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Summary. Several notions of stability for sequences of convolution powers of probability 
distributions on the real line are discussed. A characterization theorem for the weak convergence 
of such sequences using Fourier seminorms is proved. 
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0. INTRODUCTION 

The aim of this paper is to study the classical problem of weak convergence of 
convolution powers of finite nonnegative measures in Euclidean spaces. H, 
Bergstrom gave an outstanding systematic study in this field in [2] and [3]. His new 
approach is based on the use of suitable seminorms on the space of finite signed 
measures, especially Gaussian seminorms. He found necessary and sufficient con­
ditions in the form of Bolzano-Cauchy criteria for the weak convergence of con­
volution products and powers and derived a representation of infinitely divisible 
measures by Gaussian functionals. We try to follow the traditional way in this 
field, making use of Fourier transforms of measures and Fourier seminorms. Many 
calculations seem to be easier and more illustrative in this approach than in the 
,,Gaussian way", and practically the same results can be obtained (however, the 
Gassian and Fourier seminorms are not equivalent to each other — see [5], [6]). 

Our theorem is motivated by its ,,Gaussian version" given in [3], Though a great 
part of the theorem could be proved by using general methods and results from [3], 
we prefer a more straightforward proof based on traditional calculations with 
Fourier transforms. 

All results are given in the one-dimensional space R. This restriction should simplify 
the formulation of the results. On the other hand, the generalization into more 
dimensions does not use any new ideas. 
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1. NOTATION, PRELIMINARIES 

Let M denote the space of all finite signed measures on R (under a measure we shall 

always understand a cr-smooth Borel measure). With the natural addition and 

multiplication by real numbers, (Jl9 + , ") forms a vector space. Jt = M will 

denote the cone of all nonnegative measures in JI except the zero measure. Adding 

the convolution we get an algebra (M9 + , •, *) (see [3]). Obviously, the unit element 

associated with * is the Dirac probability measure concentrated at the zero point 

(denoted by e). 

A seminorm on M is a function p from Ji with the following properties: 

( 0 p(p) = 0 for every \x e *m , 

p(0) = 0 , 

(2) p(ii + v) = p(fi) + p(v) , 

(3) p(cn) = |c | p(p) for every ceR , /(,ve J . 

(i.e., p is a „norm" which need not distinguish nonzero elements). We say that Ji 

is seminormed under a set of seminorms & if the property p(p) = 0 for all p e ^ 

implies \i = 0. We shall deal with the following types of seminorms: 

a) let a > 0, \i e Ji and put 

(4) 

Qjji) = max {\n(R)\, J { W g „ |ju| (dx), a _ 1 | J { | X | < t ( ) x n(dx)\, a - 2 J { | x | < a ) x 2 | ^ | (dx)} . 

Qx is a seminorm on JI for each a > 0 and we shall call it the majorant seminorm. 

Obviously M is seminormed under the system of majorant seminorms SL = 

= { Q a : a > 0 } . 

b) We define the Fourier seminorms 

(5) FXu) = sup \fl(t)\ , a > 0 , ii e M , 

where fi(t) = ^00 exp (itx) n(dx) is the Fourier transform of \i. J( is seminormed 

also under the system of Fourier seminorms $F = \Fa\ a > 0}. 

c) H. Bergstrom uses most frequently the Gaussian seminorms 

, a > 0 , џe J( , (6) Glv) = sup I (" $ CL—^] n(dy) 

where 

<Kx) = J,-.(2j.rV2ap(-.a/2)dt. 

(Ga(/z) is the supremum norm of the distribution function of the convolution of \i 

with the centred normal probability distribution of the variance a2.) 
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— 9 
Any system of seminorms & defines naturally a convergence on J(\ \in » \i 

if lim p(nn — ft) — 0 for all p e 0*. If 1i„, JU e ^#, the convergence fi„ *- JJ, means 
H->00 * 

nothing else than the locally uniform convergence of the characteristic functions 
fin(t) to fi(t). Hence, the convergence of nonnegative measures under 3F is equivalent 
to the weak convergence (see e.g. [7], § 3.6; \in -» ju weakly if f/d/in -> f/dju for 
every bounded continuous function f). The same is true for the convergence under 
Gaussian seminorms (see [3], §4.5). 

