int_0^T (e^{-A^*\psi}, Bu(\tau)) \, d\tau \leq \int_0^T (e^{-A^*\psi}, Bu^*(\tau)) \, d\tau = (\psi, y^*) = \gamma $$

and therefore y^* is contained in the hyperplane $(\psi, x) = \gamma$ which supports the set $A_T(U)$.

Remark. J. Kurzweil in [3] (cf. Theorem 3 in [3]) proved similarly an analogous statement for the set of all points which can be transferred in to the origin in time less or equal T in the case of a convex set U which contains 0 as its interior point. As for each point of $\partial A_T(U)$ there is at least one support hyperplane of $A_T(U)$ passing through it, it is possible — by Proposition 2 — to express each point of $\partial A_T(U)$ in the form (3) where u^* is some extremal control.

We prove

Lemma 1. $A_T(U) = A_T(\text{conv } U)$.

Proof. Evidently $A_T(U) \subset A_T(\text{conv } U)$. The converse inclusion will be proved by contradiction. Let exist $y \in A_T(\text{conv } U)$ such that $y \not\in A_T(U)$. By the strict separation theorem for a compact convex set and a closed set (see [4]) there is a $\psi \in E_n$ such that $\gamma = \max \langle \psi, x \rangle < \langle \psi, y \rangle$; $(\psi, x) = \gamma$ is a support hyperplane of $A_T(U)$. We can write $y = \int_0^T e^{-A^*\psi} Bu(\tau) \, d\tau$ where $u \in \Omega(\text{conv } U)$. Further evidently max $(e^{-A^*\psi}, Bu) = \max_{u \in U} \int_0^T e^{-A^*\psi} Bu(\tau) \, d\tau$. We determine $u^* \in \Omega(U)$ such that (2) is fulfilled and write $y^* = \int_0^T e^{-A^*Bu^*} \, d\tau$. Hence $y^* \in A_T(U)$ and $(\psi, y^*) = (\psi, y) > \gamma$. This contradiction gives $A_T(U) \supset A_T(\text{conv } U)$.

From Lemma 1 $A_T(U) = A_T(U_1)$ follows for such U_1 that $\text{conv } U_1 = \text{conv } U$ holds. According to results of Straszewicz (see 3. page 141) the minimal compact set with this property is the set $\bar{A}(U)$ therefore $A_T(U) = A_T(\bar{A}(U))$ holds. Hence $S_T(U) = S_T(\bar{A}(U))$, too.

We have the following

Theorem. A point which can be reached from the point $x_0 \in E_n$ by any control $u \in \Omega(U)$ in the time T can be reached by a control $u^* \in \Omega(\bar{A}(U))$, too.

Remark. This theorem is an analogon of the well known bang-bang principle of LaSalle (see J. P. LaSalle: The time optimal control problem, Contr. to the Theory of Nonlinear Oscillations, Vol. 5), Actually: if U is the unit cube $|u_i| \leq 1$, $i = 1, \ldots, r$ then $\bar{A}(U) = V$ where V are the vertices of the cube U.

143
UNIQUE EXTREMAL CONTROLS

We suppose in the following that $B u = 0$ iff $u = 0$. Under this condition the following propositions are known (see [5]):

Proposition 3. For almost all $\psi \in E_n$ (in the sense of the n-dimensional Lebesgue measure) the extremal control corresponding to ψ is given uniquely almost everywhere in $\langle 0, T \rangle$.

Evidently if u^* is an extremal control which is given uniquely almost everywhere in $\langle 0, T \rangle$ then $u^* \in \Omega(A(U))$ with respect to the property of B. Further similarly as in [5] holds

Proposition 4. Let the extremal control u^* corresponding to $\psi \in E_n$ be given uniquely almost everywhere in $\langle 0, T \rangle$ and let y^* be given by (3). Then $y^* \in A(A_T(U))$. and also the converse

Proposition 5. If $y^* \in A(A_T(U))$ then it is possible to write y^* in the form (3) where u^* is an extremal control which corresponds to some $\psi \in E_n$ and is uniquely determined almost everywhere in $\langle 0, T \rangle$.

Remark. Proposition 4 holds even if the above condition for the matrix B is not fulfilled.

Since by the quoted results of [1] is $A_T(U) = \text{conv} A_T(U) = \overline{\text{conv} A(A_T(U))}$ we receive from Propositions 4 and 5 the following

Theorem. The set $A_T(U)$ is the convex hull of the closure of all points y^* which can be written in the form (3), with an extremal control uniquely determined almost everywhere in $\langle 0, T \rangle$.

References

Author's address: Praha 1, Žitná 25, (Matematický ústav ČSAV).