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1. BASIC NOTATIONS

Let R" be the n-dimensional real vector space. Let A =(a;), i =1,...k,
j=1,..,1beak x l-matrix (a;; is the element of A from the i-th row and j-th
column). By A’ let us denote the transposed matrix of A. For a k x [-matrix A we

define the number [|A| = max Z |a;,|- The elements x of R" are column vectors
(i.e. n x 1-matrices). ||.| is a.norm in R". The space of all n x n-matrices let be
denoted by L(R" —» R"). ||.| is a norm in L(R" — R") (the obvious operator norm

corresponding to the given norm in R"). We have evidently |A’| < n||A|, |x'|| =
< n||x|| for A€ L(R" - R"), x € R" respectively.

Let {a, b) = R = R! be a bounded closed interval, a < b. For a given vector
function x(1), x : {a, b) —» R" we define the (total) variation of x on <a, b) as usual:

varl x = sup 3 [x(t) = x(t;-)

where the supremum is taken over all finite decompositions D:a =t, < t, <
..<t, =bof {a, b).

We denote

Vi(a, b) = {x:<a, b) > R"; var, x < + o0} .

If no misunderstanding may occur, we write simply V, instead of V,(a, b). If n = 1
we write V(a, b) or V instead of V,(a, b) or V,.

The following statement is obvious: x € V,(a, b) if and only if x; € V(a, b) for all
i=1,..,n x" =(x, ..., x,). The inequality
(1,1) var} x; < varb x
is satisfied for all i =< 1,2, ..., n.
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For xeV,(a, b) the limits lim x(r) = x(¢t+), lim x(z) = x(t—) exist for all
te<a, b). We use the notation;..m o
A*x(t) = x(t4) — x(1), A™x(t) = x(1) — x(t-),
Ax(f) = x(t+) — x(t—) = A*x(r) + A~ x(¢).

2. THE INTEGRAL

For our purpose we use the concept of the generalized Perron-Stieltjes integral
introduced by J. KURZWEIL in [1].

Let f:{a, b) > R, g : {a, b) = R be given. If g(t) is not defined for t < a and
t > b then we suppose that g(f) = g(a) for t < a and g(r) = g(b) for t > b. For
{¢,d) = {a, b) we denote

f 10)40() = f D19 (0

where the right hand side is the Kurzweil integral ([1]) of the function U(z, 1) =
= f(7) g(t). In [1] the following is shown:

If f : <a, b) - R s finite and g € V(c, d) then the integral [? f(t) dg(t) exists if and
only if the Perron-Stieltjes integral (P.S.) |2 f(r) dg(t) exists (in the usual sense) and
both integrals are equal.

Further we have: If f, g :<{a, b) > R, <c,d) =<a,b), feV(c,d), geV(c,d)
then the initegral [? f() dg(f) exists.

This follows essentially from the same statement which holds for the Perron-
Stieltjes integral and the above quoted equivalence of both concepts of integral.

If |f(t)] < M for t € <a, b) and g e V(c, d), {c, d) = {a, b) then

[/(2) (9(r2) — 9(1,))] < M varii g < Mlvar? g — var(! g|

for all t, t,, T € {c, d). From this inequality and from Lemma 2,1 in [3] the following
proposition immediately follows:

If f:<{a,by) >R, |f()] £ M for all tea, b), geV(c,d) and if [?f(¢)dg(r)
exists, then

21) rf(‘) dg()

If feV(a, b) then obviously the inequality |f(r)| < |f(a)| + var, f holds for all
te{a, b). Let g eV(c, d), {c, d) = {a, b). By (2,1) we obtain

22) j :f(t) dg()

d
< MJ'd(var: g)=Mvarig.

< (|f(a)| + varbf) varlyg .
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From (2,2) we can easily obtain that for f, g € V(a, b) the function f; f(z) dg(z) :
: <{a, by - R belongs to ¥(a, b), namely, the inequality

( f :f(f) dg<r)) (@) + vartf)vaty < +oo

holds.

Proposition 2,1. Let f, g € V(a, b). For a € {a, by, te {a, b) we define Y. (t) = 0
fort <,y () =1fora <tifa <bandy,(t)=0fort <aifa <a y (t) =1
fora < t.

Then we have

23) [0 agte = fo© o) <

j W) dg(t) = {383 - ZE:)‘) ; ‘s

and
24 [y sz = {1@ =<
J ")y (1) = {g(“) f o

Proof. If « = b then [, ¢, (¢)dg(f) = [20.dg(t) = 0. Let « < b. Then we have
b +4
j W2 (1) da(r) = f V(1) dg(t) + 9(b) — gl > 9)
for all 0 < & < b — « because

j " U0 dg(r) = j " dg() = a(b) - glx +9).

at+

By Theorem 1, 3, 6 [1] there is

lim J‘EH:,I/:(t) dg(1) = Jawf(t) dg() + }il:’)l:/l:(d) [g(x + &) — g(®)] =0

-0+

since [y, (1) dg(t) = [:0dg(r) = 0 and ¥, («) = 0. For 6 >0+ so we obtain
the first equation from (2,3). The second one can be proved similarly.
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We verify for example the second formula from (2,4). The first one can be verified
in a similar manner. If @ = a then Y, (f) = 1 in <a, b). Forevery0 <5 <b —a
we have f(%,) (¥, () — ¥, (10)) = O for each 1oe<a + 8,b) and 7, — 6 <t <
< +00. By Lemma 1, 3,1 [1] we obtain therefore [3+5/(t) d/; (f) = 0. This implies

b a+é
f £(0) dws(t) = j £(6) dw (9
for each 0 < § < b — a and by Theorem 1, 3, 6 [1] we have
b
j 1) dw () = f(a) A*¥ () = 0.

Let a < « < b. By the same reason as above we have [? f(¢) dy; (1) = [3*31(c).
Ay, (1) if « < b and [Lf(f)dyg (1) = [2-,f(t) Ay (?) if @« = b for all sufficiently
small 8 > 0. Using Theorem 1, 3, 6 [1] we can evaluate

tim [ () w2 (i) = lim (J + Jw)f(t) wo(t) =

= flo) AYg (@) + f(@) A* s (@) = f(o) AY; (@) = f(o)

if @ < b and similarly
b
lim J £(0) QI (e) = £(b) A5 (b) = £(b)
20+ Ja-s
if « = b. Therefore the second equation in (2,4) holds.

Corollary 2,1. If x € {a, b), ¥,(t) = 0 for te {a, b), t + a, Y («) = 1, ge¥(a, b)
then we have by (2,3)

29) j "W(1) dg() = g(a+) — gla) = Ag(a)

since Y,(f) = Y5 (t) — ¥, (t) for te (a, b).

Let a countable set (4, t5, ...) of points in {a, b) be given, ¢, % t; for i % j and
let us have two sequences ct, ¢, i =1,2,... of real numbers such that the series
Y ¢, Y ¢ converge absolutely. The function

asti<b a<t;sSb
o)= 3 cf+ T

ast<t a<tist

will be called a break function in <{a, b). For this break function ga(t) we have
evidently

varl gg = «Zﬂlcﬂ + Y o] < +o0,
i=

a ast;<b
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A+gB(‘) = A_ga(t) = 0 if t -'4: ti’ i = 1, 2, ces and A+gB(ti) = C:-, A-ga(tl) = Ci—,
i=12,...

Using the functions y; and y introduced in Proposition 2,1 we can evidently
express the break function in the form

au) = T [e Vi) + i ¥ )] =
= Z[8%0u(t) Vi) + A0u(t) ¥ ).

Remark 2,1. The notion of a break function can be similarly introduced for n-
vector functions too; for this case it is sufficient to take ci+ € R", ¢; € R" and repeat
the above procedure where instead of |.| should be written ||. |.

