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In this paper we obtain a description of the pointwise, residual and continuous 
spectra of multipliers in the Bessel potential space Hl

p(Rn) and its dual Hp,
l(Rn), 

p e (1, oo), / > 0 (see [1] for the general properties of these spaces)*). This result 
is immediately applied to a characterization of the same spectra of a convolution 
operator in a weighted L2-space. 

By a multiplier in a function space S we mean such a function that multiplication 
by it maps S into itself. Thus, a space S is associated with the space MS of multipliers. 
The norm of the multiplication operator in S serves as a norm in MS. Necessary and 
sufficient conditions for functions to belong to the class MHl

p are derived in [2]. 

1. PRELIMINARY INFORMATION 

We present certain definitions and simplest facts of the spectral theory. 

Let X be a complex Banach space and let A, be a bounded linear operator in X. 

Definition 1. The set of complex values X for which the operator (XI — A)-1 exists, 
is defined on the whole of X and is bounded, is called the resolvent set Q(A) of the 
operator A. The complement of Q(A) is called the spectrum a(A) of A. 

It is known that the resolvent set Q(A) is open and that the function (XI — A)"1 

is analytic on Q(A). 

Definition 2. The value 
r(A) = sup \<r(A)\ 

*) The reference to Rn in the notation of spaces and norms will be omitted. 
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is called the spectral radius of the operator A. 

The Gel'fand formula 

(1) r(A) = limm/| |Aw | | 
m-*oo 

is valid. 

Definition 3. The operator A is called quasinilpotent if 

l im^| |Am | | = 0 . 
m-+oo 

The next three definitions give a classification of points of the spectrum. 

Definition 4. The set of numbers X e a(A) such that the mapping XI — A is not one-
to-one is called the pointwise spectrum and is denoted by &P(A). In other words, 
X e ap(A) if and only if there exists a nontrivial solution u e X of the equation 
(XI — A) u = 0. The elements of ap are called eigenvalues. 

Definition 5. The set of numbers X e a(A) for which the mapping XI — A is one-
to-one and the range of XI — A is not dense in X is called the residual spectrum and 
is denoted by ar(A). 

Definition 6. The set of numbers X e a(A) for which the mapping XI — A is one-
to-one and the range of XI — A is dense in X but does not coincide with X is called 
the continuous spectrum of A and is denoted by ac(A). 

It is clear that the sets ap(A), ar(A) and crc(A) are disjoint. By the Banach theorem 
on the isomorphism the condition (XI — A) X 4= X in Definition 5 is unnecessary 
and therefore 

(2) cr(A) = ap(A) u ar(A) u ac(A) . 

Let A* be the operator adjoint to A. Definitions 4 — 6 imply 

(3) ar(A) c= ap(A*) a ar(A) u ap(A) , 

where the bar denotes the complex conjunction. 

2. THE SPECTRUM OF A MULTIPLIER 

We introduce the Bessel potential space Hl
p (I — 0, 1 < p < oo), obtained by the 

completion of CQ with respect to the norm 

\\u\\Hpl = \\(-A + iy»u\\Lp. 

Let Jmf denote the Bessel potential of order m with density / [1]. It is well known that 
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ueHp if and only if u = Jmf with fe Lp. By Hp\ \\p + 1/p' = 1, we mean the 
space conjugate to Hl

p. 

Let Hl
pAoc = {u: un e Hl

p for all n e C%}. 

In the sequel the role of the space X will be played by Hl
p or H~,1 and a multiplier 

will be considered as an operator A. 

Lemma 1. Let y e MHl
p and let a be a segment of the real axis such that y(x) e a 

for almost all xeRn. Further, let k = / — 1 for an integer I and k = [/] for 
{/} > 0. Suppose that feCk,1(a), i.e. f(k) satisfies the Lipschitz condition on a. 
Then f(y) e MHl

p and 

||r(y)||^ir,. ^ c*i: ||rcy>; €F||^ 
/=o 

Proof. Let {/} = 0 . The assertion is obvious for / = 1. Let it be proved for 
/ — 1. For all ue CQ we have 

(4) «"/(y)lk. ^ |/(y) Vu||Hpl.-, + ||u/'(y) Vyl.,,-. + ||u/(y)||t, . 

