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Časopis pro pěstování matematiky, roč. 97 (1972), Praha 

ON AN INTEGRAL OPERATOR IN THE SPACE 
OF FUNCTIONS WITH BOUNDED VARIATION 

STEFAN SCHWABIK, Praha 

(Received January 14, 1971) 

1. BASIC NOTATIONS 

Let Rn be the n-dimensional real vector space. Let A = (a^), i= 1, ..., fc, 
j = 1,..., / be a k x /-matrix (atj is the element of A from the i-th row and j-th 
column). By A' let us denote the transposed matrix of A. For a k x /-matrix A we 

define the number ||A|| = max £ \atJ\. The elements x of Rn are column vectors 
i = l , . . . , * / = i 

(i.e. n x 1-matrices). ||. || is a norm in Rn. The space of all n x n-matrices let be 
denoted by L(Rn -> Rn). \\. || is a norm in L(Rn -> Rn) (the obvious operator norm 
corresponding to the given norm in Rn). We have evidently ||A'|| g w||A||, ||x'|| S 
= n||x|| for A e L(Rn -• _R"), xeRn respectively. 

Let <a, b} c: R = K1 be a bounded closed interval, a < b. For a given vector 
function x(f), x : <a, b} -> R" we define the (total) variation of x on <a, 6> as usual: 

v a r S x . - s u p J l l x ^ - x ^ . O I I 
D i - - l 

where the supremum is taken over all finite decompositions D : a = t0 < 11 < ... 
... < tm =- b of <a, b}. 

We denote 
Vn(a, b) = {x : <a, ft> -̂  R"; var* x < +00} . 

If no misunderstanding may occur, we write simply Vn instead of Vn(a, b). If n == 1 
we write V(a, b) or Vinstead of Vx(a9 b) or Vt. 

The following statement is obvious: x e V„(a, b) if and only if xt e V(a, b) for all 
i -= 1, ..., n, x' = (xt, ..., x„). The inequality 

(14) var^xf = var^x 
is satisfied for all i =: 1, 2, ..., n. 
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For xeV„(a, b) the limits lim X(T) = x(t + ), lim X(T) = x(t — ) exist for all 
t-*t+ x-*t-

te <a, b}. ^ e use the notations 

A+x(r) = x(t + ) - x(t), A"x(r) = x(t) - x(t-) , 

Ax(t) = x(t + ) - x(r-) = A+x(t) + A"x( t) . 

2. THE INTEGRAL 

For our purpose we use the concept of the generalized Perron-Stieltjes integral 
introduced by J. KURZWEIL in [1]. 

Let / : <a, by -» R, g : <a, by -> R be given. If g(t) is not defined Tor t < a and 
t > b then we suppose that g(t) = g(a) for t < a and g(f) = g(b) for t > 6. For 
<c, d> c <a, b} we denote 

JдOdalo^JWмt) 

where the right hand side is the Kurzweil integral ([1]) of the function U(T9 t) = 
= / ( T ) g(t). In [1] the following is shown: 

If/ : <a, b> -» R is finite and g e V(c, d) then the integral jif(t) dg(t) exists if and 
only if the Perron-Stieltjes integral (P.S.) J*/(f) dg(f) exists (in the usual sense) and 
both integrals are equal. 

Further we have: If /, g : <a, fe> -• R, <c, d> c <a, b>, / e V(c, d), g e V(c, d) 
then the integral jdf(t)dg(t) exists. 

This follows essentially from the same statement which holds for the Perron-
Stieltjes integral and the above quoted equivalence of both concepts of integral. 

If \f(t)\ = M for t e <a, by and g e V(c, d), <c, d> c <a, b> then 

|/(T) (0^2) ~ 9(h))\ = M var|* g = M|varc

2 g - varc' <j| 

for all ft, f2, T e <c, d>. From this inequality and from Lemma 2,1 in [3] the following 
proposition immediately follows: 

If / : <a, by -+ R, | / ( 0 | = M for all t e <a, b>, g e V(c, d) and if $d

cf(t) dg(t) 

exists, then 

(2,1) I f/(r) d<?(f) = M f d(varc </) = M varc <? . 

If/GV(a, b) then obviously the inequality |/(f)| = \f(a)\ + varj/ holds for all 
t e <a, by. Let # e V(c, d), <c, a*> c <a, by. By (2,1) we obtain 

(2,2) I ("/(')<-*(') 
I J C 

g ( | / ( a ) | + var»/)var-0 
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From (2,2) we can easily obtain that for f g e V(a, b) the function ja f(x) dg(r) : 
: <a, b} -* R belongs to V(a, b), namely, the inequality 

var^ff(T) dg(r)\ = (|f(a)| + varjf) varag < +ao 

holds. 

Proposition 2,1. Let f,ge V(a, b). Far a e <a, b>, * e <a, b> we d^«e ^+(f) = 0 
for / ^ a, ^+(t) = lfor a < t if <x < b and \j/~(t) = Ofor t < ocifa < a, ^~(t) = 1 
for a ^ L 

Then we have 

J« 1° '/ « = b 

J a [9(b) - g(a) if a = a 

and 

b 
b 

p,4) fW«)-{'w * a< 

Ja (0 ij a = 

f/(0dM0-}{(8) * a>a 

Ja 10 if a = a. 

Proof. If a = fc then J* t/ra
+(t) dg(t) = / *0 . dgr(f) = 0. Let a < b. Then we have 

JV;(.) dg(t) = ^V(t) dtf(r) + 0(6) - flf(a + S) 

for all 0 < S < b — a because 

f ^a
+(0 d ^ ) = f dg(t) = g(b) - g(a + d). 

J a + 5 J<z + d 

By Theorem 1, 3, 6 [1] there is 

lim [^ V ( 0 dg(t) = fVa
+(0 dg(r) + lim ^(OL) [g(a + 8) - g(a)] = 0 

*^o+Ja Ja *-0 + 

since ftil/+(t)dg(t) = f«0da(f) = 0 and »>a
+(a) = 0. For (5 -» 0+ so we obtain 

the first equation from (2,3). The second one can be proved similarly. 
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We verify for example the second formula from (2,4). The first one can be verified 
in a similar manner. If a = a then ^^(t) = 1 in <a, £>>. For every 0 < 3 < b — a 
we have f(f0) (^"(T) - *A_~(to)) = 0 for each T0 e <a + 5, 6> and T0 - S < x < 
< +oo. By Lemma 1, 3,1 [1] we obtain therefore ja+df(t) d*l/~(t) = 0. This implies 

f/(0#no-f+/(0#<r(0 
J a J a 

for each 0 < 8 < b — a and by Theorem 1, 3, 6 [l] we have 

, / (0d^-(0=/(a)A») = O. £ 
Let a < a. < b. By the same reason as above we have /*/(*) di/^ (t) = fct\f{i). 
. d^;(l) if a < b and J*/(t) d^_(0 = JJ-«/(0 #«"(0 i f a = * for all sufficiently 
small S > 0. Using Theorem 1, 3, 6 [1] we can evaluate 

lim f*+/(.)d*.-(0 = Km (f + ['+ V ( 0 d*.-(«) = 

= /(a) A'^-(a) + /(a) A+^-(a) = /(a) AfcT(a) = /(a) 

if a < b and similarly 

lim f f(r)diA;(0=f(b)A-^"(fc)=f(b) 

if a = b. Therefore the second equation in (2,4) holds. 

Corollary 2,1. If a e <a, fe>, ̂ «(0 = Ofar r e <a, fc>, t * a, ^a(a) - 1, g e V(a, 6) 
then we have by (2,3) 

(2,5) f i/,a(t) da(r) = a(a+) - a (a- ) = Aa(a) 

since il/a(t) = ftT(f) - \l/^(t)forte{a, fc»>. 

Let a countable set (ti912, ...) of points in <a, t>> be given, tt 4= f,- for i 4= j and 
let us have two sequences cj\ c~, i = 1, 2, ... of real numbers such that the series 

Z ci*> Z ci~ converge absolutely. The function 
_<f<<fc a<r,< :6 

0*(O= I -f-+ _; «r 
a<iti<t a<tt^t 

will be called a break function in <a, fe>. For this break function gB(t) we have 
evidently 

var_a* = Z K r | + Z K l < + <*>> 
a<ti<ib a<,tt<b 
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A+ga(i) = A~gB(t) = 0 if t 4= f„ i = 1, 2,... and A+gB(t) = c+, A '^ t , ) = ct , 
i = 1,2,... 

Using the functions ^ + and „̂ introduced in Proposition 2,1 we can evidently 
express the break function in the form 

9^t) = t[.c7K(i) + c7<l'7M = 
i = l 

= I [A+0B(t,) K(i) + A-08(t.) «A."(t)] • 
i = l 

Remark 2,1. The notion of a break function can be similarly introduced for n-
vector functions too; for this case it is sufficient to take c+ e Rn, c~ e Rn and repeat 
the above procedure where instead of |. | should be written ||. ||. 