Proposition 2,2. Let gz € V(a, b) be a break function. If feV(a, b) then
b
@O [10900) = 10 8%0ia) +_ 5, 1) ) + 1) 5"l

Proof. Since g is a break function there exists a sequence {t; } t;eda,b), t; ¥ t;
for i # j such that

as() = X [A*g5(1) Wi10) + A" 0a(t) V(9]
We put

a30) = T[40t ¥ + Aan(r) W0
We have

vart (g5 — g3) = varl (3, [A%a(t) V() + Ag(t) ¥ (9] =

= _i [|A+g(‘i)| + [A7g(t)]] -

The relation g € V(a, b) implies the convergence of the series Z[|A+g(t)| +
+ |A~g(t;)|] and therefore we have

lim var (g — g5) = 0.
N-wo
Hence by (2,2) we obtain
b b
[ 504010 - [ 769 403

lim < lim [|f(a)| + var) f] varl (g5 — g}) = 0
N-w N-o
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ey f 10) dos) = lim [ "F(t) g

Using (2,4) we have
N

be(t) dgi(t) = )y be(t) d[A*ga(t) ¥5(1) + A7 gs(t) Y7, (1)] =

i=1

iN; [A+gn(’:) ﬁf(t) Ay (1) + A" gs(t) ﬁf(:) dl//;(t)] -

[ATga(t:) £(1:) + Ags(t) £(2)] =

1

-

Il [
M=z IM=

lf(ti) [A+gB(ti) + A_gll(ti)] .

This and (2,7) give (2,6) and Proposition 2,2 is proved.

Corollary 2,2. If g €V(a, b) is a break function such that Ag(t) = 0 for all te
€(a, b), A*g(a) = A~g(b) = O then [} f(r) dg(t) = O for all feV(a, b).

The proof follows immediately from (2,6).
In [2] the following theorem on integration by parts is proved:

Let f, g € V(a, b) then for any interval {c,d) < {a, b) we have

29) J"'f(o dg(t) + j "o(t) ar() =
= f(d) g(d) —'f(c) g(c) —c§;<dA+f(r) A+g(1:) +c<§:sdA—f(T) A7 g(7).

Let z, w € V,(a, b); we denote for {c, d) = <a, b)

[ () aw() - [ LOECESY [ =0 4wl

Using this notation and the integration by parts formula (2,8) we can easily derive
the integration by parts formula for n-vector functions z, weV,(a, b), {c,d) <
< {a, b) in the form

2.9) rz’(t) dw(t) + j “w(i) dz(t) = I 2 (1) aw(i) + jdd[z’(t)] w(i) =

= 2'(d) w(d) — z'(c) w(c) _c§2¢:<¢A+z’(T) A*w(r) +c<cZ§aA_z,(t) A~ w(7).
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Remark 2,2. In a similar manner can be obtained the result of Corollary 2,2 for
n—vector functions: If w e V,(a, b) is a break function (cf. Remark 2,1) such that
Aw(t) = 0 for all te(a, b), A*w(a) = A"w(b) = 0 then [, z'(f)dw(r) = 0 for all
zeV,(a, b).

Now let a nondegenerate interval I = {a, b) x {c, d) in R? be given; K(s, t) : I —
— L(R" - R") let be a matrix function defined on the interval I. The elements of the
matrix K(s, t) are denoted by k;i(s, t), i.e. K(s, 1) = (k;(s, 2)), i,j = 1,2, ..., n.

For a given subinterval J = <@, b) x (¢, d) =1 we set my(J) = K(b,d) —
— K(b, ¢) — K(a, d) + K(a, ¢) e L(R" - R") and define

(2,10) vy(K) = sup Z!\ my(J3)|

where the supremum is taken over all finite systems of subintervals J; < I such that
for the interiors J{ of J; (in the topology of R?) we have J{ N J$ = 0 when i * j.
The norm | .|| used in (2,10) is the operator norm in L(R" — R") (see Sec. 1.).

The number v;(K) established in (2,10) is a kind of twodimensional variation of the
matrix function K(s, t) in the interval I. This notion of a twodimensional variation is
considered in the book of T. H. HILDEBRANDT [5] (for the case n = 1).

For a real function k(s, t) : I » R we can define the number v,(k) as above if we
take n = 1. The properties of our operator norm imply

(2,11) vi(ki;) < vy(K)
foralli,j=1,2,...,n.

IfI; < Iis a rectangle foreachj = 1,2, ..., mand I{ n I} = @ for j + k, then we
can define the number v, (K) for each j = 1,2, ..., m as above and by definition we
easily obtain .

™M=

(2,12) v, (K) < vy(K) .

j=1
We define as usual

varg K(s, .) = sup Y ||K(s, t;) — K(s, t;—,)]|
for fixed s € {a, b) and

varg K(., 1) = sup 3 |K(s;, 1) — K(s;-1, 1)
J

for fixed t € (¢, d) where the supremums are taken over all finite decompositions of
the interval {c, d), {a, b) respectively.

The properties of the used operator norm imply
(2,13a) vart ks, .) < variK(s, ),
(2,13b) varg ki (., 1) < vars K(., t)
foranyi,j = 1,2,...,n,se{a, b), te{c d).
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For any s, s, € <a, b), t;_4, t;€ (¢, d) we have
"'f(s’ t;) — Kis, ;1) < [lm(J))]| + [K(so, 1) ~ Klso, t;- 1)

where J; = (s, s> X {t;_;,t;>. Hence for each decomposition D:c =t, <
<t <... <t,=dofthe interval {c, d) the inequality

IKGs 1) = K -] < 3 Imel)] +

™M=

1

]

i
+j=§:1 [K(so» 2;) — K(so» 2;-1)|| S vi(K) + vari K(so, .)
holds; therefore
(2,14a) var? K(s, .) < v/(K) + var? K(s,, .)
for each s e {a, b). Similarly can be proved for t, € {c, d) the inequality
(2,14b) var, K(., 1) < v(K) + var, K(., t,)

which holds for each t € {c, d).

Therefore ,if we suppose that v(K) < + oo, varl K(so, .) < +0co for some s, €
€ {a, b) then we have var? K(s, .) < 4+ oo for all se {a, b) and symmetrically if
v(K) < +oo, varsK(., 1)) < +oo for some t, € {c, d), then vartK(., ) < +
for all te {c, d).

Let us put
(2,15a) lP(U) = U(a,a>x<c.d>(K)
for o € {a, b); ¢(c):<a, b) — R is evidently a nondecreasing function in {a, b},
o(a) = 0, ¢(b) = v;(K). In the same way we can define
(2.15b) (7)) = V4apy xcen(K)

for T e {c, d); Y(r) : {c, d> — R is nondecreasing, Y(c) = 0, Y(d) = v,(K).
Notz that for an arbitrary decomposition of the interval {a, b) :a =55 < 5, < ...
... < s, = b and any two points t,, t, € {c, d) we have

[varZ (K(s;, .) — K(si—y, .)) — varl (K(s;, .) — K(si-1, .))| =
= |varg; (K(si, -) — K(si- 15 )] S vamis xctny(K)

fori=1,2,..,1 ie.
l .
(2.162) | ¥ [varZ (K(s, -) = K(si- 1, -)) = varl (K(si, -) = K(si-s, ]| <
1
= glv(h—x.st)"(h-fz)(’() = v(“s")"(h,tz)(K) = l'/’(‘z) - 'l’(tl)l .
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Symmetrically for an arbitrary decomposition ¢ < t, <, <...<t, =d and
any two points sy, s, € {a, b) it is

(2.16b) IZ,[Var? (K(. 1) — K(., 15-1)) — vare' (K(.o 1)) — K(., ;)] <
=
< [o(s2) = o(s))] -

Lemma 2,1. Let K(s, t) : I = <a, b) x {c,d) - L(R" - R") satisfy v/(K) < + o0
and vari K(sy, .) < + oo for some s, € {a, b). Let further for some s, € <a, b)
(2.17) lim |K(s, t) — K(so, 1) = 0

s—=sot

or
lim [K(s, t) — K(so, 1)|| = 0

for all te {c, d) then
(2,18) lim ¢(s) = ¢(s0),  lim ¢(s) = ¢(s0)

s—so+

respectively where ¢ : {a, b) - R is the function defined in (2,15a). (If s, = a
(so = b) then we consider the first (second) case only.)

Proof. We prove the first case only, the other one is symmetric. The function ¢ is
nondecreasing, i.e. ¢(s) — ¢(so) = O for s = s,. Let us suppose that our Lemma is
not valid and that there is a number # > 0 such that for all s > s, we have

(219) o) - #(s0) 21> 0.