By the induction hypothesis the first summand on the right-hand side does not 
exceed 

4MHP>->Ilfu>;*UJviiiHP<->. 
I = o 

For the same reason the second summand an the right-hand side of (4) is not greater 
than 

4»V7||»/-.III/ t ,+n^|L.| |r |IW-.-
1 = 0 

According to [3], the following inequalities hold: 

IIVyllA^^jv-i) ;= cHtfiv > IMItfiTpi-i S c||/|UHp< • 

So the right-hand side in (4) is dominated by 

-M-v I ll/a)5 »IL \\y\\J
M«P- • 

1 = o 

The result follows for the integer /. 
Let / e (0,1). By the Strichartz theorem [4], for all u e C% we have 

MyJk'S-^II^/WJk + MrJ l J . 
where 

(Stv)(x) = ( ^ n \v(x + 6y) - v(x)\deTy-1-2ldy Y'* . 

Since 

s«("/(y)) = Hs,/(y) + ||/(7)||toosIug 

199 



= MI/'Hks.v + ||/(y)|ks(u, 
then 

||u/(y)«Hp. ^ cfllflk llStflk.,,...,-,, + |/(y)lk) H|„p.. 
This together with the inequality 

\\SiV\\iHU,^Lp) = cbUHpt 

implies the required estimate 

\\f(y)\\MHp> ̂  c(|/'||Lco |b||MHp, + | | / ( y ) | k ) . 
For any fractional / > 1 we should proceed by induction on [/] (cf. the case 

{/} = 0). 

'Corollary 1. If ye MHl
p and Hy"1!!^ < °° tnen V - 1 ~ MHl and 

b-%Hp^c\\y-%:>\\y\\*;H\,, 
where k is the same as in Lemma 1. 

The proof immediately follows from Lemma 1 forf(y) = y~l and from the easily 
derived inequality 

I M I M _ V = IMUoo 
(see [2]). 

Corollary 1 implies the following assertion. 

Corollary 2. A number X belongs to the spectrum of a multiplier y e MHl
p if and 

only if(y — X)'1 $ L^ or, which is equivalent, for any e > 0 the set {x: \y(x) — A| < 
< e} has a positive n-dimensional measure. 

Since the adjoint operator of y e MHl
p is the multiplier y in H~,1, Corollary 2 implies 

Corollary 3. A number k belongs to the spectrum of y e MH~! if and only if 
{y-X)-l$Lm. 

From Corollaries 2 and 3 we obtain that the spectral radius r(y) of a multiplier y 
in Hl

p or Hp,
1 is equal to \\y\\La0. This and (l) imply 

"mvi:iMlMHp.] = IMk. 
m-+oo 

So, the only quasinilpotent multiplier is zero. In other words, the algebra MHl
p is 

semisimple. 
This is a generalization of the results obtained in [5] for p = 2, IX < 1. 

3. THE STRUCTURE OF THE SPECTRUM OF A MULTIPLIER 

The main theorem of the present section contains a description of the decomposi­
tion (2) for multipliers in Hp and H~,1. Before we pass to its statement we present 
certain auxiliary definitions and results. 
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Definition 7. The capacity cap (e, Hl
p) of a compact set e <= Rn is the number 

cap(e,H^) = inf {||tt||„pI: ueCf, u * 1 on e] . 

If £ is any subset of Rn then the values 

cap_(£, Hl
p) = sup {cap(e, Hl

p): e c E, e is a compact set} , 

cap"(£, J/J,) = inf {cap_(G, Hl
p): G => E, G is an open set} 

are called the inner and outer capacities of the set E. 

Any analytic (in particular, any Borel) subset of Rn is measurable with respect 
to the capacity cap(*, Hl

p), i.e. cap"(F, Hl
p) = cap_(F, Hl

p) (see [6]). 

If the inner and outer capacities of a set E are equal then their value is called the 
capacity of E and is denoted by cap(£, Hl

p). 
The capacity of a compact set e may be also defined as follows: 

cap(e, Hl
p) = inf {|/||_p: fe Lp, f = 0, J J = 1 on e] 

(see [7]). 
Let VPtlfi denote the non-linear Bessel potential of the measure \i, i.e. 

VP^ = J1(J1HY'-1. 

The following assertion is proved in [6], [7]. 

