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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

A REMARK TO ONE RESULT OF M. E. MULDOON 

MILOŠ HÁČIK, Žilina 

(Received December 8, 1983) 

1. DEFINITIONS AND NOTATION 

A function <p(x) is said to be ft-times monotonic (or monotonic of order n) on an 
interval I if 

(1.1) (-l)><*>(x) = 0 , 1 = 0,1,2,. . . ,/ ! , XEl. 

For such a function we write cp(x) e Mn(l) or cp(x) e Mn(a9 b) provided I is an open 
interval (a, b). If the strict inequality holds in (1.1) we write cp(x) e M*(I) or cp(x) e 
e M*(a, b). We say that cp(x) is completely monotonic on I if (1.1) holds for n = oo. 

A sequence {iik}k = 1 denoted simply by {juk} is said to be n-times monotonic if 

(1.2) ( - l ) ' J V * = 0, i - 0, 1,2, . . . , n ; k = 0 , 1 , 2 , . . . . 

Here Afik = fik+1 — fik; A2fik = A(Afik), etc. For such a sequence we write {fj,k} e M n . 
If the strict inequality holds in (1.2) we write {/nk} e M*. {/zfe} is called completely 
monotonic if (1.2) holds for n = oo. 

As usual, cp(x) e Cn(l) means that cp(x) has (on I) continuous derivatives including 
the n-th order. 

Dx (p(x) denotes the first derivative d<p(x)/dx and 
Dn

x <p(x) denotes the n-th derivative dncp(x)jdx. 

As usual we write [a, b) to denote the interval {x\ a ^ x < b}. 

2. PRELIMINARY REMARKS 

Consider an equation 

(2.1) [g(x)/(*)]' + f(x)y = 0, g(x) > 0 

withf(x) and g(x) continuous for a < x < oo. The change of variable 

<12) W ' T T T V S *(*)><>, ^(X)6C2(«,OO), 
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where the integral is assumed to be convergent for x e (a, oo) and divergent for 
x = oo, transforms (2.1) into 

(2.3) g + ,,({), = ()- «e(0,oo) 

where 

^ ) = 77^ a n d <l{S) = W)'+fW39 (see [5] p. 597). \]/(x) 

In our further investigation we shall need [ l] , Theorem 2.1: 
Let y(x), z(x) be solutions of (2.1) on (a, oo), where 

(2.4) 0 < lim {[(# ') ' + jf| ^g} g oo 
JC-+00 

for some function il/(x), \j/(x) e C2(a, oo), and suppose that z(x) has consecutive zeros 
at xl9 x2,... on [a, oo). Suppose also that g(x) \j/2(x), DX\_<P(£)\ and W(x) are positive 
and belong to the class Mn(a, oo) for some n ^ 0. Then, for fixed A > — 1, 

(2.5) { [^l W(x) - - ^ " dxl e M„* . 
K } XL y)g(x)n*) *(*) J 

Let y(x), z(x) be solutions of (2.1). Let f(x) > 0. Then gy', gz' (see [2] p. 354) 
are solutions of 

(Z6) ' G")4"-0' 

3. REMARK TO [3], THEOREM 6.1 

In this section we are going to prove that [3], Theorem 6.1 is a corollary of [1], 
Theorem 2.1 applied to the equation (2.6). 

Consider the differential equation 

(2.1') / + / ( * ) * = 0, / ( * ) > 0 

which is a differential equation (2.1) with g(x) = 1. Let y(x), z(x) be solution of (2.V). 
Then y'(x), z'(x) are solutions of 

(2.6') ( i u 'Y + « = 0 . 

If [1] Theorem 2.1 is applied to (2.6'), we obtain 

Corollary 3.1. Let y(x), z(x) be solutions of(2.V) on (a, co), where 
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(2.4') °<.'*ИfH oo 

for some function \p(x) > 0, \j/(x) e C2(a, oo) and suppose that z'(x) has consecutive 
zeros at x[, x2,... on [a, oo). Suppose also that 

and W(x) are positive and belong to M„(a, oo) for some n = 0. Then, for fixed 
X> - 1 , 

(2.У) C ^F 
/tv\|A /W åxlєM*, k = 0,1,2,.... 

y = ГfMľ'-1 

Now let us choose \j/(x) = [f(*)]c, c e ( — oo, oo) in Corollary 3.1. Then we have 

(3.1) 

and 

(3.2) «#) = C(c - 2) [fw v'2w + # ) r ' 3 r w + c/wr-1. 
If c = i, then 

/B\ w \ !/"(*) 3f ,2(x) 
2 f(x) 4 f2(x) 

This transformation was considered by J. Vosmansky in [4], 
Now let 4c — 1 = 0 in (3.2). Hence c = -£. Then we get 

tpte) = 1 + 1 -r_M_ _ ! / _ _ : ) _ ! _ 1 [V(x)]-i/* D2{[f(x)]-3/4}, 
4 [/W]2 16 [/(*)]3 3 

which is the mapping considered in [3], Theorem 6.1. The assumptions of [3], 
Theorem 6.1 follow from the known properties of monotonic functions. 

Finally, let 4c - 1 = l/m, where m e [1, oo). Then c = (m + l)/4m and 2c — 1 = 
= ( —2m + 2)/4m and we get 

(3.3) <KO = ^ (z2^±1) imr3m+iymr2(x) + 
4m \ 4m / 

+ 2L±1 lf(x)-](-2m+1^f"(x) + [f(x)f'm. 
4m 

Let/(x) = xm. Then (2.4') holds and 

_ 3 (m + l)2 

q>(Q = x '-
16 x1 m + l 
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Hence Dx[(p(£j] e MM(0, oo) and (3.1) holds for m = 1. We have obtained the fol
lowing result: 

Corollary 3.2. Let y(x), z(x) be solutions of 

(3.4) / ' + xmy = 0 , x e (0, oo) 

where m e [l, oo). Suppose that z'(x) has consecutive zeros at x'0, x\,... on [0, oo). 
Let W(x) be positive and belong to M^O, oo). Then, for fixed A > —1, 

(3.5) | J " ^ V(x) x<—>/- | - ^ ^ | A dxj e Af* , k = 0 ,1 ,2 , . . . . 

Remark 3.1. Choose W(x) = JC-(™+DA-2«-2]/4 i n I3 5y If (m + 1) A - 2m -
— 2 = 0 then we can write (3.5) in the form 

(3.5') jr* + V(x) | A dxLMS, fc = 0,1,2,.... 

If A = 0 we get 
{Ax'k}eMl, k = 0 ,1 ,2 , . . . . 

Remark 3.2. Corollary 3.2 can be applied to the generalized Airy equation 

y" + p2y2x2fi-2y = 0 , 0 < x < oo 

for p = \ which is an extension oi\ -£$ <L\ considered e.g. in [2]. 

Remark 3.3. Passing to the limit for m -> oo in (3.3) we obtain the mapping 
considered in [3], Theorem 6.1. 
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