By definition of ¢(s) there exists a finite system of intervals J, < {a, s) x {c, d),
J9nJ9=0,1%jsuch that

Zlmd7l > o(s) - g

We put I} = J;n<{a, s> x {c,dy and I, = J, " {so, sy % <c, d). Obviously
[me()]| < [mIT)f + "mx(lz)”

Slme(1)] 5 olso)

and

Hence
Slmd1)] + Slm1D)] = olso) > o(5) = olso) =3

and we obtain
n
(2,20) ;" m(L)[| > o(s) = @(s0) = r

At the same time I, is a finite system of intervals in {so, sy X ¢, d) and I 10l ? =0
forj # L
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Let 0 <8 <s—so and put I, =I,n (sg, 50 + ) x {c,d>, I, =1,n (sq +
+ 4, s) x ¢, d). If for example I}, = (sq, 5o + 6) x <t', t") then we have

Ime(1)] = |K(so + 8, t") — K(so + 8, ") — K(so, 1) + K(so, )| E
< |K(so + 8, ") — Kso, t")]| + [[K(so + 8, t') — K(so, 1)

and we see that a choice of sufficiently small 6 > 0 implies by (2,17) that |[m,(I))]
is arbitrarily small. This procedure can be repeated for all possible forms of T, in
a similar manner. Hence for sufficiently small 6 > 0 we can obtain '

Smdi) < !

This inequality together with ¥ ||my(I)] < Y|mu(1)] + X|mx(I)] and (2,20)
implies ! ! !

(221) Sl )] > os) = ols0) = 7 -

As (2,19) is assumed there is a finite system of intervals I} * < (a, s, + &) x {c, d),
(I¥")° n (IT*)° = 0 for j + k such that

Slme1] - o(6) > 1.
From this and from (2,21) we have
@22) D] + T = ols0) > ols) = ols0) + 3

Since the union of intervals I, and I}* forms a finite system of intervals in {a, s) x
x {c, d) with mutually disjoint interiors, we obtain from (2,22) by definition of ¢(s)
the contradictory inequality ¢(s) — ¢(so) > @(s) — ¢(so) + n/4. Thus our Lemma
is proved.

Remark 2,3. By definition we have for s, € {a, b), 0 < 6 < b — 5,

(i) Val’: (K(SO + 5, .) - K(SO’ .)) é v<s°’30+6>x<‘.,d)(K) é (p(SO + 6) - (p(SO)
where ¢ is given in (2,15a). Hence if the first equation in (2,17) holds, we have by
(2,18) ‘

lim var? (K(sp + 6, .) — K(so, .)) = 0.

-0+
If an arbitrary K(s, t) : <a, b) x {c, d) - L(R" » R") is given with v;(K) < + 0,

var? K(sy, .) < +o0 for some s, €<a, b) and lim+ K(s, 1) = K(so+, t) exists for
s$-50

every te {c,dy then we can define K°(s, 1) = K(s, 1) if (s,t)el = <a, b) X
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x {c,dy, s % s, K°(so, t) = K(so+, t). Easily can be obtained v/(K°) < +oo and
var? K°(sgxs .) < +00 for some s, €(a, b). We have further evidently
lim ||K°(s, £) — K°(so, t)]| = O for every te {c,d) and in the same way as above
s—sot+

we obtain

(i) lim varg (K°(so + 6, .) — K°(s, .)) =

040+

= lim varﬁ(K(so +9,.) — K(so+,.)) =0.

-0+

A similar appointment gives the same result for left hand side limits. This implies
the following

Corollary 2,3. If for K(s,t): I - L(R" - R"), v,(K){+ oo, varé K(s, .) < + o0
for some s, €<a, b) and if lim K(s, t) = K(so+, t) exists for any te{c, d) then
we have s=sot

vars (K(so+, .) — K(so, -)) = var A*K(so, .) < o(so+) — ¢(so) = A o(so) -
(A4 similar statement for left hand side limits holds.)
Proof. For any 6 > 0 we have
vars (K(so+, .) — K(so, .)) =
= vars (K(so + 8, .) — K(so, .) + K(so+, .) — K(so + 9, .) <
< vard (K(so + 8, .) — K(so, .)) + vard (K(so + 8, .) — K(so+, .)) <

< o(so + 8) — o(so) + vard (K(so + 6, .) — K(so+, .)) -

Hence by the limiting process & — 0+ we obtain our inequality by means of (i)
and (ii).

Now we define integrals of vector functions. If an n-vector U(z, t) =(U,(z, ?), ...,
cooy, Up(t, 1)) is given, U(r, 1) : S > R, S={(r,)e R} c St <dt—dr) St
< t + (), 8(r) > O for every t € {c, d)} then by definition (cf. [1])

f :Du(f, ) = ( I :DUl(r, D oo f :DU,,(t, t)) .

Given x : (¢, d) —» R", we put for any s € {a, b)

U(z, 1) = K(s, 1) x(z) = (}i ks, 1) x,(), ...,J;nlk,,j(s, ) x,(7))

=1
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and denote

-

J' :d,[K(s, 0] x() = I DU, i) =

c

- (ke 000 [ mten o) -

_ ( 5 f"f“’ a5, ,-i I :xj(t) difn(s :))'.

7= c

Remark 2,4. For this definition we need to know the values K(s, ) for ¢ < ¢,
t > d. We suppose therefore K(s, ) = K(s, ) for t < ¢ and K(s, t) = K(s, d) for
t>d.

For y : {a, b) » R" we define in a similar manner the integral [? d,[K(s, £)] y(s)
and as above we suppose K(s, 1) = K(a, ) for s < a and K(s, 1) = K(b, t) for s > b.

Proposition 2,3. Let K(s,t) :I = (a, b) x {c,d) - L(R" > R") be given and
let K(s,t) = K(s,c) for t <c, K(s,t) = K(s,d) for t > d. Let us suppose that
v)(K) < + o0 and vari K(sy, .) < + o0 for some s, € a, b).

If x(t)eV,(c,d) then the integral [%d[K(s,t)] x(t) exists for any se {a, b).
The inequality

(2,23)

d

[t 910
[4

holds for any s € {a, b). Further we have

(2,24) varﬂ( (4.9 X(t)) = Pdll*(t)ll (1) < sup |x(1)] - oK)

c

< sup || x(7)] . vari K(s, .)
te{c,d)

where the function y is defined in (2,15b). Thus the integral [2d,[K(s, 1)] x(f) as
a function of the variable s belongs to V,(a, b).

Proof. By the assumption and by (2,14a) we obtain vari K(s, .) < + oo for all
s€{a, b); this implies the existence of the integral [Zd,[K(s, t)] x() for any se
€ {a, b). Further we have for each s € {a, b)

IK(s, t2) x(2) = K(s, 1) x(0)] < [x(2)] - var2 K(s, .) <
< |x(@)] - |vare K(s, .) — vari K(s, .)|

for any t,, t, and for t € {c, d). Hence Lemma 2,1 [3] implies
d
j d[K(s, 0] x()| s 'r Ix(0)] d(var’ K(s, .)

and by (2,1) we obtain (2,23).
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Let an arbitrary finite decomposition a = sy < 5; < ... < 5; = b of the interval

{a, b) be given. We have
1

)

3 J«d,[K(s;, 1) — K(s;—y, 1)] x(1)
%, [0 b K50 ) = Ksos, D 5
s (10 vort (K6 ) = K D

From this inequality we obtain using (2,16a) and Lemma 2,1 [3] the inequality
] d d
[[tx ) = Ko 70 5 [0 0009,

2
i=1

Passing to the supremum on the left hand side in this inequality we obtain immediately

the first inequality in (2,24). The other one follows from the relation [?dy() =

= y(d) — ¥(c) = v(K) and from (2,1). Therefore we have [?d[K(s, )] x(t)e

eV, (a, b).

Remark 2,5. A similar proposition can also be proved for y € ¥,(a, b) and the
integral [} d,[K(s, t)] y(s).

