Andrzej Matraś

On Havlíček-Tietze configuration in some non-Desarguesian planes

Časopis pro pěstování matematiky, Vol. 114 (1989), No. 2, 133--137

Persistent URL: http://dml.cz/dmlcz/108716

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
ON HAVLÍČEK-TIETZE CONFIGURATION IN SOME
NON-DESARGUESIAN PLANES

ANDRZEJ MATRAŠ, Olsztyn
(Received May 22, 1986)

Summary. Examples of non-desarguesian planes in which Havlíček-Tietze configuration
exists are studied, a necessary condition for existence of Havlíček-Tietze configurations in
projective planes over regular nearfields of order p^2 is given, and a connection between the
Havlíček-Tietze configurations and the circle-symmetries in Minkowski planes is established.

Keywords: Havlíček-Tietze configuration, non-desarguesian plane, projective plane over
regular nearfield, circle-symmetry.

1. INTRODUCTION

By a Havlíček-Tietze (shortly H-T) configuration in the projective plane we shall
mean a configuration of four triangles, no two of them having a common vertex, each
two of them in six-fold homology, the centres of the homologies of any two
triangles being the vertices of the other two while the axes are the corresponding
opposite sides. The existence of an H-T configuration in the projective plane of order
4 was proved by Havlíček and Tietze [2].

This configuration was examined in detail in [4] and [5]. In particular, in [4] it
was proved that in a desarguesian projective plane there exists an H-T configuration
if and only if its coordinatizing field contains a root of the polynomial $x^2 + x + 1$
different from 1. H-T configurations exists also in some non-desarguesian planes,
in particular in the translation projective planes of order 16 containing subplanes
of order 4 (see [3]). The H-T configurations are closely connected with the Desargues
Proposition, because every point of such a configuration is a vertex of some desarguesian
configuration contained in this H-T configuration. In this paper we consider
some examples of non-desarguesian planes in which there exists an H-T configuration
although they do not contain subplanes of order 4. We obtain necessary conditions
for the existence of H-T configurations in the projective planes over regular nearfields
of order p^2. We establish a connection between the H-T configurations and the circle
symmetries in some Minkowski planes over nearfields obtained by the extension of
an affine plane [7].

This generalized Corollary 4,7 from [6].
2. H-T CONFIGURATIONS IN THE PROJECTIVE PLANES OVER SOME NEARFIELDS

We use nearfields (except the seven types in which the multiplication is defined by an additional relation with left distributivity) and the classical Hall's method of construction of projective planes over such nearfields [1].

Let us define the set of points as \(P = K^2 \cup \{ \infty \} \); the set of lines is \(\{ (x, y), (m); y = x \cdot m + b; \ m, b \in K \} \cup \{ x = c; c \in K \} \cup \{ (m), (\infty); \ m \in K \} \), where \(K \) is a nearfield and \(\infty \) is an element such that \(\infty \notin K \).

By a result of Zassenhaus [1] all finite nearfields are known. In particular, we consider the nearfield \(K_{p,2} \) which may be described as

\[
K_{p,2} = \{ \{ a + \beta b \}; \ a, \beta \in Z_p, \ b^2 = 2 \}; \ 0, 1, \oplus, \odot \}
\]

where 0, 1 are the neutral elements of "\(\oplus \)" and "\(\odot \)" and

\[
(a + \beta b) \oplus (a_1 + \beta_1 b) = (a + a_1) + (\beta + \beta_1) \ b,
\]

\[
a \odot b = \begin{cases} \ab & \text{if } b \in Q, \\ \abn & \text{if } b \notin Q \end{cases}
\]

where \(a, \beta, a_1, \beta_1 \in Z_p \) and \(Q \) is the group of all nonzero squares.

Theorem 1. The projective Hall's plane over the finite regular nearfield \(K_{p,2} \) in which there exists an element \(a \) satisfying the condition

\[
(*) \quad a \neq 1, \ a^3 = 1, \ a + 1 \in Q
\]

contains an H-T configuration.