Proposition 2,2. Let gB e V(a, b) be a break function. If f eV(a, b) then 

(2,6) Cf(t) dgB(t) = f(a) A+gB(a) + £ /(T) AaB(r) + f(b) A~gB(b) . 
Ja a<x<b 

Proof. Since gB is a break function there exists a sequence [t^\, tt e <a, fe>, ff 4= i*y 

for i =# j such that 

9s(t) = I [A^* , ) K(t) + A-gB(^) <A~(')] • 
i = l 

We put 

^2(0 = £ [A+gB(ti) K(t) + A - ^ ) ^-(0] • 
i = i 

We have 

varj (gB - gN) = var* ( £ [A+
fl(t,) ^

+(t) + A~g(t) ^~(t)] = 
i = N+l 

= I [|A+^(t,)| + |A-^,)|] . 
i = H+l 

oo 

The relation g e V(a, b) implies the convergence of the series ~~ [|A+gf(rf)| + 
+ |A"g(^)|] and therefore we have i=1 

lim var* (gB - gN
B) = 0 . 

2V-*oo 

Hence by (2,2) we obtain 

lim|f/(í)d^(í)-f/(ť)dfl2(0 
*-» J« J« 

= lim [|/(a)| + var*/] var» (gB - gN) = 0 
JV-*oo 
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i.e. 

(2.7) . ff(OdgB(t) = lim [bf(t)dgN
B(t). 

Ja »-+«>Ja 

Using (2,4) we have 

f/(t) dgN
B(t) = £ f/(t) d[A+gB(tt) *+(.) + A'gB(tt) KM = 

-lWdB(t^bf(t)dK(t) + A'gB(h) f/(t)d«A-(ol = 

= £ [A+gB(t,)f(t,) + A-«B(f,.)/(fi)] = 
i = l 

= Z/(^)[A+gB(rI) + A-gB(ri)]. 
i = l 

This and (2,7) give (2,6) and Proposition 2,2 is proved. 

Corollary 2,2. If g e V(a, b) is a break function such that Ag(t) = 0 for all t e 
e(a, b), A+g(a) = A~g(b) = 0 then $bf(t)dg(t) = 0 for all f eV(a, b). 

The proof follows immediately from (2,6). 
In [2] the following theorem on integration by parts is proved: 

Letf, g e V(a, b) then for any interval <c, d> c <a, b> we have 

(2.8) j/(f)dfl(.) + p(0d/(0 = 

= f(d) g(d)- f(c) g(c)- £ A + / ( T ) A + S ( T ) + £ A~f(x) A~g(x) . 
c<,t<d c<x<,d 

Let z, w e Vn(a, b); we denote for <c, d> c= <a, b} 

\dz'(t)dw(t)=rd[w(o] z ( o = £ rZi(o dw,.(o. 
J c ' J c i = l j c 

Using this notation and the integration by parts formula (2,8) we can easily derive 
the integration by parts formula for n-vector functions z,we Vn(a, b), <c, d> cz 
c= <a, by in the form 

(2.9) f z'(t) dw(t) + !"w'(t) dz(t) = Tz'(0 dw(t) + fd[z'(0] w(t) = 
J c J c J c J c 

= z'(d) w(d) - z'(c) w(c) - £ Д+z'(т) A+w(x) + £ Д"z'(т) A~w(т) . 
c£x<d c<xśd 
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Remark 2,2. In a similar manner can be obtained the result of Corollary 2,2 for 
n — vector functions: If weVn(a, b) is a break function (cf. Remark 2,1) such that 
Aw(t) = 0 for all te(a, b), A+w(a) = A~w(b) = 0 then jb

a z'(t) dw(t) = 0 for all 
zeVn(a,b). 

Now let a nondegenerate interval I = <a, b} x <c, d} in R2 be given; K(s, t) : I -* 
-> L(_R" -> &") let be a matrix function defined on the interval I. The elements of the 
matrix K(s, t) are denoted by ktj(s, t), i.e. K(s, t) = (k(j(s, t)), i,j = \,2, ...,n. 

For a given subinterval J = <a, 5> x <c, 3} cz I we set mK(J) = K(5, 3) — 
- K(5, c) - K(a, 3) + K(a, c)eL(Rn -> U") and define 

(2.10) vT(K) = sup SIMJi ) ! 
i 

where the supremum is taken over all finite systems of subintervals Jt cz I such that 
for the interiors J? of Jt (in the topology of R2) we have J? n J^ = 0 when i =1= j. 
The norm ||. || used in (2,10) is the operator norm in L(Rn -» Rn) (see Sec. 1.). 

The number vt(K) established in (2,10) is a kind of twodimensional variation of the 
matrix function K(s, t) in the interval I. This notion of a twodimensional variation is 
considered in the book of T. H. HILDEBRANDT [5] (for the case n = 1). 

For a real function k(s, t) : I -> R we can define the number v7(fc) as above if we 
take n = 1. The properties of our operator norm imply 

(2.11) vfaj) = Vl(K) 

for all i,j = 1, 2, ..., n. 

If Ij c I is a rectangle for each j = 1,2,..., m and I? n I£ = 0 forj 4= fc, then we 
can define the number Vj.(K) for each j = 1, 2, ..., m as above and by definition we 
easily obtain « 

m 

(2.12) X^,(K) = ^/W-
1=i 

We define as usual 

var?K(s, .) = s u p ^ | | K ( s , r i ) - K ( s , ^ _ 1 ) | | 
i 

for fixed s e <a, fc> and 

varj K(., 0 = sup VjK(5„ 0 - K(s,_., t)\\ 
j 

for fixed f e <c, d> where the supremums are taken over all finite decompositions of 
the interval <c, d>, <a, b> respectively. 

The properties of the used operator norm imply 

(2,13a) var^fcl7(s, .) = var^ K(s, . ) , 

(2,13b) varjfc0.(.,r) = v a r £ K ( . , r ) 

for any i, j = 1,2, ..., n, se <a, Z>>, / G <C, d>. 
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For any s, s0 e <a, £>>, tj-t, tj e <c, d> we have 

\\K(s, tj) - K(s, . 7 _ . ) | _. | K ( y , ) | + \\K(s0, tj) - K(s0,.,_.)» 

where Jj = <s0, s> x <r7_1, fy>. Hence for each decomposition D : c = t0 < 
< tt < ... < tm = d of the interval <c, d> the inequality 

m m 

IlK(5,/ J .)-K(,,0_1)| |_.Z||mK(J ;)| + 
1=1 1=1 

+ I llK(5o, tj) - K(so, 0-01 ^ v,(K) + varc K(s0, .) 
1=i 

holds; therefore 

(2,14a) vard
c K(s9 .) ^ v,(K) + varc *vV ) 

for each s e <a, b>. Similarly can be proved for t0 e <c, d> the inequality 

(2,14b) varj K(., t) = vf(K) + var* K(., t0) 

which holds for each t e <c, d>. 

Therefore/if we suppose that Vj(K) < +oo, varc K(s0, .) < +oo for some s0e 
e <A, ft> then we have varc K(s, .) < +oo for all se <a, b> and symmetrically if 
Vj(K) < +oo, var*K(.,f0) < +oo for some t0 e <c, d>, then varjK(.,r) < +oo 
for all r e <c, d>. 

Let us put 

(2,15a) cp(a) = î ,ff>x<c.d>(K) 

for a e <a, b>; <p(cr) : <a, b> -• _R is evidently a nondecreasing function in <a, fc>, 
q>(a) == 0, <p(6) = Vj(K). In the same way we can define 

(245b) ^ ) = ^,b>x<c,t>(K) 

for T 6 <c, d>; IJ/(T) : <c, d> -> R is nondecreasing, t̂ (c) = 0, ij/(d) = v/(K). 
Note that for an arbitrary decomposition of the interval <a, b> : a = s0 < sx < ... 

... < st = b and any two points tu t2 e <c, d> we have 

|var? (K(Si, .) - K(Si_t, .)) - var? (K(sh .) - *_(_,_., .))| = 

= |var;| (K(s, .) - K(Si_u .))| _S i»<,1.1A>x<,1,,1>(K) 

for i =- 1, 2,..., /, i.e. 

(2,16a) | X [var? (K(S(, .) - % _ „ .)) - vatf (Kfo, .) - %•_ , , .))]| £ 
І = 1 

š Ś»<..-....>x<.....>(K) š «w>x<..,.г>(к) ѓ Џ(t2) - HҺ)\ • 
> = i 
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Symmetrically for an arbitrary decomposition c ^ t0 < tt < ... < t = d and 
any two points s t , s2 e <a, 6> it is 

(2,16b) I H v a r - (K(„ tj) - K(., tj.x)) - var- (K(., *,) - K(., r , . 0 ) ] | ^ 

^ |<JP(S2) - <p(si)| . 

Lemma 2,1. Let K(s, t) : I = <a, b> x <c, d> -+ L(£" -> #») satisfy Vj(K) < +00 
and var* K(s*, .) < +00 for some s* e <a, &>. Let further for some s0 e <a, t> 

(2.17) lim ||K(s, 0 - K(s0, r)|| -* 0 
s-*so + 

or 
lim ||K(s, 0 - K(s0, Of - 0 

s-*so_ 

for all t e <c, d> then 

(2.18) lim cp(s) = cp(s0) , lim <p(s) = <p(s0) 
s-*so+ s-*so — 

respectively where cp : <a, fe> -* R is fhc function defined in (2,15a). (/f s0 = a 
(s0 = fc) then we consider the first (second) case only.) 