However, the seminorms Fa and Ga are not equivalent on M (two different 
countreexamples are given in [5] and [6]). The next lemma states their equivalence 
for measures of a special form. 

Lemma 1. The seminorms Fa, Ga and Qa are equivalent to each other and uni­
formly in cc on the space 

Ji — e — {\x — e: // e ,M} . 

(Seminorms p and q are equivalent on X if there are constants cl,c2 > 0 such that 

c1 p(x) :g q(x) ^ c2 p(x) for each x e X.) 

The equivalence of Ga and Qa follows from [3], § 4.4; for the equivalence of Fa 

and Qa see [9] and [10]. 

2. STABILITY CONDITIONS FOR CONVOLUTION PRODUCTS 

Let {/inj., 1 ^ j g kn, ne N} be a double sequence of measures from Jt with 
kn ] oo. Following the classical approach we are interested in the weak convergence 
of the sequence of convolution products 

{fl/xni, neN}. 
I=i 

First we shall state some technical conditions useful in the study of weak convergence. 

Definition. We say that {[inJ} (or the sequence of convolution products Y[ Vnj) 1S 

a) uniformly assymptotically negligible (u.a.n.) if j=l 

(7) lim max Qa(nnj — e) = 0 for each a > 0 , 
H-+O0 J ^j^kn 

b) stable, if 
kn 

(8) lim sup £ Qa(Hnj — e) < °° f° r e a c h a > 0 . 
n-+oo y = i 
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Commen t s . 
1) According to Lemma 1, in (7) and (8) we can replace equivalently Qa by Fa or Ga, 
2) The notion of stability was defined in a more general sense, for arbitrary classes 

of seminorms, in [3]. 
3) Consider, as a particular case, a sequence of convolution powers {fin

n, n e N] 
(i.e. finj = \in for each;). Then the stability obviously implies the u.a.n. condition.-

The next lemma shows a connection beteen stability and weak convergence. 

Lemma 2. Let {finj, 1 :g j ^ kn, n e N} be a double sequence of probability 
kn 

measures on R, kn f oo. Suppose Y\ Vnj converges weakly. Then there are constants 
anJeRsuchthatforalla>0 J=1 

/<°° 
(9) lim sup £ Juxi^} Vnj(anJ + d * ) \ 

"•"°° J=l \ - > 0 if a -> oo , 
kn 

(10) lim sup £ |f{|«|<«} x finj(anJ + dx)\ < oo , 
n->oo j=l 

kn 

(11) lim sup £ !<,*, <fl} x
2 finJ(anJ + dx) < oo . 

n -> oo j = 1 

If nnj are symmetrical, (9) —(11) hold with anj = 0. 
For the proof see [3], § 4.6. 
In general, Lemma 2 does not hold with anj = 0 even if the u.a.n. condition is 

fulfilled: consider the example 

kn = In , iini = <5((-1)' n-1'2), l = j = kn, 

where S(x) denotes the Dirac probability measure concentrated at x e R. 
According to (4), the conditions (9) —(11) without the limit condition in (9) are 

equivalent to the stability of the shifted measures vnj(') = iinj(anj+ •). If we now take 
arbitrary a > /? > 0 we see that 

kn 

(12) lim sup ^ a - 1 ! ] ^ , ^ * vBJ.(dx)| ^ 
n -> oo 1 = 1 

kn kn 

= a""1 lim sup £ |J{ W < / I ) x vnJ(dx)\ + lim sup £ f { |»^w vnj(dx) . 
n->oo 7 = 1 n-+oo J = l 

Assuming that (9) — (11) hold, we can make the second term on the right hand side 
arbitrarily small taking a great /J > 0, and the first term tends to zero with a tending 
to infinity. Thus the expression on the left hand side in (12) tends to zero when a -» oo. 
In quite a similar way we can see that 

lim sup a"2 £ ${\x\<*} x
2 vnj(dx) -> 0 (a -> oo) . 

n -* oo 7 = 1 
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These conditions lead us to the following definition. We shall say that {/tw/} is strongly 
stable if it is stable and 

(13) lim sup X Q&nj - e) -> 0 (a -> oo) 
n-*co j = \ 

(this condition can be again expressed equivalently using Fa or Ga instead of Qa). 
Now we can reformulate Lemma 2. 