Proof. Let \(a \) be an element of the nearfield satisfying the condition \((*)\) According to Theorem 1 of [4] it is sufficient to construct two triangles with no common vertices which are in six-fold homology. Let \(X_1 = (0), X_2 = (\infty), X_3 = (0, 0), A_1 = (1, 1), A_2 = (a, a^2), A_3 = (a^2, a) \) be points of the projective Hall's plane over the nearfield \(K_{p,2} \) and let

\[
\begin{align*}
(X_1, X_2, X_3) & \quad (X_1, X_2, X_3) & \quad (X_1, X_2, X_3) \\
(A_1, A_2, A_3) & \quad (A_3, A_1, A_2) & \quad (A_2, A_3, A_1) \\
(X_1, X_2, X_3) & \quad (X_1, X_2, X_3) & \quad (X_1, X_2, X_3) \\
(A_3, A_2, A_1) & \quad (A_1, A_3, A_2) & \quad (A_2, A_1, A_3)
\end{align*}
\]

be the pairs of ordered triples.

We obtain the points \(B_1 = (a^2, a^2), B_2 = (1, a), B_3 = (a, 1), C_1 = (a, a), C_2 = (a^2, 1), C_3 = (1, a^2) \) as centres and the lines

\[
b_1: \ y = -x + a + 1 \quad b_2: \ y = -x \odot a - a \quad b_3: \ y = x \odot (a + 1) - 1
\]

\[
c_1: \ y = -x - a \quad c_2: \ y = -x \odot a - 1 \quad c_3: \ y = x \odot (a + 1) + a + 1
\]

as axes of the H-T configuration.
The triangles with vertices $X_1, X_2, X_3, A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3$, together with the respective lines form the H-T configuration in the sense of [4].

The coordinates of all points and coefficients in the equations of the lines are squares in $\text{GF}(p^2)$ while the multiplication is the same as in $\text{GF}(p^2)$.

Corollary. The projective Hall's plane over the nearfield $K_{5,2}$ contains an H-T configuration.

Proof. Indeed, by Theorem 1 we can choose $2 + 2b$ or $2 + 3b$ (these elements generate the same H-T configuration) as an element a of the nearfield $K_{5,2}$ satisfying the conditions(*).

3. H-T CONFIGURATION AND CIRCLE SYMMETRIES IN SOME MINKOWSKI PLANES

Let K be a regular nearfield of order p^2 where p is such that in K there exists an element satisfying (*). The Minkowski plane $M_n(K) = (M, L_1, L_2, \xi)$ over K is defined (see [7]) as $M = K \times K$ where $K = K \cup \{\infty\}$ and ∞ is an element such that $\infty \notin K$,

\[L_1 = \{ (k, x_2); x_2 \in K \}; k \in K \}, \]
\[L_2 = \{ (x_1, k); x_1 \in K \}; k \in K \}, \]
\[\xi = \{ (x_1, x_2); x_2 = \Phi(x_1) \} \Phi \in PGL(K) \]

where $PGL(K)$ is the set of all permutations $K \cup \{\infty\}$ of the following forms

\[\Phi(x) = \begin{cases}
 x \cdot a + b & \text{if } x \in K \\
 \infty & \text{if } x = \infty
\end{cases} \]

\[\Phi(x) = \begin{cases}
 (x + b) \cdot a + b & \text{if } x \in K \\
 \infty & \text{if } x = -b \\
 c & \text{if } x = \infty
\end{cases} \]

where $a, b, c \in K$, $a \neq 0$.

Let (M, L_1, L_2, ξ) be an arbitrary Minkowski plane. The residual plane M_p with respect to a point $p \in M$ is the set $M \setminus (L_1 \cup L_2)$ where L_1, L_2 are the lines through p, provided with all non-empty subsets $K \cap M_p$ for $K \in L_1 \cup L_2 \cup \xi$. We refer to the bundle of circles as to the set of circles with two points.

The existence of an H-T configuration in a projective plane implies some connections between the Minkowski inversion and the six-fold homologies of triangles. Some properties of a circle-symmetry and the points of an H-T configuration are described in the following lemma:

Lemma. Let $M_n(K) = (M, L_1, L_2, \xi)$ be a Minkowski plane over a finite regular nearfield K of order p^2, containing an element satisfying the property (*). In $M_n(K)$ there exist points $A_1, B_i, C_i (i = 1, 2, 3)$ and circles a, β, γ (affine Minkowski
"hyperbolas"), \(l_1, l_2, l_3\) (affine straight lines) such that the following assertions hold:

1) The triples \(\alpha, \beta, \gamma\) and \(l_1, l_2, l_3\) belong to two of circles in \(M_\alpha(K)\) such that \(A_1 \in \alpha, B_1 \in \beta, C_1 \in \gamma; A_i, B_i, C_i \in l_i\) (i = 1, 2, 3).