Proof. We prove the first case only, the other one is symmetric. The function <p is 
nondecreasing, i.e. <p(s) — (p(s0) ^ 0 for s ^ s0. Let us suppose that our Lemma is 
not valid and that there is a number rj > 0 such that for all s > s0 we have 

(2.19) <p(s) - <p(s0) ^ // > 0 . 

By definition of cp(s) there exists a finite system of intervals Jx <z <a, s> x <c, d>, 
j ° n j j = 0, / 4- j- s u c h that 

XK(Jt)|| > <P(S) - I 
1 o 

We put I* = Jx n <a, s0> x <c, d> and / , = J. n <s0, s> x <c, d>. Obviously 

I M - M l ^ IMIDfi + ||WK(/,)II 
and 

IM/ , ) | g^s 0 ) . 
Hence 

IIMI . )« + E M - D I - <Kso) > *(-) - ^ 0 ) - J 
and we obtain 

(2,20) £R(-.)l>*(-)-9(-o)-J-

At the same time 7, is a finite system of intervals in <So> s> x <c> d> a n d / , n /^ = 0 
f o r ; * Z. 
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Let 0 < 5 < s - s0 and put lt = Itn <s0, s0 + <5> x <c, d>, lt = ̂ n <s0 + 
+ 5, s> x <c, d>. If for example It = <s0, s0 + <5> x <.*', f"> then we have 

KV/)II = M'o + * 0 - *(s 0 + <*> 0 - K(s0f t") + K(s0, 0 1 ^ 

= ||K(s0 + 5, 0 - K(s0, t")\\ + ||K(s0 + 5, t') - K(s0, t')\\ 

and we see that a choice of sufficiently small 8 > 0 implies by (2,17) that ||mK(/f)|| 
is arbitrarily small. This procedure can be repeated for all possible forms of f, in 
a similar manner. Hence for sufficiently small 8 > 0 we can obtain 

тыm < ! - . 

This inequality together with £|mK(J,)|| < £||mK(/,)| + £||mK(*<)| a n d (2>20) 
implies ' ' ' 

(2.21) IIM-,|)|>tf-)-^o)-2. 

As (2,19) is assumed there is a finite system of intervals I** c <a, s0 + 8} x <t\ </>, 
( / D ° n (/J*)0 = 0 for; * Jk such that 

I||mK(4)|| - *-) > 3 . 
k 2 

From this and from (2,21) we have 

(2.22) L«mK(7,)|| + H K ( J n | | " <p(s0) > 9(s) - <p(s0) + \ . 
I k 4 

Since the union of intervals lt and I** forms a finite system of intervals in <a, s> x 
x <c, d> with mutually disjoint interiors, we obtain from (2,22) by definition of <p(s) 
the contradictory inequality cp(s) — q>(s0) > cp(s) — cp(s0) + iy/4. Thus our Lemma 
is proved. 

Remark 2,3. By definition we have for s0 e <a, b>, 0 < 5 < b — s0 

(i) var̂  (K(s0 + 5, .) - K(s0, .)) ̂  t;<S0>$0+a>x<Cfd>(K) ^ p(s0 + <5) - <p(s0) 

where <p is given in (2,15a). Hence if the first equation in (2,17) holds, we have by 
(2,18) 

lim var^ (K(s0 + 8, .) - K(s0, .)) = 0 . 
3->0 + 

If an arbitrary K(s, t) : <a, b} x <c, d> -• L(Rn -+ Rn) is given with Vj(K) < +00, 
var* K(s+, .) < +00 for some s* e <a, b> and lim K(s, t) = K(s0 + , t) exists for 

*-*so + 

every t e <c, d> then we can define K°(s, t) = K(s, t) if (s, f) e 7 = <a, fc> x 
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x <c, d>, s 4= s0, K°(s0, t) = K(s0 + , t). Easily can be obtained Vj(K°) < +00 and 
\ard K0(s+*, .) < +00 for some s** e (a, by. We have further evidently 
lim ||K°(s, t) — K°(s0, *)|j = 0 for every t e <c, d> and in the same way as above 

s-*so + 
we obtain 

(ü) lim var< (K°(s0 + Ô, .) - K°(s0, .)) = 
Я->0 + 

= lim var^ (K(s0 + S, .) - K(s0 + , .)) = 0 . 
a->o + 

A similar appointment gives the same result for left hand side limits. This implies 
the following 

Corollary 2,3. If for K(s, t) :I -> L(Rn -> Rn), v^K^+oo, v a r ^ s * , .) < +00 
for some s+ e <a, b> and if lim K(s, t) = K(s0 + , t) exists for any t e <c, d> then 
we have s^So+ 

\avd (K(s0 + , .) - K(s0, .)) = var* A+K(s0, .) = <p(s0+) - q>(s0) = A+<p(s0) . 

(A similar statement for left hand side limits holds.) 

Proof. For any S > 0 we have 

var* (K(s0 + , .) - K(s0, .)) = 

= var^(K(s0 + S, .) - K(s0, .) + K(s0 + , .) - K(s0 + S, .) = 

= var* (K(s0 + 5, .) - K(s0, .)) + var? (K(s0 + 5, .) - K(s0 + , .)) = 

^ 4>(s0 + 5) - <p(s0) + var^ (K(s0 + S, .) - K(s0 + , .)) . 

Hence by the limiting process S -• 0 + we obtain our inequality by means of (i) 
and (ii). 

Now we define integrals of vector functions. If an n-vector U(T, t) =(Ui(r, t),... , 
. . . , U„(T, t)) is given, U(T, t): S - Rn, S = {(T, t) e R2; c ^ T ̂  d, T - S(T) = r = 

g T + <5(T), <5(T) > 0 for every T G <C, d>} then by definition (cf. [1]) 

f D U ( T , 0 = ( ( DUt(r, t), ...,( DU„(T, t)\ . 

Given x : <c, d> -• Rn, we put for any s e <<*, fe> 

U(r, t) = K(s, í) x(т) = ( £ fel7.(s, t) x/т), . . . , X M - . 0 *ЛT)У 
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and denote 

j"df[K(S) 0] x(t) = j* DU(T, o = 

- (Jc ° ( I *i/-. o */*)> • • • > J"D( i u s . o *x*))'= 

= (i J \ (0 drfei/-, o. - . £ j"*/0 d.M*> «))'• 
Remark 2,4. For this definition we need to know the values K(s, t) for t < c, 

t > d. We suppose therefore K(s, t) = K(s, c) for r < c and K(s, t) = K(s, d) for 
f > d. 

For y : <a, b> -> IT we define in a similar manner the integral (** ds[K(s, f)] y(s) 
and as above we suppose K(s, t) = K(a, t) for s < a and K(s, t) = K(b, t) for s > b. 

Proposition 2,3. Let K(s, t):I = <a, fc> x <c, d> -• L(Kn -• R") be given and 
let K(s, t) = K(s, c) for t < c, K(s, t) = K(s, d) for t > d. Let us suppose that 
Vj(K) < +oo and varc K(s0, .) < +co for some s0 e <a, b>. 

If x(t) e Vn(c, d) then the integral Jc d,[K(s, t)] x(t) exists for any s e<a , fc>. 
The inequality 

(2.23) || Pdr[K(s, 0 ] x ( 0 | = sup ||x(t)|| . varc K(s, .) 
|| J c || fe<c'd> 

holds for any s e <a, by. Further we have 

(2.24) var* f fdfK(s, f) x(f)) = f ||x(0|| #(*) = sup ||x(0|| . v,(K) 
\Jc / Jc **«:>*> 

where the function \jf is defined in (2,15b). Thus the integral Jcdr[K(s, t)~\ x(t) as 
a function of the variable s belongs to Vn(a, b). 

Proof. By the assumption and by (2,14a) we obtain varc K(s, .) < +oo for all 
s e <a, by; this implies the existence of the integral Jcd,[K(s, *)] x(t) for any s e 
€ <a, by. Further we have for each s e <a, b> 

|K(s, t2) X(T) - K(s, *.) X(T)| g | |X(T)| . var* K(s, .) = 

' = | x ( T ) | | . | v a r ^ K ( s ) . ) - v a r ^ K ( s ) . ) | 

for any tx, t2 and for T 6 <c, d>. Hence Lemma 2,1 [3] implies 

|r'dt[K(s)0]x(0|^r«x(0||d(variK(s).)) 
l|Jc || Jc 

and by (2,1) we obtain (2,23). 
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Let an arbitrary finite decomposition a = s0 < st < ... < st = b of the interval 
<a, by be given. We have 

£ f f d , [ K ( s , , 0 - K ( s i _ 1 , 0 ] x ( 0 S-

= 1 f l K O H v a r ^ K ^ , . ) - % _ , , . ) ] ) = 

i f W O l ^ I v a r ' W s , , . ) - ! ( ( . , . , , . ) ] ) . 

Jc •--
From this inequality we obtain using (2,16a) and Lemma 2,1 [3] the inequality 

i = 1 | | J* II Jc 
Passing to the supremum on the left hand side in this inequality we obtain immediately 
the first inequality in (2,24). The other one follows from the relation fd

c d\j/(t) = 
= \\f(d) - \p(c) = vt(K) and from (2,1). Therefore we have fd

c dt[K(s, t)~] x(t) e 
eVn(a,b). 