Corollary 1. / / the assumptions of Lemma 2 are satisfied, there exist anJ e R such 
that the double sequence of shifted measures {iinj{anj + •)} is strongly stable. 

On the other hand, we shall show later that the strong stability implies the ,,abso­
lute" tightness for convolution products. 

In the rest of this section we shall consider only probability measures. If \i is 
a probability measure, the characteristic function fi{t) need not have in general 
nice properties to make taking logarithms possible. Under suitable conditions, 
however, we avoid difficulties. 

Lemma 3. Let p, be a probability measure such that fi{t) =t= 0 for all \t\ ^ T 
Then there exists a unique continuous branch of logarithm log fi{t) defined on 
[ - T , T] such that logfi{0) = 0. 

Lemma 3 is a consequence of a classical result of complex analysis (see [1]). 
The u.a.n. condition in the ,,Fourier expression" implies that max \finj{t) — 11 —>> 0, 

n -> oo,"locally uniformly in t (abbreviation l.u. [f\). Thus, given any T > 0, the 
functions finj{t) are nonzero on [— T, T] for sufficiently large n and all 1 = j = kn 

and we can consider their logarithms, according to Lemma 3. 

Lemma 4. Let {finj} be a double sequence of probability measures and suppose 
{pnj} is stable and u.a.n.. Then 

(14) lim sup |log FT finj{t) - t (&X0 - - ) | = ° 
n-+ao \t\gT j=l 7 = 1 

for each T > 0. 

Proof. The Taylor expansion of the complex logarithm gives 
k k k 

(is) log n A.X0 = I los A.X0 = I ((A.X0 - -) + KA.X0 - 0 ) . 
J = l J = l j = l 

where |r(z)| = o(|z|), z -> 0. 
Given any T > 0, the u.a.n. condition enables us to make \finj{t) — l | arbitrarily 

small for all \t\ ^ T and sufficiently large n. Hence we have|r(//„;(^) - 1)| ^ 
--S *l\finj{i) — 11 for any given?/ > 0, all |f| = T and sufficiently large n. Consequently, 

y = i y = i 
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where the right hand side can be made arbitrarily small by the choice of r\ > 0, due 
to the stability condition. Now the result follows from (15). 

Lemma 5. Let {finJ} be u.a.n. and strongly stable and let Jn £ {l, 2 , . . . , kn} be 
arbitrary nonempty subsets. Then the sequence { Y[ l*nj, ne N} is tight. 

1eJ„ 

Proof. The well-known Doob's inequality (see e.g. [4], §8.3) implies 

(16) ( EI ft,;) {|-| = «} = (1 + -*)2 « IS"' Re (1 - n Auto) df = 
I6J„ JeJ„ 

ga + ^supii-nAXoi-
The complex exponential is Lipschitzian on the half-plane {Re(z)_^0}, hence 
there is a constant y > 0 such that |exp (z) — exp (u)| ^ y\z — u| for Re (z) g 0, 
Re (M) ^ 0. Hence we have 

I- - n AXOI = N (o) - exp (log n A.XO)| ^ 
IeJ„ jeJ„ 

= y|iog n !U0| = y| I (A.X0 - 1)1 + o(i), 
IeJ„ yeJ„ 

n -> oo, /.w. [t] (we have used Lemma 4). 
From (16) we obtain 

( I ! ft.;) {|-| = «} = (1 + 2*)2 7 Z Fa(/i„y - e) + o(l) , 
JeJn JeJn 

n -• oo. The strong stability now guarantees the assertion of the lemma,. 
Finally we show that the unpleasant constants anj from Lemma 2 can be avoided 

in the case of convolution powers. 

Lemma 6. Let fin be probability measures and kn | oo natural numbers. Suppose 
fin

n converge weakly. Then {^n} is strongly stable. 