Lemma 2,2. Let k(s, t) : I = <a, b) x {c,d) — R be given. Suppose that ks, t) =
= k(a, t) for s < a, k(s,t) = k(b,t) for s> b, k(s, t) = k(s, ¢) for t <c and
k(s, t) = k(s, d) for t > d. Further let v)(k) < + o0, varg k(so, .) < + 0 for some
so € €a, b) and varb k(., t;) < + o for some ty € {c, d). If f(s) e V(a, b), geV(c, d)
then

) [oloe, (j:f@) ks 1) = | 7004, [[o) atits 1)

and

e | w04, ([ s ) 419) = [ ( [[o(0 41465 00) 1)

hold and the integrals on both sides of (2,25) and (2,26) exist.

Proof. By Proposition 2,3 we have [ f(s) d,[k(s, )] e V(c, d), [2g(t)d,[k(s, 1)] e
€ V(a, b) and the existence of the integrals on both sides of (2,25) follows from this
fact immediately.

Let us put f(s) = ¥, (s), g(t) = ¥ (¢) for x€ {a, b), B e {c, d) (cf. Proposition
2,1). Using (2,3) from Proposition 2,1 we obtain by easy computation

( r g(1) d, J‘:f(s) d,[k(s, t)]) = k(b, d) — k(b, B—) — k(@ +, d) + k(a+,p-) =
_ [ on ( j "o(i) 4K, ,)])

Ja [4

s

=
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i.e. (2,25) holds for this choice of f and g. We note that the term k(x+, f—) in the

above computation is in one case obtained as lim lim k(s, ) and as lim lim k(s, )
t=f— s—a+t s—~at t-f~

in the other one. By Theorem III. 5.3 in [5] both iterated limits are equal since by
assumption the existence of all quadrantal limits in any point of I is quaranted.
Similarly it can be proved by direct computation that (2,25) is true if f(s) equals ¥ (s)
or Y7 (s) and g(t) equals Y (¢) or Y4 () for some a € (a, b, p € <c, d (c.f. Proposi-
tion 2,1). Hence from the linearity of the integral we obtain that (2,25) holds if
£(s), g(2) are step functions because it is clear that every step function can be expressed
as a finite linear combination of functions of the type ¥, and ¥ . It is known that
if feV(a, b) and g € V(c, d) then there exist sequences {f(s)} f,:<a, b) - R and
{9/0}, 91:<c,d) > R, 1 =1,2,...,f;, g, are step functions such that lim f,(s) =
. - o

= f(s), 11_1’1:10 9.(t) = g(?) uniformly in <a, b}, {c, d) respectively. We denote
d rb
I = j ai1) <, ( {7 it ,)]),
b d
= {56400 046 91);

since (2,25) holds for step functions we have
(2,27) Iy, =1I,, forevery I=1,2,...
Further by (2,2) and (2,24) we have

[[ota. ([ 7 a0 00) - 1. | (60 - 803, ([ e 0)
[ot0a. ([ - alue )
s suplo) — a0 vart ([ 19 a4t 0)+

+ sop o) var | () = 76) 4K ME

é[:{gg)ls(t) — /(1) (|f(a)] + varaf) + :(gg)lgl(t)lﬁszgjf(s) — fi(s)|] vi(k)

and therefore

4

=

+ <

timtsy = o) ([ gkt 01).
Similarly it also holds , :
iz = [ 4 ([o0 afkts 01).

In this way (2,27) implies (2,25) for arbitrary f € V(a, b), g € V(c, d).
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The integral on the right hand side of (2,26) exists evidently ([? g(f) d,[k(s, t)] €
€ V(a, b)). It can be easily proved that the inequality

var ( J ks, ) df(s)) < [ox(K) + vart k(so, .)] var’ f < + o

a

holds. Thus [? k(s, t) df(s) € V(c, d) and the integral on the left hand side of (2,26)
also exists. '

The equality (2,26) holds if we set g(t) = ¥ (¢) (cf. Proposition 2,1). In fact we
have by (2,3)

jdkb:(t) d[k(s, 1)] = k(s, d) — k(s, a+) .
Hence

r (J:'/’: (1) d.Lk(s, t)]) df(s) = r(k(s, d) — ks, a+)) df(s) -

By, (2,3) we have also

; ﬁ.//: (t)d,( J:k(s, f) df(s)) = J:(k(s’ d) = K(s, x+)) d1(5)

Therefore
| ( [ VALK 0]) 40 = | 20D ([ s, 919

Similarly can be proved that (2,26) holds if g(t) = ¥, (f) and we obtain that (2,26)
holds for every step function g(t). Let for g € ¥(c, d) a sequence of step functions
g, : {c, d) > R be given, lim g,(t) = g(¢) uniformly in {c, d). Then we have

| Sl )

f :(g(r) ~ a4, (k( 94/(9)

< sup |g(t) — git)| (vi(k) + varl k(s,, .)) var, f
telc,d)

and

=

({0~ st

__<_‘s<u;‘)‘>|g(t) — g/(t)| (v(k) + var? k(s,, .)) var> f .

Thus in the same way as in the case of (2,25) we obtain that (2,26) holds for any
geV(c d).

Let us now denote
xWica = [2(0 w00 = [atwo1 20 = 5, [0 am0
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if z, we V,(c, d) and

& Wy = f 2(5) dw(s) = f AW ) = 3 j CEX)
if z, we V,(a, b).
Proposition 2,4. Let K(s,t):I = {a, b) x {(c,d) > L(R" > R") be given and
let K(s, t) be extended for s < a, s> b, t <c, t>d as in Remark 2,4. Let us

suppose that v)(K) < + oo, vart K(so, .) < + o0 for some s, € {a, b, vary K(., to) <
< + oo for some ty € {c, d). Let x € V,(c, d), y e V,(a, b). Then

e (nfar.ox0) = (xfarce D)

and

ex ([ 4K 01X )= (x| K. )are))

Proof. By (1.1), (2,11), (2,13a), (2,13b) all assumptions of Lemma 2,2 are satisfied
for k;i(s, 1), x/(t), ym(s), i,j, I, m = 1, ..., n. Therefore from (2,25) we obtain

e | ), ([ %0 4kl ) - | (04, (I a4k 1)

for every i,j,I,m = 1,2, ..., n. Hence

(r j :d,[x(., ] x(r)>“ = :y'(s) | :d,[x(s, 01x() =

) d, (%] 504 [k ) =

j=1

j o). j ") d ks t)])

J(‘) d; (j »(s) d,[ki (s, ,)])
,(t) d, (Z Ly,-(s) d ks, t)]) =

j ()¢, ( j 4[] y(s>) -
- (x| :’d,[xxs, )] y(s)>m-

Thus the equality (2,28) is proved.

8

IIM: hIl‘[\/ja EM: ‘I_).Ma
S

Ma
[

]

a

I
4 ||M=
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From (2,26) we have

e | X0, ([ o) an9) = (j}.(r) s, 1) dnl)

for every i, j,I,m = 1,2, ..., n. Hence

(| :d.[x(., 0] x(0), ’>(.,_,,,=

=i; ,-i I :x,(t) d, (j:kij(s, f) dys(S)) =

-5 [0 (5 [uten 00) -

 ron o) (- e o)

and (2,29) is also proved.

Remark 2,6. The equality (2,30) (resp. (2,31)) enables us also to derive the follow-
ing relations which are symmetric to the relations (2,28) (resp. (2,29))

(2,32) <x, j:ds[K(s, 8] Y(S)>(c,d)= <y, de,x'(., t) x(t)>(,,a,

and

(233 ( j :ds[K(s, Y6 >= <,, j :K'(., ) dx(t)>(w.

We note that (2,29) can be written in the form

j :dY'(S) (J':d,x(s, ) x(t)) = J' :d, [ J :dY'(S) K(s, t)] x(1).
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3. OPERATORS [} d,[K(s, )] x(+r) AND [} K(s, ) dx(r) IN THE SPACE ¥,
In the sequel we denote V, = V,(0, 1). For x €V, we denote
(3.1) Ix[lv. = [x©)] + varo x.

|- v, is the usual norm in ¥, ¥, with this norm forms a Banach space.