Remark 2,5. A similar proposition can also be proved for yeV„(a, b) and the 
integral tf ds[K(s, t)] y(s). 

Lemma 2,2. Let k(s, t) : I = <a, b} x <c, d> --> JR be given. Suppose that k(s, t) = 
= k(a, t) for s < a, k(s, t) = fc(6, t) for s > b, k(s, t) = k(s, c) for t < c and 
k(s, t) = k(s, d) for t > d. Further let Vj(k) < +oo, var' k(s0, .) < +oo for some 
s0 e <a, by and var* k(.,t0)< + co for some t0 e <c, d>. If f(s) e V(a, b), g e V(c, d) 
then 

(2.25) f g(t) d, ( f/(s) ds[fc(s, 0] ) = f /(-) d, ( f</(') d,[fc(s, <)]) 

and 

(2.26) Cg(t) d, ( f fc(s, 0 d/(s)) = f ( f g(t) d,[fc(s, t)]) d/(s) 

ho/d and /he integrals on both sides of (2,25) and (2,26) exist. 

Proof. By Proposition 2,3 we have fb
af(s) ds[k(s, t)] e V(c, d), fd

cg(t)dt[k(s, t)] e 
G V(a, b) and the existence of the integrals on both sides of (2,25) follows from this 
fact immediately. 

Let us put f(s) = ^ ( s ) , 9(t) = ^7(0 f°r a e ^ a > *>)> /* 6 ^c> ^> (c^ Proposition 
2,1). Using (2,3) from Proposition 2,1 we obtain by easy computation 

([dd(t)dt[f(s)ds[k(s,t)]\ = fc(fe,d) - k(b,jS-) - % +,d) + fc(a + , j3-) = 

-\^)^s(Jg(t)dt[k(s,t)^ 
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i.e. (2,25) holds for this choice of/ and g. We note that the term fc(a + , /?-) in the 
above computation is in one case obtained as lim lim fc(s, t) and as lim lim fc(s, t) 

^ t-*fi- s-+*+ s-**+ t->0-

in the other one. By Theorem III. 5.3 in [5] both iterated limits are equal since by 
assumption the existence of all quadrantal limits in any point of / is quaranted. 
Similarly it can be proved by direct computation that (2,25) is true if/(s) equals ^~(s) 
or ^+(s) and g(t) equals ij/p(t) or \j/J(t) for some a e <a, 6>, 0 e <c, d> (c.f. Proposi­
tion 2,1). Hence from the linearity of the integral we obtain that (2,25) holds if 
/(s), g(t) are step functions because it is clear that every step function can be expressed 
as a finite linear combination of functions of the type \j/* and \jt~. It is known that 
if fe V(a, b) and g e V(c, d) then there exist sequences {ft(s)} /,: <a, b} -+ R and 
{gt(t)}9 gx: <c, d> -* R9 I = 1, 2,...,/„ gx are step functions such that lim/z(s) = 

.-•oo 

= /(s), lim gx(i) = g(t) uniformly in (a, fc>, <c, d> respectively. We denote 
J-юo 

Л.I-- Ґři(Od.(f/i(-)d.Ws,0]). 

І2>í = |f ł(s)d.(p í(t)d r[fc(s,/)]ì; 

since (2,25) holds for step functions we have 

(2,27) JM = I2tl for every / = 1, 2, ... 

Further by (2,2) and (2,24) we have 

[ p O d . (J/(s) W - ')]) - - J š | j % ( 0 - ^(0)dff/(s)ds[fc(s, t)fj 

+ Ip«(0 d, (£(/(-) - L(s)) d.[fc(s, í)])| á 

i£ sup |̂ (ř) - 9l(t)\ var- f f/(s) ds[fc(s, .)]) + 
te<c,d> \Ja ) 

sup \gi(i)\ var?(T(/(s) - /,(s)) d,[fc(s, .)]) g 

+ 

+ 
řє<c 

g [ sup |a(,f) - ffl(i)| (|/(a)| + var*/) + sup \9l(t)\ sup |/(s) - /,(s)|] t>,(fc) 
»в<C^> fЄ<C,«.> .6<в,|,> 

and therefore 

lim/.,, = jVOd, (j7(s) d.[fc(s, í)]) • 

Similarly it also holds , 

Jim I2tl - f /(s) d, ( fa(') d,[fc(s, t)]\ • 

In this way (2,27) implies (2,25) for arbitrary fe V(a, b), g e V(c, d). 
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The integral on the right hand side of (2,26) exists evidently ($ig(t) df[fc(s, t)~] e 
e V(a, b)). It can be easily proved that the inequality 

var ( ík(s, .) d/(s)) ^ lvj(k) + var^ fc(s0, .)] varj/ < + oo 

holds. Thus J* fc(s, t) df(s) e V(c, d) and the integral on the left hand side of (2,26) 
also exists. 

The equality (2,26) holds if we set g(t) = \j/^(t) (cf. Proposition 2,1). In fact we 
have by (2,3) 

Hence 

f tf(t) d,[k(s, t)] = k(s, d) - k(s, <x+) . 

( pAcTW drWs, t)]\ df(s) = C(k(s, d) - k[s, a+)) df(s) 

By, (2,3) we have also 

f tf(t) d, ( f k(s, t) df(s)) = f (k(s, d) - k(s, «+)) d/(s) . 
J c \J a / J a 

Therefore 

f ( [ W ( t ) dr[fc(s, t)]) d/(s) = j"W(t) d, (!"k(s, t) df(s)) . 

Similarly can be proved that (2,26) holds if g(t) -= ij/~(t) and we obtain that (2,26) 
holds for every step function g(t). Let for g e V(c, d) a sequence of step functions 
gx : <c, d> -> R be given, lim gt(t) = g(t) uniformly in <c, d>. Then we have 

I [\g(t) - g,(t)) d, ( Ck(s, t) df(s))\ Z sup \g(t) - gj(t)\ (V[(k) + var^ fc(s0, .)) 
IJc \J« / «-«.-> 

var»/ 

and 

^b(jd(g(t)-git))dt[k(s,t)])df(s)\ 

^ sup \g(t) - g,(t)\ (v,(k) + var? k(s0, .)) varj,/. 

Thus in the same way as in the case of (2,25) we obtain that (2,26) holds for any 
geV(c,d). 

Let us now denote 

<-. ">*.«., = f-'C) <M') = f*[>'(')] -(') = t fZX') dwX') 
Jc Jc ^=ljc 
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if z, w e Vn(c, d) and 

<*. " V » = fz'(s) dw(s) = fd[w'(s)] z(s) = t f-X*) dwXs) 
Ja Ja J=1Ja 

if z, w 6 VB(a, b). 

Proposition 2,4. Let K(s, t):I = <a, fc> x <c, d> -• L(Rn -> K") be 0it;en and 
/ê  K(s, t) be extended for s < a, s > b, t < c, t > d as in Remark 2,4. Let us 
suppose that v,(K) < +oo, varj! K(s0, .) < + oo for some s0e <a, b), var J K(., f0) < 
< + oo for some *0 e <c, d>. Let x e Vn(c, d), y e Vn(a, b). Then 

(2.28) (Y, fdt[K(., ,)] x(.)\ = / x , fds[K'(s, .)] y(s)\ 
\ Jc I (a,b) \ J a I (c,d) 

and 

(2.29) / f dt[K(., 0] x(t), y \ = (x, !"K'(S,. ) dy(s)\ . 
\Jc I (a,b) \ J a I (c,d) 

Proof. By (1.1), (2,11), (2,13a), (2,13b) all assumptions of Lemma 2,2 are satisfied 
for kij(s, t), xt(t), ym(s), i,j, l,m = 1,..., n. Therefore from (2,25) we obtain 

(2.30) !"ym(s) ds ( !"x,(t) dt[ku(s, t)-]\ = !"x,(t) d, (!"ym(s) ds[fc0-(s,«)] 

for every i,j, I, m = 1, 2,... , n. Hence 

(y, Pd,[K(., ,)] x(t)\ = !\'(s) ds ( fd,[K(s, 0] x(t)\ -
\ Jc /(«,-») J a \Jc / 

= t p'.(*) d» ( . t J"*X0 d.[M*> 0]) = 

= t £ p . ( 0 d. (j"*X0 d<[*.Xs> 0]) = 

= t .t J \ (0 d. ( p.(s) d*[Ms> 0]) = 

-l j"*X0 <l, ( t JW) d*[Ms- 0]) = 

= |x'(0dt(ps[K'(s>0]y(s)) = 

= (x, f d.[K'(s, .)] y(s)\ . 
\ J a / (c,d) 

Thus the equality (2,28) is proved. 
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From (2,26) we have 

rd / rb \ rb / rd 
(2,31) fx , (0 d, ( ffcl7(s, 0 áym(s)\ = í ( í *.(t) d,[fc0(s, í)]) áym(s) 

for every i,;, /, m = 1, 2, ..., n. Hence 

'fd,[K(.,0]x(0,y\ = 
\J c I (a,b) 

= i J*(.ipXOdr[fciXs.O])dyi(s) = 

- i y i £ (J}xo d«[fe.xs. o]) d^(s)= 

- i .ij"*xod,(j\x*.od^(s)) = 

- i j"*xod, ( fi j \xs . o d*(s)) = 

= f x'(0 d, ( !"K'(S, t) dy(s)\ = (x, f K'(s, .) dy(s)\ 
Jc \Ja J \ J a I (c,d) 

and (2,29) is also proved. 