Proposition 1. Let E be a subset of Rn. If cap"(F, Hl
p) < oo then there exists 

a unique measure fiE with the properties 

1) PMt- = cap"(£,//;,), 
2) VPj//v = 1 (P> l)-quasi everywhere on E, i.e. everywhere on E except a set 

of zero outer capacity cap"(-, Hl
p), 

3) supp nE<= E, 

4)/i_(£) = cap-(F ,H ; ) , 

5) (Vp,iftE) (x) _J 1 for all x e supp /x_. 

The measure \iE is called the capacitary measure of the set E and VpX\iE is called 
the capacitary potential of the set E. 

Definition 8. A function u is called (p, l)-refined if for any e > 0 one can find an 

open set co such that cap(w, Hl
p) < e and u is continuous on Rn \ co. 

For the proofs of the next assertions see [6]. 

Proposition 2. For any u e Hl
ploc there exists a (p, l)-refined Borel function which 

coincides with u almost everywhere. 
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Proposition3. If two (p, l)-refined functions ut and u2 are equal almost every­
where then they are equal (p, l)-quasi everywhere. 

Henceforth in this section all the functions are assumed to be (p, /)-refined and 
Borel. 

The following assertion is proved for an integer / in [8] and for a fractional / 
in [9] for compacta. The passage to arbitrary sets does not require new arguments. 

Proposition 4. Let E c= Rn. The capacity cap~(F, Hl
p) is equivalent to the set 

function inf {\v\p
H .: v e M(E)}^ where M(E) is the collection of (p l)-refined 

functions equal to unity (p, l)-quasi everywhere on E and satisfying the ine­
qualities 0 _̂  v _̂  1. 

Definition 9. The set E c Rn is called the set of uniqueness for the space Hl
p if the 

conditions u e Hl
p, u(x) = 0 for (p, /)-quasi all x e Rn \ E imply u = 0. 

The description of the sets of uniqueness for Hl
p is given by Hedberg [10] and 

Polking [11]. The first result of such a kind for H\/2 on a circumference is due to 
Ahlfors and Beurling [12]. 

Proposition 5 (Hedberg [10]). Let E be a Borel subset of Rn. The following con­
ditions are equivalent: 

(i) E is the set of uniqueness for Hl
p; 

(ii) cap(G \ E, Hl
p) = cap(G, Hl

p) for any open set G; 

(iii) lim sup Q~n cap(BQ(x)\E, Hl
p) > 0 for almost all x, where BQ(x) = 

c?-o 
= {ye IT: \y - x\ < Q}. 

If Ip > n then E is the set of uniqueness if and only if it has no interior points. 

Now we state our main result, i.e. a theorem which gives a characterization of the 
sets vp(y), ar(y) and ac(y) for a multiplier y in Hl

p or H~,1. 

Theorem, (i) Let y e MHl
p and X e a(y). 

1. X e 0"p(y) if and only if the set ZA = {x: y(x) = X} satisfies none of the con­
ditions (i) —(iii) of Propositon 5. 

2. X e ar(y) if and only if the set ZA satisfies at least one the conditions of Proposi­
tion 5 and cap(ZA, Hl

p) > 0. 

3. X e Gc(y) if and only if cap(ZA, Hl
p) = 0. 

(ii) Let y e MH~,1 and X e a(y). 

1. X e ap(y) if and only if cap(ZA, Hl
p) > 0. 

2. X e ac(y) if and only if cap(ZA, Hl
p) = 0 (hence the set ar(y) is empty). 

An obvious corollary of Propositions 2 and 3 is the following assertion. 
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Lemma 2. Let y be a (p, l)-refined function in MHl

p. The equation (y — X)u = 0 
has a nontrivial solution in Hl

p if and only if there exists a (p, l)-refined non-zero 
function in Hl

p vanishing (p, l)-quasi everywhere outside Zx. 

This lemma shows that item (i) 1 of the theorem immediately follows from Proposi­
tion 5. The proof of the other items of the theorem is given in the next section. 

4. PROOF OF THEOREM 

Below we shall use the following assertion. 

Lemma 3. Let y be a (p, l)-refined function in MHl

p and let Z0 = {x: y(x) = 0}. 
Ifcap(Z0, Hp) = 0 then the set yHl

p is dense in Hl

p. 