Proof. By Lemma 2 there are constants aneR such that {v*n} is strongly stable, 
where vM(-) = nn(an+ •). We shall show that 

(17) sup kn\an\ < oo . 
n 

Suppose (17) is not true. Turning to a suitable subsequence we can assume, say, 
knan -> oo (the case with — oo would be analogous). Lemma 5 now implies that 
{v*n} is tight (see also Comment 3). However, we have v*"(-) = i£n(kHaH+•), and 
since knan -> oo it is not possible for both sequences {nn

n} and {vjn} to be tight. This 
contradiction proves (17). 

To show the strong stability of {fin
n} we take some a > 0 and verify (9) — (11) 

with an = 0. For n so large that |a„| < a/2 we have 

(18) K J{|x|̂ «} Hn (d*) = K f{\x + aH\*a) V„(dx) = kn f{|jc,^a/2j V„(dx) , 
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(1 9) fe«|J<l*l<«> X M d x ) | = kn\i{\x + an\<a} (x + dn) Vn(dx)\ g 

^ MWl<«> * v„(dx)| + fc„(3a/2) J{W*a /2 ) v„(dx) + kn\an\ , 

(2 0) K \{\x\<a} X
2 lln{dx) = k„ j { l x + an\<a} (x + an)

2 Vn(dx) ^ 

^ K J{|x|<3«/2} X
2 Vn(dx) + 2fc„|a,.| |J{|X|<«} X Vn(dx)\ + 

+ 2kn\at\ (3fl/2) J ( W £ - / 2 } v„(dx) + fc2a2 . 

The last three inequalities together with the strong stability of {v*n} yield the strong 
stability of {/4n}. 

3. INFINITELY DIVISIBLE MEASURES AND LfiVY MEASURES 

If a measure iieJt satisfies 

(21) \i = vr * . . . * vr = vr 

for each reN and suitable vr e Ji9 we call it an infinitely divisible measure (i.d. 
measure). Of course, the roots vr are then i.d., too . 

It is well-known that the characteristic function of an i.d. probability measure 
is non-zero everywhere and thus we can consider its logarithm. (21) implies 
log vr(f) = r""1 log /1(f), r e 1V, which guarantees the uniqueness of the roots in (21). 

Lemma 7. Any i.d. probability measure is uniquely infinitely divisible. 

For the representation of i.d. measures we shall use Levy measures. 

Definition. Let X be a cr-finite nonnegative Borel measure on R \ {0}. If X satisfies 

(22) i{\x\*fi}Kdx) < °°> 

(23) 5{\x\<p}x
2X(dx) < oo 

for all j8 > 0, we call it a Levy measure. 
Let now X„, X be Levy measures, ne N. We say that Xn -> X weakly (n -> oo) if 

lim ]fdXn -= J/dA for every bounded continuous function f on R which vanishes 
n 

in some neighbourhood of the zero point. 

. 4. THE MAIN THEOREM 

Let {fin} £ M be a sequence of measures and kn | oo be a sequence of natural 
numbers. The following conditions are equivalent: 

(i) F„(kn(^ - e) - km(fim - ej) ^ 0 ( j . ^ ™ ) 

for each a > 0; 
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(ii) there is a Levy measure X such that 
a ) Ki^n ~~ e) -* ^ weakly (n -> oo), 
b) there exist finite limits 

lim kn J{|x, <P) x* ^tn(dx) = M £° , i = 1, 2 , 
n 

for all P > 0 such that —ft and /? arc X-continuity points, 
c) lim kn(n„(R) — 1) = c, where c is some real number; 

n 

(iii) there is a (infinitely divisible) measure fie J/ such that nk
n

n -> \i weakly 

(n -> oo); 

(iv) for each reN there is vre M such that fin
kn/rl -> vr weakly (n -> oo) and 

vr = v i (["] denotes the integral part). 

Comments . 1) It is shown in [3] that the Bolzano-Cauchy criterion (i) implies 
(iii) and (iv) for a more general class of seminorms. The inverse implication is shown 
to be true in this general case under the additional assumption of stability. Our 
proof does not refer to these results because our aim is to show the power of the 
classical technique of Fourier transforms. 