Remark 2,6. The equality (2,30) (resp. (2,31)) enables us also to derive the follow­
ing relations which are symmetric to the relations (2,28) (resp. (2,29)) 

(2.32) (x, fds[K(s, .)] y(s)\ = /y, fd,K'(., 0 x(r)\ 
\ J a I (c,d) \ Jc I (a,b) 

and 

(2.33) / fd.[K(s, .)] y(s), x\ = /y, fK'(., 0 dx(o\ . 
\Ja I (c,d) \ Jc I (a,b) 

We note that (2,29) can be written in the form 

fdy'(s)( fd,K(s, 0 x(0) = fd, f fdy'(s) *(s, o] *(0 • 
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3. OPERATORS J* df[K(s, t)] x(t) AND Jj K(s, t) dx(t) IN THE SPACE Vn 

In the sequel we denote Vn = Vn(0, 1). For x e Vn we denote 

(3.1) l x | | , „ = | | x ( 0 ) | | + v a r j x . 

||. ||Vn is the usual norm in Vn, Vn with this norm forms a Banach space. 

Let K(s, t) : / = <0, 1> x <0, 1> -> L(Rn -» Rn) be given. Let us suppose that 
K(s91) = K(s, 0) for t < 0 and K(s91) = K(s9 1) for t > 1. 

Further we assume in this section that 

(3.2) v(K) = Vj(K)< + oo 

and 

(3.3) varjK(0, .) < F o o . 

Proposition 2,3 quarantees for every xeVn , x'(t) = (xt(t)9 ..., x„(t)) the existence 
of the integral 

(3.4) f d,[K(s, r)] x(t) = y(s), s e <0, 1> . 

By (2,24) from the same Proposition we obtain the inequality 

(3.5) varj y = varj ( f dt[K(s, t)] x(t)\ = \\x\\Vn v(K). 

The map 

(3.6) Kx = y 

(y is determined by (3,4)) is evidently a linear operator on the space Vn because (3,5) 
implies y e Vn. 

Further it is 

\**\vn = ||y(0)« + varj / = 1 f dt[K(0, í)] x(í) 
Jo 

+ MrЛVй 

1

 = sup ||x(t)||varoK(0, .) + ||x||,nt;(K) 
r e <0,l> 

and therefore 

(3,7) | | & i K i i ^ ( v a r i K ( 0 , . ) + i<K))W K r 

i.e. K : V„ -* Vn is a continuous linear operator on Vn. 
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Theorem 3,1. The linear operator K: Vn -• Vnfrom (3,6) is completely continuous 
if (3,2) and (3,3) is satisfied. 

Proof. We denote by B = {x e Vn\ \x\Vn < 1} the unit ball in Vn. Let a sequence 
x1, / = 1, 2, ... be given such that xl e B for I = 1, 2, .... By Helly's Choice Theorem 
it is possible to select from the sequence x1 a subsequence xlk such that 

lim xlk(t) = x*(r) 
fc->oo 

for any t e <0, 1> so that at the same time varj x* = 1 (i.e. x* e Vn). We put z*(f) = 
x,k(f) - x*(t) for *e<0, 1>. Evidently z*eV„ for all k = 1, 2, 

= ||X'*||K„ + ||x*(0)|| + varj x < 3 and 
ІИL й 

(3,8) 

(2,24) implies 

lim z*(f) = 0 for all fe<0, 1> 

vari ( |V[K(s , í)] z*(ř)) g £|z*(t)|| d^( ') 

where ij/ : <0, 1> -> R is a nondecreasing function \j/(0) = 0, ij/(\) = v(K) (cf. 
(2,15b) where <a, 6> = <c, d> = <0, 1». Clearly 0 = ||z*(f)|| ^ 3 for re <0, 1> 
and the function ||z*(*)|| belongs to V(0, 1) for all k = 1, 2, ..., hence the integral 
Jo ||z*(01 d^(0 e x i s t s (as Kurzweil integral or equivalently as Perron-Stieltjes integral). 
The Dominated Convergence Theorem for the Perron-Stieltjes integral implies 

lim íV(í)!l *K0 = o • 
*-*« Jo 

Hence we have 

(3.9) lim var0 ( f d,[K(s, t)] xl*(t) - f ld f[K(s, t)] x*(t)) = 0 . 
k-°° VJo Jo / 

Similarly we can show that 

(3.10) lim l l f dr[K(0, 0] x,fc(f) - f dr[K(0, t)] x*(r) 
*-°° |Jo Jo 

= 0, 

From (3,9) and (3,10) we have 

lim ||fd f[K(s,r)]x l k(r)-y*(s) 
Jo * - * o o 

= o 

where y*(s) = fo dr[K(s, f)] x*(t) e Vn since x* e Vn. Hence we conclude that the image 
of the unit ball B is precompact in Vn and consequently the operator K is completely 
continuous. 
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We shall derive now some special analytic properties of the operator K if K(st t) : 
: I -> L(Rn -* Rn) satisfies some additional assumptions. 

«* 

Proposition 3,1. Let K(s9 t):I -• L(Rn -• Rn) satisfy (3,2) and (3,3), x e Vn. Let 
further for some s0 e <0, 1> 

lim ||K(s, t) - K(s0, r)|| = 0 or lim ||K(s, t) - K(s0, t)\\ = 0 
s-»so+ s-*so-

jorfl// fe<0, 1>. 77ten 

lim y(s) = y(s0), lim y(s) = y(s0) 
s-*so + s-*so~-

respectively where yeVn is given in (3,4). 

Proof. The statement follows in an easy way from the inequality (see (2,23) from 
Proposition 2,3 and (2,15a)) 

\\Y(s) - y(*o)|| = II f d,[K(s, t) - K(s09 0 ] *(t) 
IIJ o 

g ||x|Knvar0 (K(s, .) - K(s0> .)) ^ | M k K- ) - <K*o)| 

and from Lemma 2,1. 

Corollary 3,1. If K(s, t) : I -> L(Rn -+ _Rn) safis/zes (3,2), (3,3) and K(s91) is conti­
nuous in the variable sfor any t e <0, 1> then the vector function y(s) : <0, 1> -+ Rn 

from (3,4) is continuous for any x e Vn9 i.e. K maps Vn into CVn (the space of conti­
nuous n-vector functions with bounded variation). 

Lemma 3,1. Let K(s9 t):I -+ L(Rn -» Rn) satisfy (3,2) and (3,3), x e Vn. Let s0 e 
e <0, 1>. If the limit 

(3.11) lim K(s91) = K(s0-h, t) or lim K(s91) = K(s0-, t) 
s-»so+ s->so-

existsfor all t e <0, 1> then we have 

(3.12) Y{so+) = l™ y(s) - f d,[K(s0 + , t)] x(t), 
s->so + J 0 . 

y(s0-) = lim y(s) = f d,[K(s0-, *)] x(.) 
S-+SQ- J o 

316 



Proof. We have 

У(so+) - f d,[K(s0 + , í)] *(ť) = Hm f d,[K(s, ŕ) - K(s0 + , í)] x(ř) = 0 
JO s-»s0+ J 0 

because for 5 > 0 

!í d,[K(s0 + ő, í )-K(s 0 + ,()]x(í) ^ | | x | K i , v a r 0 ( K ( s 0 + 5, .) - K(s0 + , .)) 

and by Corollary 2, 3 it is 

lim var* (K(s0 + <5, .) - K(s0 + 9 .)) = 0 . 
6-+0 + 

The second statement can be proved similarly. 

R e m a r k 3,1. If we suppose that varj K(., t#) < +oo for some /* e <0, 1> for 
K(s, t):I -> L(Rn -> Rn) in addition to the conditions (3,2), (3,3) then varj K(., t) < 
< +oo for all te <0, 1> and the limits (3,11) exist for all s0 e <0, 1> and all te 
e <0, 1>, and (3,12) holds for all s0 e <0, 1>. 

Proposition 3,2. Let K(s, t) : I -» L(Rn -> Rn) satisfy (3,2) and (3,3). If K(s, t) is 
for every f e <0, 1> regular at s0 e <0, 1>, i.e. the limits (3,11) exist for every 
re<0, 1> and 

(3.13) K(s0 + , t) + K ( s 0 - , t) - 2K(s0, r) = 0 

forfli/ fe<0, 1> then 

(3.14) y( s 0 +) + y ( s 0 - ) - 2y(s0) = 0 , 

i.e. Y(S) is a regular function at s0 G <0, 1>. 

P r o o f follows immediately from Lemma 3,1. 

Corollary 3,2. If K(s9 t):I -> L(Rn --> Rn) satisfies (3,2), (3,3), the limits (3,11) 
exist for every s0 e <0, 1> and t e <0, 1> and (3,13) holds for every t e <0, 1> then 
the n-vector function y(s) : <0, 1> -> RP from (3,4) is regular for any xeVn (this 
means that (3,22) holds for all s0 e <0, 1>), i.e. the operator K maps Vn into the 
space RVn of all regular n-vector functions of bounded variation. 