Let K(s,t) : I = 0,1) x <0, 1) » L(R" - R") be given. Let us suppose that
K(s, ) = K(s, 0) for t < 0 and K(s, ) = K(s, 1) for t > 1.

Further we assume in this section that

(32) oK) = 5,(K) < +0
and
(3.3) varg K(0, .) < + 0 .

Proposition 2,3 quarantees for every x e V,, x'(t) = (x,(¢), ..., x,(t)) the existence
of the integral

(3.4) Jqd,[K(s, 0] x(t) = y(s), se<0, 1>

By (2,24) from the same Proposition we obtain the inequality

(3,5) varg y = varg ( f :d,[K(s, 1] x(t)) < | x|y, v(K).
The map
(3.6) | Kx=y

(y is determined by (3,4)) is evidently a linear operator on the space V, because (3,5)
implies y € V,.

Further it is

1

|&xlly, = [¥(@)] + varsy < + x|y, o(K) <

f :d,[x(o, 0] x(0)

5 sup [x(O)] vard KO, ) + ey, oK)

and therefore

(3,7 | Kx|y, < (varg K(0, .) + v(K)) | x|

Ve

ie. K:V, -V, is a continuous linear operator on V,.
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Theorem 3,1. The linear operator K :V, — V, from (3,6) is completely continuous
if (3,2) and (3,3) is satisfied.

Proof. We denote by B = {xeV,; || x|y, < 1} the unit ball in V,. Let a sequence
x',1=1,2,...be given such that x'eBfor | = 1,2, .... By Helly’s Choice Theorem
it is possible to select from the sequence x' a subsequence x' such that

lim x*(f) = x*(7)

k=
for any t € €0, 1) so that at the same time vary x* < 1 (i.e. x* € V,). We put z*(f)
= x™(t) — x*(t) for te<0,1). Evidently zeV, for all k=1,2,..., ||z
< |x™|lv, + [[x*(0)]| + varg x < 3 and

A I

Vn

(3.8) lim 2(f) = 0 forall te(0,1).

k— o0

(2,24) implies
varp([[a1x, 01 209)) 5 [ 0] avet

where ¢ :<0,1> > R is a nondecreasing function Y(0) = 0, y(1) = v(K) (cf.
(2,15b) where <a, by = {c,d)y = (0, 1)). Clearly 0 < |[24(r)] £ 3 for te(0,1)
and the function |z%(r)| belongs to ¥(0, 1) for all k = 1,2, ..., hence the integral
{6 | 24(9)|| dw(?) exists (as Kurzweil integral or equivalently as Perron-Stieltjes integral).
The Dominated Convergence Theorem for the Perron-Stieltjes integral implies

iim [0l a9 = 0.

Hence we have
1 1
(3.9) fim var} ( J d,[K(s, 1)] x*(t) — I d,[K(s, 1)] x*(t)) ~o.
k- o 0 0
Similarly we can show that

(3,10) lim ﬁd,[K(O, 0] x*(1) — J:d,[K(O, 0] x*(1)| = 0.

From (3,9) and (3,10) we have
1 -
[atk6 0150 = )] =0
0 n
where y*(s) = [3 d,[K(s, t)] x*(f) € V, since x* € V,,. Hence we conclude that the image

of the unit ball B is precompact in V, and consequently the operator K is completely
continuous.

lim
k= ©
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We shall derive now some special analytic properties of the operator K if K(s, f) :
:1 - I(R" - R") satisfies some additional assumptions.

-

Proposition 3,1. Let K(s, t) : I —» L(R" —» R") satisfy (3,2) and (3,3), x€V,. Let
further for some sy € €0, 1)

lim |K(s, ) — K(so, t)]] = 0 or lim |K(s, 1) — K(so, )] = 0
for all te 0, 1>. Then

lim y(s) = y(so), lim y(s) = y(so)

s—=sot+ S50~
respectively where y €V, is given in (3,4).
Proof. The statement follows in an easy way from the inequality (see (2,23) from

Proposition 2,3 and (2,15a))

=

Iys) - y(so)| = j :d.[x(s, ) — K(sor 1] x(9)

< |xlv. varo (K(s, ) = K(so» ) = [x]lv, |o(s) = olso)]

and from Lemma 2,1.

Corollary 3,1. If K(s, t) : I - L(R" - R") satisfies (3,2), (3,3) and K(s, ) is conti-
nuous in the variable s for any t € 0, 1) then the vector function y(s) : <0, 1) — R"
from (3,4) is continuous for any x € V,, i.e. K mapsV, into CV, (the space of conti-
nuous n-vector functions with bounded variation).

Lemma 3,1. Let K(s, ) : 1 - L(R" — R") satisfy (3,2) and (3,3), xeV,. Let sy €
€ <0, 1). If the limit

(3,11) lim K(s, ) = K(so+, t) or lim K(s, t) = K(so—, ?)
S$—*S0—

s=sot+

exists for all t € 0, 1) then we have

(3,12) Y(so+) = lim y(s) = Jld,[K(so+, 1] x(),

s*so+ 0

Ao-) = lim y(9) = | "d,[K(so=» 1] (1)

s—*so— 0

respectively.
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Proof. We have

y(so+) — J‘:d,[K(so+, 1)] x(t) = lim Jqd,[K(s, t) — K(so+, )] x(t) = 0

s=so+ J O

because for 6 > 0

J [K(so + 6, 1) — K(so. )] x(1)

< x|y, varg (K(so + 6, .) — K(so+, .))

and by Corollary 2, 3 it is

lim varg (K(so + 8, .) — K(so+, .)) = 0.

-0+

The sscond statement can be proved similarly.

Remark 3,1. If we suppose that var} K(., 1) < + o0 for some t, € (0, 1) for
K(s, 1) : I > L(R" —» R") in addition to the conditions (3,2), (3,3) then vary K(., t) <
< +oo for all te<0,1) and the limits (3,11) exist for all s, <0, 1) and all te
€ €0, 1), and (3,12) holds for all s, € €0, 1).

Proposition 3,2. Let K(s,t) : I > L(R" — R") satisfy (3,2) and (3,3). If K(s, t) is
for every te(0,1> regular at soe<0, 1), i.e. the limits (3,11) exist for every
te (0,1) and

(3,13) K(50+, t) + K(SO—, t) - 2K(So, t) = 0
for all te {0, 1) then
(3,14) Y(so+) + y(so—) — 2y(so) = 0,
i.e. y(s) is a regular function at s, € 0, 1).

Proof follows immediately from Lemma 3,1.

Corollary 3,2. If K(s, t) : I - L(R" —» R") satisfies (3,2), (3,3), the limits (3,11)
exist for every s, € 0, 1> and te <0, 1) and (3,13) holds for every te (0, 1) then
the n-vector function y(s) : €0, 1> - R" from (3,4) is regular for any x eV, (this

means that (3,22) holds for all sy € <0, 1)), i.e. the operator K maps V, into the
space RV, of all regular n-vector functions of bounded variation.

Proposition 3,3. Let K(s, t) : I — L(R" - R") satisfy (3,2), (3,3) and

(3,15) varg K(.,0) < +o0.
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If a, Be €0, 1) then for x €V, the expressions
(3,16) . K, x = K(s, &) x(8) = y,(s),
Kyx = A K(s, o) A*x(B) = y,(s),
Kix = A K(s, @) A™x(B) = ya(s)
define completely continuous operators on V.