2) In [8] the implication (i) => (ii) was shown; it was formulated using functions 
of bounded variations instead of measures. 

Proof. 1) (i) implies (ii) and (iii). 

First let us consider only probability measures nn. Denote fn(t) = kn(fin(t) — 1). 
By virtue of the completeness of continuous functions with the supremum norm, the 
assumption (i) implies the existence of a complex function f such that fn(t) -> f(t), 
n -> oo, l.u. \t\. Now we use the fact (see [7], § 5.4) that for each n 

expf„ = exp kn(fin - 1) 

is a characteristic function of an infinitely divisible probability measure, say £*• We 
find now the Levy - Khinchine representation of £„ 

(24) f„(t) = knr ( e ^ - l ) ^ ( d x ) = 
J — oo 

" ̂ Lrf^^+kTJ'" ~' - rr?)"-<d*> -
"Ur-'-rh)^**' 

/•oo 

(25) yB =k„\ —--—• nJidx), 
J . ^ 1 + x2 
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X2 

Gn(dx) = kn- -2»n(dx) 
1 + X 

(G„ is a finite measure on R with the density x2j(l + x2) with respect to knpin). 
Observe that ln(i) = expf„(f) -> expf(t), n -» oo, l.u. [*], hence (see [7], §5.5) 

expf(f) must be a characteristic function of an i.d. probability measure, say /i, 
with the Levy - Khinchine representation 

(26) log fl(f) = f(t) -. vfl + j " (e"» - 1 - - - i ^ ) ^ ^ G(dx) 

with 
y« -• y (n -> oo), 

•Gn -> G weakly (n -> oo) . 

Define a L6vy measure A on J? \ {0} as 

A(dx) = i ^ l ! G(dx) . 

By (25) and (26), fcnjun -* A weakly (n -> oo) (note that kn\in considered as a Levy 
measure coincides with kn(\in — e)). We can find the limit (n -> oo) 

kn U\x\<0} X2 Unfa) = J(|X|<„ (1 + X2) G„(dx) -> 

- J ( W < . } ( l + ^ )^(dx) = M^2), 

provided —/? and /? are A-continuity points (and hence G-continuity points). More­
over, we have 

C27) kn J{|x|zp) sin x /*„(dx) -> J{|JC, ̂ } sin x A(dx) (n -> oo) , 

(28) fc„ J=w sin x /in(dx) = kn(fln(l) - ft,(-1))/2 -» 

->( f ( l ) - f ( - l ) ) /2 (n->co), 

(29) fcn f (x - sin x) ^(dx) = f (1 + x2) IZJ^I. G/l(dx) -> 
J{\x\<P) J{\x\<fi) X 

I (l+x2)^^G(dx) 
{\x\<0} X 

(the last function under integration is bounded). 
Using (27)-(29), we can find the limit 

Mm K \{\x\<t) x \in(dx) -= M\l). 
n 

Condition c) in (ii) holds automatically when considering probability measures, 
hence (ii) is proved. 

We have already found the limit measure \i for (iii) (see (26)); it remains to show 
the weak convergence /x*n -* ft. The assumption (i) implies the boundedness of 
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^(K^n — e))> hence the stability of {^*n}. The u.a.n. condition is fulfiled, too. Thus 
we can apply Lemma 4 obtaining 

|log Hit) - kn(fin(t) - 1)| -> 0 , n -> oo , l.u. [t] , 

consequently log fin
n(t) ->f(t), n -> oo, J.w. [f], and (iii) is proved. 

Now let \in be arbitrary positive measures and let us write them in the form \in = 
= cnvn, c„ being positive numbers and vn probability measures. Suppose (i) holds 
for /v Since cn = fln(0). putting t = 0 in (i) expressed by characteristic functions 
we get 

\K(Cn-l)-km(cm-l)\-+0 ( ^ « ) . 