Proposition 3,3. Let K(s, t):I -+ L(Rn -> Rn) satisfy (3,2), (3,3) and 

(3.15) varjK(.,0) < + o o . 
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If a, fie <0, 1> then for xeV„ the expressions 

(3,16) - iST,x = K(s, a) x{fi) = Yl(s), 

K2x = A+K(s,a)A+x(p) = y2(s), 

K3x = A;K(s,x)A-x(p) = y3(s) 

define completely continuous operators on V„. 

Proof. We have (by (2,14b)) 

flJMlk = ||K(0, a) x(f})\\ + varj (K(., a) x(/?)) = 

= {||K(O,a)fl+varjK(.,a)}||x(/0|| = 

= {||K(0,a)||+varjK(.,0) + <K)}||x||Kn. 

Further it is (cf. Corollary 2,3) 

flJir2x|Kn = ||A+K(0, a)|| |A+x(/?)fl + varj A,+K(., a) \\A+x(p)\\ = 

= {varjK(0, .) + <K)}||A+x(/?)|| = 

= {varj K(0, .) + v(K)} \\x\\Vr_ 

and similarly 

\\K3x\\Vit = {varj K(0, .) + v(K)} |A"x(/J)l = {varj K(0, .) + v(K)} ||x|Kn. 

Let B be the unit ball in the space Vn and let x, e B, I = 1, 2,. . . be given. The 
sequence xl(P)(A+xl(p), A~xt(fj)) is bounded in Rn. Hence there is a point z(ff) 
(z+(p), z"(j8)) in Rn and a subsequence x̂ (jS) (A+xo(0), A~xh(p)) such that 
lim x,//?) = z(p) (lim A+x,/b) = z+(p), lim A"x0(j?) = z~(p)). 

j-*oo j-*ao j-*oo 

Let us set y*(s) = K(s, a) z(p) e V„, then we have 
„-Ti*i, - Xilk = W<>> 0) + varj K(0, .) + varj K(., 0) + i>(K)}|| x,//?) - z(j})\\, 
hence lim fli-a*/, — Y*\\vn ^ 0> i-e-tne operator K\ maps B into precompact set and 

j-*ao 

therefore Kt is completely continuous. 
By setting y*(s) = A+K(s, a) z+(p) we obtain 

||iST2x0 - y*2\\Vn <L {A+K(0, a) + varj A+K(., a)} A+x,//,) - z+(b)|| , 

hence lim ||i^2x/j ~" y*||Kn = 0 and K2 is a completely continuous operator. Similarly 
j-*ao 

the complete continuity of K3 can be obtained. 
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Proposition 3,4. If K(s9 t) : I -> L(Rn -> Rn) satisfies (3,2), (3,3) and (3,15) then the 
series 

(3.17) £ A + K(S,T)A + X(T) , £ A,-K(S,T)A-X(T) 
O g t < l 0 < T ^ 1 

define completely continuous operators on Vn. 

Proof. For any t'91" e <0, 1> and all s e <0, 1> we have 

||K(s,0-K(s,ONI|K(0,0-K(0,O|| + 
+ ||K(s, f) - K(0, f) - K(s9 t") + K(0, r)|| = 

g |var0' K(0, .) - var0" K(0, .)| + t><0,i>*<t',o(K) = 

= |var0' K(0, .) - var0" K(0, .)| + \tff) - *{f)\ 

(cf. (2,15b) for \ji). This implies that the set of discontinuities of K(s, t) in the variable t 
lies on a denumerable family of lines parallel to the s-axis: t = r,, I = 1, 2, . . . since 
var0 K(0, .) and \j/(t) are functions (<0, 1> -> R) of bounded variation. In this way 
it is possible to rewrite the first expression from (3,17) in the form 

(3.18) f A+K(M,)A+x(f() 
1=1 

and similarly the second one. 
The operator (3,18) is defined as the limit of the sequence of operators UN : Vn -> Vn 

where 

(3,19) [ / . X ^ A ; ^ , ^ ; ^ ) , 
I=I 

i.e. 
00 

V* = X A+K(s, *-) A+x(*,) = lim tfNx . 
t* = 2 N-+oo 

By Proposition 3,3 for any integer N the operator UN from (3,19) is completely con­
tinuous because UN is a finite sum of completely continuous operators. 

Let us denote \Vn -> VM] the space of all linear operators acting on V„, \Vn -> F„] 
is a noimed linear space with the norm 

N l n ™ = sup \\UxlVn. 

The completeness of Vn implies that the space \Vn -> V„] is complete. Further we have 

\\UMx - UNx\\Vn = I £ A+K(s,..) A+x(t.)||Ki, = 
I = i V + l 

= || £ A+K(0,f,)A+x(.,)||+varJ £ A+K(., .,) A+x(.,) g 
I = N+1 J = N+1 

^ varj x( £ ||A+K(0, .,)f + £ varj Af
+K(., .,)) . 

f = /V+1 l = N+l 
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Hence 

(3,20) \\UM- £lw|k-.K.,]^ £ K * ( 0 , t,)|| + £ variAt
+K(.,t,)-

/ = N + 1 l = N + l 

The assumption (3,3) yields the convergence of the series £ |A+K(0, tt)\\. Further 
we have (cf. Corollary 2,3) <=1 

varj A+K(., tt) = </<'/+) - K*i) = *+H*i) 

where \j/ : <0, 1> -* R is a non-decreasing function, \j/(0) = 0, \j/(i) = v(K). Since 
00 CO 

the series ]T A+^(fz) evidently converges we obtain that the series £ varj A+K(., ^) 
z = i / = i 

converges as well. This implies by (3,20) that UN, N = 1, 2, ... forms a fundamental 
sequence in the (complete) Banach space \Vn -> Vn] and that lim UN = U exists, 
hence the operator N"*00 

tfx = fXKM)A+x(0= I A+K(S,T)A+X(T) 
1=1 0 ^ T < 1 

is completely continuous. The proof of complete continuity of the second operator 
in (3,17) can be carried out in the same manner. 

Theorem 3,2. If K(s, t):I - L(Rn - Rn) satisfies (3,2), (3,3) and (3,15) then the 
expression 

(3,20) f K(s, t) dx(t) = Rx, xeVn 

defines a completely continuous operator on Vn. 

Proof. Using the integration by parts formula (2,9) for row vectors of K(s, t) for 
any s e <0,1> we can write 

f K(s, t) dx(t) = - f dt[K(s, t)] x(t) + K(s, 1) x(l) - K(s, 0) x(0) -

- X A+K(S,T)A+X(T) + £ At"K(S,T)A-x(T). 
0 < ; T < 1 0 < T ^ 1 

By Theorem 3,1, Propositions 3,3 and 3,4 we see from this expression that the oper­
ator R from (3,20) is a linear combination of completely continuous operators and we 
obtain in this way our Theorem. 

Remark 3,2. We note that for the operator R : Vn -> Vn given in (3,20) it is possible 
to derive further analytic properties (continuity, regularity of the result of the oper­
ation) if some additional conditions for K(s, t) : I -• L(Rn -> Rn) are assumed. This 
can be made if we employ the properties of our integral. 
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4. AUXILIARY STATEMENT FROM FUNCTIONAL ANALYSIS 

In this Section we give a simple general statement based on the well known Riesz 
theory from functional analysis which will be useful in our considerations about 
Fredholm-Stieltjes integral equations in Section 5. 

Let X, Y be normed spaces with the norms ||. \x, ||. | j y respectively. By Xf, Yf we 
denote the dual spaces to X, Y respectively. Let a bilinear form <x, y> on X x Y 
be given which separates points of X, i.e. 

(i) for x G X, x 4= 0 there exists y e Y such that <x, y> + 0 

and which separates points of Y, i.e. 

(ii) for y e Y, y =# 0 there exists xeX such that <x, y} 4= 0. 

Further we assume that 

(4,0 \(x,y>\ZC\\x\\x\\y\\Y 

for any x e X, y e Y where C = 0 is a constant. 

For any fixed j e Y w e denote by [j>] the linear functional on X which corresponds 
to y e Yin terms of the bilinear form <., . >; [y] is defined by the relation 

(4,2) [y] (*) = <*, y> • 

The inequality (4,1) quarantees the continuity of [y], i.e. we have [y] e X'. 

We denote by [Y] the linear set in X' of all continuous linear functional of the 
form (4,2). 

Since the bilinear form <x, y} separates points of Y we have [y] = 0 e X' ([y] 6 
e [Y]) if and only if y = 0 (y e Y), i.e. \_y~] =t= [j>] if and only if y 4= y, y, y e Y. 

In this way a one-to-one correspondence between elements of Y and [Y] is given, 
in other words we have a one-to-one correspondence between the space Y and its 
immersion [Y] into X' which is given by the bilinear form <x, y}. 

For a set M cz Y we denote by [M] the set of all elements in X' which are deter­
mined by an element in M, i.e. 

[M] = { / 6 l ' ; / = [ y ] , yeM}. 

In the same way for any fixed x e X a continuous linear functional [x] e Y' is 
given and we have a one-to-one correspondence between X and [K] cz Y'. This 
follows from the fact that the bilinear form <x, y> separates points of X. 