Proof. We have (by (2,14b))

|Kx|ly, = |K(©, @) x(B)]| + varo (K(., @) x(B)) <
< {IK(©, a)|| + varg K(., @)} |x(B)] =
< {|IK(0, @)|| + varg K(., 0) + o(K)} || x|y, .
Further it is (cf. Corollary 2,3)
|Kzx]ly, < [[A*K(O, «)| [A*x(B)| + varg ATK(., o) [A*x(B)] =
= {varg K(0, .) + o(K)} [|A*x(B)| =
< {varg K0, .) + o(K)} | x|y,

and similarly

[Kexly, < {vark K(O, ) + o(K)} |A"x(B)] < {vard K(O, .) + o(K)} |x

Vn*

Let B be the unit ball in the space V, and let x;e B, | = 1, 2, ... be given. The
sequence Xx;(B) (A*x,(B), A™x,(B)) is bounded in R". Hence there is a point z(B)
(z*(B), z7(B)) in R" and a subsequence x;(B) (A*x,(B), A™x,(B)) such that
lim x, () = z(B) (jlim A*x;(b) = z*(B), lim A™x;(B) = z7(B)).
jo il j=©

Let us set y1(s) = K(s, @) z(B) € V,, then we have
|Kx;, = il < {K(0,0) + varg K(0, .) + varg K(., 0) + o(K)}|| x,,(8) — (B,
hence lim |K;x;, — yi|y, = 0, i.e. the operator K, maps B into precompact set and

joe
therefore K, is completely continuous.
By setting y3(s) = A, K(s, «) z*(B) we obtain

|Kzxi, = yzlv, < {A7K(0, @) + varo ATK(., 2)} A*x,(B) — z*(b)] ,

hence lim | K,x,;, — y3||y, = 0and K, is a completely continuous operator. Similarly
jo@

the complete continuity of K; can be obtained.
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Proposition 3,4. If K(s, 1) : I - L(R" — R") satisfies (3,2), (3,3) and (3,15) then the
series

(3,17) Y IA:' K(s, 7) A*x(7), 0«%1 A7 K(s, 7) A™x(7)

0=st<

define completely continuous operators on V,,
Proof. For any ¢, t" € {0, 1) and all s € {0, 1) we have
|K(s, ) = K(s, )] < [K(0, #) = K(0, )] +
+ |K(s, t') — K(0, t') — K(s, t") + K(0, t")|| <
< |varg K(0, ) — varg K(0, )| + veo,1yxcerery(K) <
< var§ K(0, )  var§ KO, )| + [u(¢) — v(©)|

(<f. (2,15b) for ). This implies that the set of discontinuities of K(s, f) in the variable ¢
lies on a denumerable family of lines parallel to the s-axis: t = t;,, [ = 1,2, ... since
varg K(0, .) and y(t) are functions (€0, 1) — R) of bounded variation. In this way
it is possible to rewrite the first expression from (3,17) in the form

(3,18) Y ATK(s, ) At x(t)
I=1
and similarly the second one.

The operator (3,18) is defined as the limit of the sequence of operators Uy : V, - V,
where

N
(3,19) Uyx = IZZIA?K(S, 1) AT x(1),
Le.

Ux =Y AK(s, 1) A*x(t,) = lim Uyx.
=2 N-o

By Proposition 3,3 for any integer N the operator Uy from (3,19) is completely con-
tinuous because Uy is a finite sum of completely continuous operators.

Let us denote [V, — V,] the space of all linear operators acting on V,, [V, - V,]
is a normed linear space with the norm

“ Uly,~va = sup 1“ U"“V..-

xl y"=

The completeness of V, implies that the space [V, — V,] is complete. Further we have

[Unx — Upx

= 3 ATKG 1) ARGy, =

M M
= | S AFKO, t) A*x(t)] + vars 3 AFK(., 1) A*x(t) <
I1=N+1 I=N+1

M M
< varg x( =Z [AFK(O, t)| +I=Nz+lvar(1, ATK(., 1)).

I=N+1
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Hence

M M
(3200 | Uy - Unlvoava < _Z A7 K@, )| + _Z vard AFK(., 1))

The assumption (3,3) yields the convergence of the series Z [AK(O, t;)[. Further
we have (cf. Corollary 2,3)

varg AT K(., 1)) < ¥(t,+) — ¥(t) = A*y(t)
where ¢ : (0 1> = R is a non-decreasing function, y(0) = 0, w(l) = v(K). Since

the series Z A*y(t)) evidently converges we obtain that the series z varg A/ K(., t))

converges as well. This implies by (3,20) that Uy, N = 1, 2, ... forms a fundamental
sequence in the (complete) Banach space [V, — V,] and that lim Uy = U exists,
hence the operator N=wo

Ux =Y A[K(s, 1) A*x(t) = Y ASK(s, 7) A" x(7)
1=1 0=st<1

is completely continuous. The proof of complete continuity of the second operator
in (3,17) can be carried out in the same manner.

Theorem 3,2. If K(s, t) : I - L(R" — R") satisfies (3,2), (3,3) and (3,15) then the
expression

(3,20 J'lK(s, t)dx(t) = Kx, xeV,

defines a completely continuous operator on V,.

Proof. Using the integration by parts formula (2,9) for row vectors of K(s, t) for
any s € {0, 1> we can write

I :K(s, ) dx(t) = — J:d,[K(s, 0] x(t) + K(s, 1) x(1) — K(s, 0) x(0) —
= é};( 1A,+ K(s, ) A*x(7) + 0<Z,§ IA,_ K(s, 7) A" x(7) .

By Theorem 3,1, Prqpositions 3,3 and 3,4 we see from this expression that the oper-
ator K from (3,20) is a linear combination of completely continuous operators and we
obtain in this way our Theorem.

Remark 3,2. We note that for the operator K : ¥, — V, given in (3,20) it is possible
to derive further analytic properties (continuity, regularity of the result of the oper-
ation) if some additional conditions for K(s, f) : I — L(R" — R") are assumed This
can be made if we employ the properties of our integral.

320



4. AUXILIARY STATEMENT FROM FUNCTIONAL ANALYSIS

In this Section we give a simple general statement based on the well known Riesz
theory from functional analysis which will be useful in our considerations about
Fredholm-Stieltjes integral equations in Section 5.

Let X, Y be normed spaces with the norms |.||x, || [ly respectively. By X', Y’ we
denote the dual spaces to X, Y respectively. Let a bilinear form {(x, y> on X x Y
be given which separates points of X, i.e.

(i) for x e X, x = O there exists y € Y such that {x, y) + 0
and which separates points of Y, i.e.

(ii) for yeY, y # O there exists x € X such that {x, y> =+ 0.
Further we assume that

(41 [ ] = Cllxx yly

for any x € X, y e Y where C = 0 is a constant.

For any fixed y € Y we denote by [ y] the linear functional on X which corresponds
to y e Yin terms of the bilinear form ¢, .); [y] is defined by the relation

4.2) [y](x) = <x, »>-

The inequality (4,1) quarantees the continuity of [y], i.e. we have [y] e X".

We denote by [Y] the linear set in X’ of all continuous linear functionals of the
form (4,2).

Since the bilinear form (x, y) separates points of Y we have [y] = 0e X’ ([y] e
e[Y])ifand onlyif y =0 (yeY),ie. [y] £ [f]ifand onlyif y % 7, y, je Y.

In this way a one-to-one correspondence between elements of Y and [Y] is given,
in other words we have a one-to-one correspondence between the space Y and its
immersion [Y] into X’ which is given by the bilinear form {x, y).

For a set M < Y we denote by [ M] the set of all elements in X’ which are deter-
mined by an element in M, i.e.

[M]={fex; /=[] yeM}.

In the same way for any fixed x € X a continuous linear functional [x]eY’ is
given and we have a one-to-one correspondence between X and [X] < Y’. This
follows from the fact that the bilinear form {x, y) separates points of X.

For a given operator K : X — X we denote by K* : X' —» X’ the adjoint operator
which is defined by the obvious relation f(Kx) = K*f(x) for fe X', x € X (similarly
for operators L : Y — Y). If a linear operation T : X — X is given then 7 ~'(0) means
the null — space of this operator, i.e.

T7'0) = {xeX; Tx = 0}.
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Proposition 4,1. Let X,Y be normed spaces, K:X — X, L:Y— Y completely
continuous operators in X, Y respectively. Further let {x, y> be a bilinear form
on X x Y which separates points of X and Y such that for any xe X, yeY the
inequality (4,1) holds, and let

(4.3) (Kx, y> = {x,Ly)
forany xe X, yeY.