Proof. Letfe C 0 and let NT = {x e suppf: \y(x)\ = T}. By e we denote a small 
positive number and by co we mean an open set with cap(eo, Hl

p) < e and such that y 
is continuous on Rn \ co. Let G denote a neighbourhood of the set N0\co with 
cap(G, Hl

p) < e. 

We note that Nx\co <= G for T > 0 small enough. In fact, if for any T > 0 there 
exists a point xxe Nx\co which is not contained in G then, by the continuity of 7 
outside co, the limit point x0 of the family {xT} is in N0 \ co contrary to the definition 
of G. 

Consequently, cap(NT \ co, Hl

p) < e for small values of T and 

cap(NT, Hl

p) = cap(NT \ co, Hl

p) + cap(eo, Hp) < 2s . 

Thus, cap(NT, Hl

p) -> 0 as T -» 0. 
By {wT}T>0 we denote the family of functions in M(NX) such that lim ||wT||Hpi = 0 

T-+0 

(see Proposition 4). Further* we put 

yj 
Щ,ð = (1 - wt) 

77 + 8 

where 8 > 0. Since (1 - wt)feHl
p, yeMHl

p, yyeMHl
p and 77 + d = 5, then 

uxd e Hl
p. We have 

f - yu*,3 = w-/ + ^(1 - wT)f/(77 + 8) . 

Let cp be a smooth increasing function on [0, + 00), c (̂0) = T 2 /4 , cp(t) = t for 
t > T2 /2. Since 1 — wT = 0 quasi everywhere on NT, 

f - yux,s = wTf + ^(1 - wx)fl[cp(yy) + 8] . 

Using the inequality 

cp(yy) + 8 > T2 /4 

203 



we get from Lemma 1 that the norm ||[<JP(O7) + 8] 1\\MHP
1 *S uniformly bounded 

with respect to <5. Therefore 

\\f-yut4Hp,g\\Wj\\Hp, + dk(r) 

where /C(T) does not depend on 8. We put <5(T) = T//C(T). Then 

| / - y ^ ( T ) | | H p i ^ c | | w t | | H p I + T 

and so yurtHz) -> / as T -> 0 in Hl
p. Lemma is proved. 

In the next three propositions y is a (p, /)-refined function from MHl
p. 

Proposition 6. The number A is contained in the pointwise spectrum of a multi­
plier y in H~} if and only if cap(ZA, Hl

p) > 0. 

Proof. Sufficiency. Let R be so large that cap(ZA n BR, Hl
p) > 0 and let \i be the 

capacity measure of ZA n BR. Note that for any (p, J)-refined function u e Hl
p we 

have u(x)(y(x) — A) = 0 for (p, /)-quasi all x e ZA n BR. By Proposition 1 the last 
equality holds /^-almost everywhere. Therefore ju(y — A) djx = 0. In other words, 
(y — A) JLZ = 0. Since 

NIC- = I M C = cap(zAn 5*> # , ) < °° > 
then Ae(Tp(y). 

Necessity. Let A 6 c^y). Then there exists a distribution Te H~,', T + 0 such that 
(y - A) T = 0. Therefore (T, (y - A) u) = 0 for all u e H£ and the set (y - A) Hl

p 

is not dense in Hl
p. The result follows by applying Lemma 3. 

Proposition 7. The number A is contained in the residual spectrum of a multiplier 
in Hl

p if and only if A $ <?p(y) and cap(ZA, Hl
p) > 0. 

Proof. Sufficiency. Since cap(ZA, Hl
p) > 0 then by Proposition 1, 1 is an eigen­

value of the multiplier y in H~,1. This and (3) imply A e cr(y) u cr^y) = <rr(y). 
Necessity. Let A e crr(y). By (3), A is an eigenvalue of the multiplier y in H~}. So, 

according to Proposition 1, cap(ZA, Hl
p) > 0. 

Proposition 8. The multiplier y in Hp,
1 has no residual spectrum. 

Proof. Let A e <rr(y). By virtue of (3), I is an eigenvalue of y in Hl
p. This and item 

(i) 1 of Theorem imply cap(G \ ZA, Hl
p) < cap(G, Hl

p) for an open set G c ft\ 
Since cap(ZA, Hl

p) > cap(G, Hj) - cap(G\ZA , Hl
p), then cap(ZA, flj) > 0. Ac­

cording to Proposition 6 this means that A e <rp(y). So we arrive at a contradiction. 
The proposition is proved. 