For a given operator K: X -> X we denote by K* : X' -* X' the adjoint operator 
which is defined by the obvious relation f(Kx) = K*f(x) for fe X', xeX (similarly 
for operators L :Y->Y). If a linear operation T : X -> X is given then T_1(0) means 
the null — space of this operator, i.e. 

j - i ( 0 ) = {xeX; Tx = 0 } . 

321 



Proposition 4,1. Let X, Y be normed spaces, K :X -> X, L : Y-> Y completely 
continuous operators in X, Y respectively. Further let <x, y} be a bilinear form 
on X x Y which separates points of X and Y such that for any xeX, y eY the 
inequality (4,1) holds, and let 

(4.3) <Kx,y} = (x,Ly> 

for any xeX, y eY. 
We denote T = Ix - K, S = IY - L, T* = Ix - K*, S* = IY - L* (lx, IY, 

Ix,, IY, are the identity operators in X, Y, X', Y' respectively). Then we have 

(4.4) dim J" 1 ^) = dim T*'\0) = dim ST^O) = dim 5*_1(0) = r 

where r is a nonnegative integer (by dim the dimension of a linear set is denoted) and 

(4.5) T*-\0)cz\Y]9 S*-\0) c [X] . 

Proof. We have (see VIII.2 in [6]): The equation 

(4.6) Tx = x - Kx = x , xeX 

has a solution x e X if and only if for any solution / e X' of the equation 

(4.7) T*f = f - K*f = 0 

the relation 

(4.8) f(x) = 0 

holds and the dimension of the linear set 

r_ 1(0) = {xeX; Tx = x - Kx = 0} 

is finite and equal to the dimension of the linear set 

T*'\0) = { / e l ' ; T*f = f- K*f = 0} , 

i.e. we have 

(4.9) dim J " 1 ^ ) = dim T*-x(0) = r . 

Observe that (4,3) can be written in the form [>>] (Kx) = [Ly] (x) hence we have 

(4.10) K*[y] = [Ly] 

for any functional [y] e [Y] c X'. Further by (4,10) it is 

r*- '(0) n [Y] = {[y] e [y]; T*[y] = [y] - K*[y] = [y] - [Ly] = 

= [>> - Ly] = 0} = [{y e y; Sy = y - Ly = 0}] = [S^O)] 
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and evidently 

(4.11) dim [5_1(0)] = dim (J*" 1^) n [y]) = p = r . 

With respect to the one-to-one correspondence between Y and [y] we have evidently 

(4.12) dim [5_1(0)] = dim 5_1(0) = p . 

Since L : Y -* Yis a completely continuous operator, the Riesz theory yields 

(4.13) dim 5~1(0) = dim 5*~1(0) = p . 

The equation (4,3) can be also rewritten in the form 

[x](Ly) = [Kx](y) 

for all x e X, y e Y, i.e. we have 

(4.14) L*[x] = [Kx] 

for any functional [x] e [X] c Y'. 
Analoguously as above we obtain by (4,14) 

5*- 1 (0)n[Z] = 

= {[x] e [X]; [x] - L*[x] = [x] - [Kx] = [x - Kx] = 0} = [J-'(())] . 

Hence (by (4,13)) we have 

(4.15) dim [T-^Oy] = dim (5*_1(0) n [K]) = q^p. 

Further we have evidently by (4,9) 

q = dim [J_1(0)] = dim J_1(0) = r . 

From this equality together with (4,11) and (4,15) we obtain r = p; thus (4,9) and 
(4,11) imply 

dim J*" 1^) = dim (T*~l(p) n [y]) = r 

and hence we have 

T*-l(0)c: [ y ] . 

The second relation from (4,5) can be derived similarly. 
Proposition 4,1 enables us to derive the following 

Theorem 4,1. Let the assumptions of Proposition 4,1 be satisfied. Then either the 
equation 

(4.16) Tx = x - Kx = x , xeX 
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admits a unique solution xeX for any xeX9 in particular x = 0 for x = 0; 
or the homogeneous equation 

(4.17) * x - Kx = 0 

admits r linearly independent solutions xu ..., xr in X. 

In the first case the equation 

(4.18) Sy = y-Ly = y, yeY 

has also a unique solution y e Yfor any y eY.In the second case the equation 

(4.19) y - Ly = 0 

admits r linearly independent solutions yx, ..., yr in Y. Moreover in the second 
case the equation (4,16) has a solution in X if and only if 

(4.20) <jc, y> = 0 

for any solution y e Y of (4,19) and symmetrically (4,18) has a solution in Y if and 
only if 

(4.21) <x, y} = 0 

for any solution xeX of (4,17). 

Proof. The first part of this theorem corresponds to the case when r = 0 in (4,4) 
from Proposition 4,1. The result of this part is a consequence of the well known Riesz 
theory of completely continuous operators (cf. 11.3 in [4] or Chapter VIII. in [6]). 

For the second part of the theorem we have r > 0 in Proposition 4,1. Using the 
duality theory for completely continuous operators in normed spaces (see [6], 
VIII. 2) we know that (4,16) has a solution if and only if f(x) = 0 for any functional 
fe T*-\Q) = {feXf; f - K*f = 0} (K* is the adjoint operator to K). From (4,5) 
we have T* _ 1 (0) c [Y] and (4,3) implies K*[y] = [Ly] for any [y] e [Y]. Hence 
(4,16) has a solution if and only if [y] (x) = <x, y} = 0 for any [y] from the set 

{b]e[Y]; M - **[/) = [>> -Ly] = 0} = 

= [{y eY;Sy = y-Ly = 0}] = [ST^O)] . 

Further evidently [y] e [S~ 1(0)] if and only if y is a solution of (4,19) and we obtain 
in this way the result of the second part of the Theorem for Eq. (4,16). The result 
for Eq. (4,18) can be derived similarly. 

R e m a r k 4,1. The following statement is an easy consequence of Theorem 4,1: 
If (4,20) for all solutions of (4,19) is satisfied then the general solution xeX of (4,16) 
is written as 

x = St + X ctXi 
І = I 
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where £ is a particular solution of (4,18), xl9 ..., xr are the linearly independent solu­
tions of (4,17) (the base of J _ 1 (0)) and cl9 ..., cr are arbitrary constants. A similar 
statement for the general solution of (4,18) also holds. 

5. ALTERNATIVE FOR FREDHOLM-STIELTJES INTEGRAL EQUATIONS IN Vn 

We denote by Sn the set of all break functions w in the Banach space space Vn = 
= Vn(0, 1) such that Aw(t) = w(t+) - w(t-) = 0 for all t e(0, 1), A+w(0) = 
= A~w(l) = 0. Obviously Sn is a linear set in Vn. The set Sn is closed in Vn. In fact, 
if w e Vn is an adherent point of Sn then there exists a sequence ^ e S - , 1 = 1,2,... 
such that lim ||w- - w||Fn = 0. For any t e (0, 1) and / = 1, 2, ... we have 

1-+O0 

\\Aw(t)\\ = ||Aw(t) - Aw,(t)|| = \\wt - w\\Vn 

thus Aw(t) = 0. Similarly A+w(0) = A"w(l) = 0. 

The convergence in Vn implies that wz converges uniformly on <0, 1> to w. Let 
A c <0, 1> be the union of all discontinuity points of wl9 I = 1, 2, .. . and w; A is 
a countable set. Any wt is a constant function in <0, 1> — A. The uniform conver­
gence implies that w is a constant function in <0, 1> — A and hence we have w e Sn. 

Let us consider the quotient space V„/Sn. An element ofVn/Sn is a class of functions 
in Vn such that their difference belongs to Sn. Elements of V„/Sn let be denoted by 
capitals. The canonical mapping of V„ onto VjSn let be denoted by x; for <p e Vn we 
have x(<p) = <p + Sn = # e VnjSn. Any element <p e Vn for which x(<p) = <P will be 
called a representant of the class # e VnjSn. 

The space Vn\Sn forms a Banach space with the norm 

(5.1) \*\vnisn = i n f IklV, = i n f I M k = inf varj cp . 

We have evidently ' 

(5.2) ||d>||Kn/Sn = var0<p 

for all <p e Vn, x(<p) = tf>. 

Theorem 5,1. If K(s, t) : I = <0, 1> x <0, 1> -• L(Kn -> Kn) s a n ^ s v(K) < + oo, 
varj K(0, .) < +oo, varj K(.,0) < +oo /hen the expression 

(5.3) L<P = x ( f K'(s, 0 d<p(s)\ , >̂ G Vn , x(9) = * 

defines a completely continuous linear operator on the Banach space VjSn. 
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Proof. Let B(VnjSn) = {<*? e V„/Sn; \\&\\Vn/Sn S' 1} be the unit ball in Vn/S„. Let 

. A = {#eVjSn; & = x(<p), <peVn, <p(0) = 0, v a r ^ ^ 1} ; 

according to (5,2) it is J?(Vn/Sn) c A. Let # , e B(VnfSn), I = 1, 2, ... then there exist 
<pteVn with varj <Pi ^ 1, <pt(0) = 0, I = 1,2, ... such that x(<pt) = # f . The matrix 
K'(s, t) : I -*• L(Rn -> K") satisfies evidently all conditions of Theorem 3,2 hence the 
operator Jo K'(s, 0 <V(5) *s completely continuous in Vn. This implies that there 
exist zeVn and a subsequence <ptj, j = 1,2, ... such that 

lim I [K'{S, t) d<ph(s) - z(t) 
J-"° Jo 

= 0 

I.Є.-

lim var * J | K'(s, t) d<ptj(s) - z(t) J = 0 . 