We denote T= IX - K, S= IY “‘L, T* = IX' - K*, S* = IY' _L* (Ix,Iy,
Iy, Iy. are the identity operators in X, Y, X', Y’ respectively). Then we have

(4.4) dim T77(0) = dim T*~(0) = dim S$™!(0) = dim $*7!(0) = r
where r is a nonnegative integer (by dim the dimension of a linear set is denoted) and
(4.5) *70) =[], s*7}(0) = [X].
Proof. We have (see VIIL2 in [6]): The equation
(4.6) ITx =x—Kx=%, %X

has a solution x € X if and only if for any solution f € X’ of the equation

(4,7) T*f=f—K*¥ =0
the relation
(4,8) f(x)=0

holds and the dimension of the linear set
T7'(0) = {xeX; Tx = x — Kx = 0}
is finite and equal to the dimension of the linear set
T*3(0) = {fe X'; T* = f — K* =0},
i.e. we have
(4,9) dim T7!(0) = dim T*~!(0) = r.
Observe that (4,3) can be written in the form [y] (Kx) = [Ly] (x) hence we have
(4,10) K*[y] = [Ly]
for any functional [y] € [Y] = X'. Further by (4,10) it is
*70) n [Y] = {v]e[Y]; T[] = ] - K*[y]1 = Y] - [Ly] =
=[y-Ly] =0} =[{yeY; Sy =y — Ly = 0}] = [s7}(0)]
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and evidently
(4,11) dim [$7!(0)] = dim (T*"'(0)n[Y])=p <.
With respect to the one-to-one correspondence between Y and [Y] we have evidently
(4,12) dim [$7(0)] = dim S™(0) = p.
Since L : Y — Yis a completely continuous operator, the Riesz theory yields
(4,13) dim $71(0) = dim $*~'(0) = p.
The equation (4,3) can be also rewritten in the form

[x](Ly) = [Kx] ()
forall xe X, y €Y, i.e. we have
(4,14) L*[x] = [Kx]

for any functional [x] e [X] = Y".
Analoguously as above wt obtain by (4,14)

§$*710) n [X] =
= {[x]1e[X]; [x] - L*[x] = [x] - [Kx] = [x — Kx] = 0} = [T7(0)].
Hence (by (4,13)) we have
(4,15) dim [T~%(0)] = dim (§*~'(0) n [X]) =g < p.
Further we have evidently by (4,9)
g =dim[T7'(0)] =dim T7'(0) = r.

From this equality together with (4,11) and (4,15) we obtain r = p; thus (4,9) and
(4,11) imply

dim 7*71(0) = dim (T* '(0) n [Y]) = r
and hence we have

T*-1(0) < [Y].

The second relation from (4,5) can be derived similarly.
Proposition 4,1 enables us to derive the following

Theorem 4,1. Let the assumptions of Proposition 4,1 be satisfied. Then either the
equation

(4,16) Tx =x—-Kx=5%, %eX
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admits a unique solution x e X for any X e X, in particular x = 0 for X = 0;
or the homogeneous equation

-

(4.17) , x—Kx=0

admits r linearly independent solutions x4, ..., x, in X.
In the first case the equation

(4,18) Sy=y—-Ly=57, ye¥Y
has also a unique solution y € Y for any j €Y. In the second case the equation
(4,19) y—Ly=0

admits r linearly independent solutions yy, ..., y, in Y. Moreover in the second
case the equation (4,16) has a solution in X if and only if

(4,20) &E,y>=0

for any solution y € Y of (4,19) and symmetrically (4,18) has a solution in Y if and
only if .

(4,21) {x, 7> =0

for any solution x € X of (4,17).

Proof. The first part of this theorem corresponds to the case when r = 0 in (4,4)
from Proposition 4,1. The result of this part is a consequence of the well known Riesz
theory of completely continuous operators (cf. 11.3 in [4] or Chapter VIIL. in [6]).

For the second part of the theorem we have r > 0 in Proposition 4,1. Using the
duality theory for completely continuous operators in normed spaces (see [6],
VIIL 2) we know that (4,16) has a solution if and only if f(X) = 0 for any functional
feT* 1(0) = {feX’; f — K*f = 0} (K* is the adjoint operator to K). From (4,5)
we have T*~(0) = [Y] and (4,3) implies K*[y] = [Ly] for any [y] e [Y]. Hence
(4,16) has a solution if and only if [y] (£) = (%, > = 0 for any [y] from the set

{D1el¥)s ] - K y] =y - Ly] =0} =
=[{yeY; Sy =y - Ly =0}] = [S7/0)].

Further evidently [y] € [$~!(0)] if and only if y is a selution of (4,19) and we obtain
in this way the result of the second part of the Theorem for Eq. (4,16). The result
for Eq. (4,18) can be derived similarly.

Remark 4,1. The following statement is an easy consequence of Theorem 4,1:
If (4,20) for all solutions of (4,19) is satisfied then the general solution x € X of (4,16)
is written as

r
x=%2+Y cx
151
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where £ is a particular solution of (4,18), x, ..., X, are the linearly independent solu-
tions of (4,17) (the base of T~!(0)) and ¢, ..., ¢, are arbitrary constants. A similar
statement for the general solution of (4,18) also holds.

5. ALTERNATIVE FOR FREDHOLM-STIELTJES INTEGRAL EQUATIONS IN V,

We denote by S, the set of all break functions w in the Banach space space V, =
= V,(0,1) such that Aw(t) = w(t+) — w(t—) = 0 for all te(0,1), A*w(0) =
= A'w(l) = 0. Obviously S, is a linear set in V,. The set S, is closed in V. In fact,
if w eV, is an adherent point of S, then there exists a sequence w, € S,, [ = 1,2, ...
such that lim |w; — w]),, = 0. Forany te (0, 1) and I = 1,2, ... we have

1=

[aw(D)] = [Aw(®) — Aw(1)]| < [w, — wly,

thus Aw(t) = 0. Similarly A*w(0) = A"w(1) = 0.

The convergence in V, implies that w; converges uniformly on <0, 1> to w. Let
A = (0, 1> be the union of all discontinuity points of w;,, | = 1,2,... and w; 4 is
a countable set. Any w; is a constant function in {0, 1> — A. The uniform conver-
gence implies that w is a constant function in {0, 1> — 4 and hence we have w € S,

Let us consider the quotient space ¥,/S,. An element of V,/S, is a class of functions
in ¥, such that their difference belongs to S,. Elements of V,/S, let be denoted by
capitals. The canonical mapping of ¥, onto ¥,/S, let be denoted by s; for ¢ €V, we
have #(p) = ¢ + S, = ® €V,/[S,. Any element ¢ €V, for which x(¢) = & will be
called a representant of the class @ € V,/S,.

The space V,/S, forms a Banach space with the norm

(5.1) |

Vs, = inf @]y, = inf |e|,, =infvar;e.
Qcd #(@)=¢ PP
We have evidently

(5»2) "qs” ValSe = varg @

for all p eV, x(p) = ®.

Theorem 5,1. If K(s, t) : 1 = €0, 1> x <0, 1> - L(R" - R") satisfies v(K) < + co,
vary K(0, .) < +oo, varg K(.,0) < + then the expression

(53) Lo = x ( j K (s, 1) d¢(s)), oeV,, xo)=®

0

defines a completely continuous linear operator on the Banach space V,[S,.
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,Vn/sn < 1} be the unit ball in ¥,/S,. Let

Proof. Let B(V,/S,) = {® €V,/S,; |®
LA={DeV,[S,; D =x(p), peV,, ¢(0) =0, vargp < 1} ;

according to (5,2) it is B(V,/S,) = A. Let ®,e B(V,/[S,), I = 1,2, ... then there exist
@€V, with vary @, < 1, ¢,(0) = 0, I = 1,2, ... such that x(¢,) = ®,. The matrix
K'(s, ) : I - L(R" — R") satisfies evidently all conditions of Theorem 3,2 hence the
operator [ K'(s, t) do(s) is completely continuous in ¥,. This implies that there
exist ze ¥, and a subsequence o, »J =1,2,... such that

f :K’(s, () do, (s) — =(1)

=0
Vn

lim

Jj= o

ie.