Thus the statements of Theorem concerning the pointwise and residual spectra 
are proved. The characterization of the continuous spectrum obviously follows from 
these criteria and the relation (2). 
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5. THE SPECTRUM OF THE CONVOLUTION OPERATOR 

Let K:u->k*ubea convolution operator with the kernel k. The results of the 
previous sections in the case p = 2 can be interpreted as theorems on the spectrum 
of K considered as an operator in L2((l -f |x|2) / /2). Here we have 

\i/2 

IL(i + l*i-)>"> = ( Í H M 1 + \x\2)'dx\ 

According to Corollaries 2 and 3, a number A belongs to the spectrum <r(K) of 
the operator K continuous in L2((l + |*|2)± Z / 2), * ̂  0, if and only if (Fk - A) -1 £ 
^ LQO, where F is the Fourier transform in Rn. 

The spectral radius r(K) of the operator K in L2((l 4- |x|2)±z/2) is equal to ||Fk||Loo-
Let A e <r(K). By the theorem formulated in Sec. 3, A is an eigenvalue of K if and 

only if, for all x in a set of positive measure, 

limQ-*ca.p(BQ(x)\ZX9H
l
2) = 0, 

where ZA = {£ e Rn: (Fk) (£) = A}. This condition is equivalent to 

cap(G \ ZA, H2) < cap(G, H2) 

for an open set G. According to the same theorem, A belongs to the residual spectrum 
<rr(K) if and only if none of the conditions stated above is valid and cap(ZA, Hl

2) > 0. 
Moreover, A e <rc(K) <=> cap(ZA, H2) = 0. If A is a point of the spectrum of an operator 
K continuous in L2((l + |*|2)~* /2), / > 0, then our theorem yields that Xe<rp(K) 
is equivalent to cap(ZA, H2) > 0. Besides, A e <rc(K) if and only if cap(ZA,H2) -= 0. 
Consequently, <rr(K) = 0. 

References 

[1] A. Kufner, O. John, S. Fudik: Function spaces. Academia, Prague, 1977. 
[2] V. G. Maz'ya, T O. Shaposhnikova: Multipliers in pairs of potential spaces. Math. Nachr." 

99(1981), 363-379. 
[3] V. G. Maz'y a, T. O. Shaposhnikova: On multipliers in Sobolev spaces (Russian). Vestnik 

Leningrad. Univ. 7 (1979), 33-40. 
[4] R. S. Strichartz: Multipliers on fractional Sobolev spaces. J. Math, and Mech. I6 (1967), 

1031-1060. 
[5] A. Devinatz, I. I. Hirschman: Multiplier transformations onl2,<*. Annals of Math. 69 (1959), 

575-587. 
[6] V. G. Maz'ya, V. P. Havin: Non-linear potential theory (Russian). Uspehi Matem. Nauk 27 

(1972), 67-138. 
[7] jV. G. Meyers: A theory of capacities for potentials of functions in Lebesgue classes. Math. 

Scand. 26 (1970), 255-292. 
[8] V. G. Maz'ya: On removable singularities of bounded solutions of quasilinear elliptic equa­

tions of arbitrary order (Russian). Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 
26(1972), 116-130. 

205 



[9] D. R. Adams, J. C. Polking: The equivalence of two definitions of capacity. Proc. Amer. 
Math. Soc. 37 (1973), 529-534. 

[10] L. I. Hedberg: Approximation in the mean by solutions of elliptic equations. Duke Math. 
Journ. 40 (1973), 9 -16 . 

[11] J. C. Polking: Approximation in LP by solutions of elliptic partial differential equations. 
Amer. Math. Journ. 94 (1972), 1231-1244. 

[12] L. Ahlfors, A. Beurling: Conformal invariants and function-theoretic null-sets. Acta Math. 
83(1950), 101-129. 

Author's address: T. O. IIIanomHHKOBa, np. Mapmana 3axapOBa 27/3, KB. 218,168330 JlemiH-
rpa.ii, CCCP. 

206 


		webmaster@dml.cz
	2012-05-12T13:59:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