2) The system of points \(A_1, B_1, C_1\) and affine lines \(l_1, l_2, l_3\) of the affine plane \(M_p\) (where \(p \in l_1, l_2, l_3\)) can be completed to an H-T configuration in the associated projective plane.

3) The inversions with respect to \(\alpha, \beta, \gamma, l_1, l_2, l_3\) are the permutations of the points \(A_1, B_1, C_1\) (for example \(\sigma_\alpha(B_i) = C_i, i = 1, 2, 3, \sigma_\beta(A_2) = A_3, \sigma_\beta(B_3) = B_3, \sigma_\gamma(C_2) = C_3\), where \(\sigma\phi\) is the inversion with respect to the circle \(\phi\).

4) Each inversion with respect to these 6 circles interchanges two elements of a triple and fixes another triple (but not pointwise).

Proof. By Corollary, in the projective extension of the affine plane \(M_p\) there exist points \(X_1, A_1, B_1, C_1\) (i = 1, 2, 3) with coordinates as in Theorem 1. They form an H-T configuration. Let \(x^{-1}\) denote the inverse of \(x\) in the field \(GF(p^2)\) and let \(\alpha, \beta, \gamma, l_1, l_2, l_3\) be the circles \(y = x^{-1}, y = x^{-1}a^2, y = x^{-1} \circ a, y = x, y = x \circ a, y = x \circ a^2\), respectively (the symbol \(\circ\) denotes the multiplication in the nearfield defined above).

Circle inversions for a point \((x, y) \neq \infty (x, y \in Q)\) can be obtained in the following way:

\[
\sigma_\alpha(x, y) = (y^{-1}, x^{-1}), \quad \sigma_\beta(x, y) = (a \circ y^{-1}, x^{-1} \circ a),
\]

\[
\sigma_\gamma(x, y) = (a^2 \circ y^{-1}, x^{-1} \circ a^2)
\]

and

\[
\sigma_{l_1}(x, y) = (y, x), \quad \sigma_{l_2}(x, y) = (y \circ a^2, x \circ a^2), \quad \sigma_{l_3}(x, y) = (y \circ a, x \circ a^2).
\]

By definition of the multiplication in a nearfield \((a, a^2 \in Q)\) and by the equation of an inversion it is easy to verify the properties 2, 3 and 4. Our Lemma immediately implies

Theorem 2. In the affine Minkowski plane over a finite regular nearfield \(K_{p,2}\) with an element satisfying the assumption \((*)\) there exist concentric Minkowski circles such that each pair of them is inversely conjugated with respect to the remaining one.

Remark. In our analysis we use the terminology of [7]. Instead of circles the expression "chain" or "cycle" can be applied and instead of lines — "generators". In [6] the term Minkowski circle is reserved for some special hyperbolas.

References

136

Souhrn

HAVLÍČKOVÁ-TIETZOVÁ KONFIGURACE V JISTÝCH NE-DESARGUESOVSKÝCH ROVINÁCH

ANDRZEJ MATRAŠ

Jsou zkoumány příklady ne-desarguesovských rovin, v nichž existuje Havlíčková-Tietzova konfigurace. Je podána dostatečná podmínka existence H-T konfigurace v projektivní rovině nad regulárním skorotělem řádu \(p^2 \), a je ukázána souvislost H-T konfigurace s kruhovými symetriemi v Minkovského rovinách.

Резюме

КОНФИГУРАЦИЯ ГАВЛИЧЕКА-ТИЦЕ В НЕКОТОРЫХ НЕДЕЗАРГОВЫХ ПЛОСКОСТЯХ

ANDRZEJ MATRAŠ

Рассматриваются примеры недезарговых плоскостей, в которых существует конфигурация Гавличека-Тице. Дано достаточное условие для существования такой конфигурации в проективной плоскости над полярностью порядка \(p^2 \) и показана их связь с симметриями относительно окружностей в плоскостях Минковского.

Author's address: Agricultural and Technical Academy in Olsztyn, 10-740 Olsztyn.