From (5,2) we have 

lim \\L9Ej - x(z)||Kn/5n = lim var0 f f K'(s, t) d<ph(s) - z(t)) = 0 
j-*oo j -oo \ J o / 

and in this way we obtain the complete continuity of L : Vn/Sn -» VM/S„. 

Let further x e Vn, <f> e Vn/Sn. We denote 

(5,4) <x, *> = <x, <p}(0tl) = j x'(t) d<p(t) 

where <p e Vn, x(<p) = <P. The expression <x, <P> is independent of the choice of the 
representant <p of the class 4>. Indeed, if we have <p° e Vn, x(<p°) = <P then (cf. Remark 
2,2) 

<x, <p - <p°)(0tl) = f x'(0 d(<p(t) - <p°(t)) = 0 

because <p — <p° e Sn. The expression <., . > from (5,4) is a bilinear form on Vn x 
x Vn\Sn and the following lemma holds: 

Lemma 5,1. The bilinear form <., .y from (5,4) separates points ofVn and VnjSn 

(cf. (i) and (ii) in Section 4.). 

Proof, (i) Let xeVn, x * 0. Then there exists a e <0, 1> such that x(a) 4= 0, 
i.e. there is an index i = 1,..., n such that xt((x) -# 0. We define <p(t)e Vn as follows: 
(pk(t) = 0 for te <0, 1>, k + i, (pt(t) = 0 for 0 ^ t < a, <pt(t) = 1 for a ^ / ̂  1 
provided a > 0; if a = 0 then we set (pi(0) = 1, cp^t) = 0, 0 < t ^ 1. Let us put 
$ = K(V>). Then Proposition 2,1 yields <x, #> = Jo */(0 &<Pt(t) = *i(a) =f= 0 in the 
case a > 0 and similarly <x, <P} = -~Xi(0) 4= 0 if a = 0. Hence <., .> separates 
points of Vn. 
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(ii) Let <P + 0 (i.e. # + Sn). For any <p e Vn, x(<p) = <P it holds either 
1) there exists an ae(0, 1) such that (Pi(a+) 4= </>i(a~) for some i = 1, 2, ..., n 

or 
2) for each a e (0, 1) it is <P(OL+) = <p(a-) and there exist two points f}, y e <0, 1>, 

/? < y such that <pf(/?) #= (pf(y) for some i = 1, ..., n where /?, y are points of conti­
nuity of <pt(t), i.e. <?,(£) = <p£(/S—), 9.(7) = <?<(}>-). 

In the case 1) we set xt(t) = 0 for t e <0, 1>, t + a, xf(a) = 1, Xj(t) = 0 for 
t e <0, 1> if j + i. Then Corollary 2,1 yields 

<x, <P} = f x.(t) d(p,(0 = <p,(a+) - (pf(a-) + 0 . 

In the case 2) it suffices to set xt(t) = 1 for t e </?, y>, xt(t) = 0 for t e <0, 1> -
- </?, y>, x;(f) = 0 for t e <0, 1>, j + i. Then we obtain from Proposition 2,1 

<x, $>> = f xf(t) dcpit) = 9,(7) - (̂jff) + 0 . 

Hence <., . > separates points of Vn/S„. 

Remark 5,1. Since the bilinear form <., .> separates points of VnjSn we can sub­
join the following addition to Corollary 2,2: If geV(a, b) and \h

af(t)dg(t) = 0 
for allf e V(a, b) then necessarily g e S(a, b), i.e. Ag(t) = 0 for all t e (a, b), A+g(a) = 
= A~g(b) = 0. This means that if g e V(a, b) then jb

af(t) dg(t) = 0 for every fe 
e V(a, b) if and only if g e S(a, b). 

Since <x, 4>> from (5,4) is independent of the choice of <p e Vn, x(<p) = # and 

Í, 
i 

x'(í) d<p(t) 
0 f e < 0 , l > 

holds we have 

^ sup \\x'(t)\\ var0 <p = wj|x|k varj <p 

(5.5) |<x, *>| = n\\x\\Vn inf varj <p = n\x\\Vn ||*||K|l/Slt 
X(tf>) = tf> 

Theorem 5,2. Let K(s, t) : I = <0, 1> x <0, 1> - L(Rn - Rn), v(K) < +oo, 
var0 K(0, .) < +oo, varj K(.,0) < +oo. 

Then either the Fredholm-Stieltjes integral equation 

(5.6) x(s) - fdf[K(s, 0] x(r) = x°(s) , x° e Vn 

admits a unique solution for any x° e Vn or the homogeneous equation 

(5.7) x(s) - fd.[K(s, t)] x(t) = 0 

admits r linearly independent solutions x t, ..., xr s V„. 
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In the first case the equation 

(5.8) - <p(t)-CK'(s,t)d<p(s) = <p°(t), <p°eVn 

has a solution for any q>° e Vn (this solution is not necessarily unique). In the second 
case the equation (5,6) has a solution in Vn if and only if 

(5.9) <x°, *>(0>1) = f x'(t)d<p(t) = 0 

for any solution <peV„of the equation 

(5.10) <p(t) - f K'(s, t) d<p(s) = 0 

and symmetrically (5,8) has a solution if and only if 

(5.11) <x,<p°\0A)= f x'(t) d<p°(t) = 0 

for any solution x e V„ of the equation (5,7). 

Proof. By Theorems 3,1 and 5,1 the operators 

Kx = f d,[K(s, t)] x(t) : V„ -> Vn , x(<p) = <P , 

L<P = x ( f K'(s, 0 d«,(s)) : V„/5„ - Vn/5„ 

are completely continuous. <., . > from (5,4) represents a bilinear form on Vn x V„jSn 

which separates points of Vn and VnjSn (cf. Lemma 5,1) and (5,5) holds. 
Further by (2,28) we have 

<Kx, #> = <Kx, 9>(0>1) = / f d,[K(., 0] dx(t), v \ 

= / x , f K'(s, .) d^(s)\ = /x9x (! K'(s, .) d<p(s)\\ = <x,L<P> 

for any xeVn9 <& e VnjSn. All assumptions of Theorem 4,1 are satisfied and using this 
Theorem we obtain the first part of Theorem 5,2 viz. (the alternative for Eq. (5,6) 
resp. (5,7)). Further by Theorem 4,1 the equation 

(5.12) <P - L& = <P° , &° e Vn\Sn 
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has a unique solution for any <P° e VnjSn. For an arbitrary <p° e Vn we denote <P° = 
= x(cp°) e VnjSn. Let <p e V., be a representant of the (unique) solution of (5,12) with 
this <P°. Then we have 

* (<P - K'(s> •) d(p(s)) = *(<P°) > 

i.e. 

* ( ? - [ K'(5> •) Ms) " <P°)) = 0 e Vn\Sn . 

Hence 

<p(t) - [ K'(s, t) d<p(s) - <p°(t) = w(t) e Sn 

for all t e <0, 1>. Since | 0 K'(s, f) d<p(s) = J0 K'(s, t) d(<p(s) - w(s)) we have 

<K0 " " ( 0 " f *'(*> 0 d(»(s) - w(s)) = <p°(t) 

for all f e <0, 1>, i.e. the function <p — iv e Vn is a solution of Eq. (5,8). (The unicity 
of w e Sn is not quaranteed.) 

For the second case we know by Theorem 4,1 that (5,6 has a solution if and only if 
for any solution <P e VnjSn of the equation 

(5,13) <P -L<P = 0 

we have <x°, <P) = 0. 
Obviously the following assertion holds: for any solution <P e VnjSn of Eq. (5,13) 

there is a <p e Vn, x(<p) = <P such that <p is a solution of (5,10). In fact, for any repre­
sentant i/r e Vn of <P (x(}jf) = <P) we have 

x ( * - f K'(s,.)dý(s))-=0єl//S1,, 

i K O - ľ K'(s,ř)dý(s) = w(OєS. 

ì .e . 

If we set <p = $ — w, then tt(p) = xty) = <f> and <p is a solution of (5,10). It is easy 
to prove also the converse statement: If <p e Vn is a solution of (5,10), then 4> = x(p) 
is a solution of (5,13). 

Since <x, <f>> = <x, 9>(0fi) is independent of the choice of the representant 
<p 6 Vw, x(q>) = <P> we conclude that in the second case (5,6) has a solution if and only 
if <x°, p>(0,i) - Jo *°'(0 <*?(') = 0 f o r all solutions of Eq. (5,10). The symmetrical 
statement about Eq. (5,8) can be proved similarly. 
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Remark 5,2. Theorem 5,2 is a Fredholm type theorem for Fredholm-Stieltjes 
integral equations (5,6). Let us mention that Eq. (5,8) as well as the equation <f> — 
— L<P -= <&? are not the adjoint equations to (5,6) in the usual sense. We have not 
a satisfactory description of the dual space Vn to Vn which would make it possible to 
derive the analytic form of the adjoint operator K*. Nevertheless conditions for 
solvability of Eq. (5,6) are obtained in a form which is closely related to the well 
known Fredholm alternative for Fredholm integral equations of the second kind in 
L2 — spaces. 
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