1
lim varg (f K'(s, t) do, (s) — z(t)) =0.
Jj—r 0
From (5,2) we have
1
lim |L®,;, — x(2)|y, /s, < lim varg (f K'(s, 1) dg, (s) — z(t)) =0
j—»m j—roo 0

and in this way we obtain the complete continuity of L : V,/S, = V,/S,.
Let further xeV,, ® eV,/S,. We denote

1
(5.4) (6 B = (X @0, = f x (1) do(t)
1]

where ¢ €V, »(¢) = &. The expression (x, @) is independent of the choice of the
representant ¢ of the class @. Indeed, if we have ¢° € V,,, #(¢°) = @ then (cf. Remark

2,2)
1
%0 = 90 = [ X0 dol) - ¢°0) = 0
. 0
because ¢ — ¢°€ S,. The expression ., .)» from (5,4) is a bilinear form on ¥, x
x V,[S, and the following lemma holds:

Lemma 5,1. The bilinear form {., .> from (5,4) separates points of V, and V,[S,
(cf. (i) and (i) in Section 4.).

Proof. (i) Let xeV¥,, x % 0. Then there exists a e (0, 1) such that x(x) + 0,
i.e. there is an index i = 1, ..., n such that x,(a) % 0. We define ¢(t) € ¥, as follows:
o(t) =0 for te<0,1), k i, pt) =0for 0t <a, pf)=1fora <t =1
provided a > 0; if & = 0 then we set ¢0) = 1, ¢,(t) =0, 0 < t < 1. Let us put
@ = x(¢p). Then Proposition 2,1 yields {x, ®) = [5 x,(t) dp(t) = x,(a) # 0 in the
case @ > 0 and similarly (x, @) = —x;(0) # 0 if « = 0. Hence <., .) separates

points of V.
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(ii) Let @ + 0 (i.e. @ * S,). For any ¢ € V,, »(¢) = @ it holds either

1) there exists an a € (0, 1) such that @ (a+) + ¢@{x—) for some i = 1,2,...,n
or

2) foreach e € (0, 1) it is @(x+) = ¢(x—) and there exist two points g, y e <0, 1},
B < y such that ¢ (B) + ¢y) for some i = 1, ..., n where B, y are points of conti-
nuity of @ (1), i.e. ¢,(B) = 0i(B-), 0y) = 0:y—)-

In the case 1) we set x,(f) = 0 for te<0,1), t + «, x(x) =1, x,(t) =0 for
te (0,1 if j % i. Then Corollary 2,1 yields

1
(x, ) =j x(f) do (1) = ofa+) — @fa—) 0.
0

In the case 2) it suffices to set x,(t) = 1 for te{B, y), x{t) = 0 for te <0, 1> —
— (B, ), x;(t) =0 for t € €0, 1), j # i. Then we obtain from Proposition 2,1

(x, B — fxi(r) do(i) = 07) - 0p) + 0.

Hence <., .) separates points of V,[S,.

Remark 5,1. Since the bilinear form (., .) separates points of V,/S, we can sub-
join the following addition to Corollary 2,2: If g eV(a, b) and (2 f(t)dg(t) = 0
for all f € V(a, b) then necessarily g € S(a, b),i.e. Ag(t) = Oforall t € (a, b), A*g(a) =
= A~g(b) = 0. This means that if g e ¥(a, b) then [} f(r) dg(t) = O for every fe
€ V(a, b) if and only if g € S(a, b).

Since {x, @) from (5,4) is independent of the choice of ¢ € V,, x(¢) = @ and

J (1) do(s)

0

IIA

< sup | x'(1)| varg @ < nllx|y, varg
0,1)

te{

holds we have

(5.5) |<x, ®)| < n|x|,, inf varge = n|x
x(p)=¢

v |1Pvs,
Theorem 5,2. Let K(s,f):I = ¢0,1) x €0, 1) = L(R" - R"), v(K) < +o0,
vary K(0, .) < + oo, varg K(., 0) < +oo.
Then either the Fredholm-Stieltjes integral equation
1
(56) x(s) — j 4[KGs, D] x(0) = x), X"V,
V]
admits a unique solution for any x° € V, or the homogeneous equation
1
(5,7) x(s) — J d[K(s, 0] x(1) = 0
0

admits r linearly independent solutions x, ..., X, €V,
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In the first case the equation
1

(8 - o) = [ K61 d0() = 90, w7,
0

has a solution for any ¢° €V, (this solution is not necessarily unique). In the second
case the equation (5,6) has a solution inV, if and only if

0

(5.9) (X%, @>0,1) = Jlx'(t) de(r) = 0
for any solution @ €V, of the equation
(5,10) olt) - f K's, 1) do(s) = 0
0
and symmetrically (5,8) has a solution if and only if

1
(5.11) X 0301y = j X (1) dof(t) = 0

for any solution x €V, of the equation (5,7).

Proof. By Theorems 3,1 and 5,1 the operators

Kx = fld,[K(s, N x(t):V,>V,, x(¢)=2,

2o — x( [ K60 49(9) s, = v,

0

are completely continuous. <., .» from (5,4) represents a bilinear form on ¥, x I/;,/S,,
which separates points of ¥, and V,/S, (cf. Lemma 5,1) and (5,5) holds.

Further by (2,28) we have

1
(Kx, @) = (KX, 9} ;)= <I d,[K(., 1)] dx(t), ‘P> =
0

(0,1)

_ <x, f :K’(s, ) d(p(s)>(0,1)= <x, . ( J :K’(s, ) d(p(s))> — (x L®Y

for any x e V,, @ e V,[S,. All assumptions of Theorem 4,1 are satisfied and using this
Theorem we obtain the first part of Theorem 5,2 viz. (the alternative for Eq. (5,6)
resp. (5,7)). Further by Theorem 4,1 the equation

(5,12) ®—Ld=d°, ®cV,S,
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has a unique solution for any P V,|S,. For an arbitrary ¢° €V, we denote ®° =
= »(¢°) € V,/S,. Let @ €V, be a representant of the (unique) solution of (5,12) with
this @°. Then we have

x <(p - JIK’(S, y dtp(S)) = %(¢°),

0

x@-jkuaw@—wg=wnm.

0
Hence

o0 - J (s, 1) dg(s) — ¢7(0) = w(i) <5,

for all t e 0, 1). Since [§ K'(s, 1) do(s) = [ K'(s, t) d(¢(s) — w(s)) we have
o)~ w(0) = [ K050 8005 = w(3) = 970)

for all 1 € 0, 1), i.e. the function ¢ — w eV, is a solution of Eq. (5,8). (The unicity
of w € S, is not quaranteed.)

For the second case we know by Theorem 4,1 that (5,6 has a solution if and only if
for any solution @ e V,/S, of the equation

(5,13) ®—Ld =0

we have (x°, @) = 0.
Obviously the following assertion holds: for any solution @ eV,[S, of Eq. (5,13)

there is a @ € V,, ®(¢) = @ such that ¢ is a solution of (5,10). In fact, for any repre-
sentant € V, of @ (x(¥) = ®) we have

x (./, - f K, ) dn//(s)) _0eV,s,, ie.

0

1
w(i) — .[ K'(s, 1) dy(s) = w(t) S, .
0
If we set ¢ = ¥ — w, then %(¢) = »(¥) = @ and ¢ is a solution of (5,10). It is easy
to prove also the converse statement: If ¢ € V,, is a solution of (5,10), then @ = »(p)
is a solution of (5,13).

Since {x, @) = {X, ®>,1) is independent of the choice of the representant
¢ €V, #(p) = @, we conclude that in the second case (5,6) has a solution if and only
if (x°, @D.1) = [o x*(t) do(t) = 0 for all solutions of Eq. (5,10). The symmetrical
statement about Eq. (5,8) can be proved similarly.
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Remark 5,2. Theorem 5,2 is a Fredholm type theorem for Fredholm-Stieltjes
integral equations (5,6). Let us mention that Eq. (5,8) as well as the equation @ —
— L® = @’ are not the adjoint equations to (5,6) in the usual sense. We have not
a satisfactory description of the dual space V, to ¥, which would make it possible to
derive the analytic form of the adjoint operator K*. Nevertheless conditions for
solvability of Eq. (5,6) are obtained in a form which is closely related to the well
known Fredholm alternative for Fredholm integral equations of the second kind in
L, — spacss.
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