Hence we have 

(30) lim kn(cn — 1) = c for some ceR 
n 

(consequently, lim c„ = 1). 
n 

Now we find the Cauchy convergence 

|c„fe„(vB(0 - 1) - cjcjfjt) - 1)1 ig 

^ M/UO - 1) - kjifijt) - 1)| + 

+ |kB(c„ - 1) - km(cm - 1)| - 0 ( ^ ^ ) ..«. [.] . 

Since cn -> 1, the Z.M. convergence of fc„(v„(f) — 1) follows. Thus the sequence {v„} 
fulfils (i) and, consequently, it fulfils (ii) and (iii), too. To prove (ii) for \in, we take 
the same Levy measure A as we have for vn and realize that 

K(Vn - e) = cnkn(vn - e) + kn(cn - 1) e . 

The measure kn(cn — 1) e vanishes on R \ {0} and, using (30), we see that a) holds. 
The proof of b) and c) is immediate. 

To prove (iii), use the fact that lim cn
n = ec, and hence fin

n -> ecjU weakly if vn
n -> ft 

n 

(n -> oo). 
2) (ii) implies (i). 
The Taylor expansion gives the equalities 

(31) kn(fin(t) - 1) - km(fim(t) - 1) = 

= (kn(cn - 1) - km(cm - 1)) + (k„(fin(t) - cn) - kjfijt) - cm)) = 

= (kn(cn - 1) - km(cm - 1)) + J»ro (e"» - 1) (k„nn - fcm/0 (dx) = 

= (k„(c„ - 1) - km(cm - 1)) + J { W i W (e U x - 1) (fc.ii, - fcm/v)(dx) + 

+ J{M</>> i ,X {KUn - km/*m) (dx) + 
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+ i{\x\<fi}{-t2x2l2)(knfin - kmnm)(dx) + 

+ li\x\<n r(tx)(M« - Kflm)(<-*) , 

where \r(u)\ = o(u2), u -> 0. 

Denote by I0, l u I2, /3 , I4 in the given order the five summands in the last expres­
sion of (31). Fix arbitrary e > 0 and T > 0; we want to show the expression in (31) 
to be less than e for all |f| <L Tand sufficiently large m, n. 10 tends to zero with m, n 
tending to infinity (see c)). Taking J? > 0 sufficiently small we can guarantee |r(fx)| ^ 

= nT2x2 for all |x| < jS, |t| = Tand any given n > 0. Then 

|I4 | g ?/T2 2 sup fc„ J{|JC|<^} x
2 iin(dx) < co 

(see (ii) b)) and, hence, we can make |I4 | < s/2 for all \t\ ^ T by prescribing suffi­
ciently small rj > 0. The Cauchy criterion applied to the convergent sequences in (ii) 
b) yields I2 -> 0 and J3 -> 0 l.u. \t] when m, n -> co. In a similar way we see that 
Ii -> 0 l.u. [t] (m, w -> co) as a consequence of (ii) a). Thus (i) is proved. 

3) (iii) implies (i). 

First we supose nn to be probability measures. Supposing (iii) holds we know by 
Lemma 6 that {/4n} is strongly stable. Lemma 4 implies 

sup |log ßn(t)
k" - kя(ß„(t) - 1)| -> 0 , и -> co , 

\t\ѓт 

and (iii) gives 

sup [log fin(t)kn - log fi(t)\ -> 0 , n ~> co . 
U\^T 

From these two tacts we derive 

sup \K(fin(t) - 1) - log fi(t)\ -> 0 , n -^ co . 
1-l.sr 

The Bolzano-Cauchy criterion (i) immediately follows. 

In the general case consider again measures in the form \in = cnvn with cn > 0 and 
probability measures vn. The assumption iikn -> lz weakly gives ckn -> d = ^(i?) > 0, 
thus fcn(c„ — 1) -> c = log d and vjn -> d~x\i weakly. Now the proof of (i) for {\in\ 
follows from its validity for {v„}. 

4. (iii) implies (iv). 

We again suppose nn to be probability measures. Supposing that (iii) holds we 
know by Lemma 6 that {̂ J|n} is strongly stable. Then, for any fixed reN, Lemma 5 
guarantees the tightness of the sequence {ju).*n/r|, n e N}. Let vr be a weak limit of 
some subsequence jAn

knj/rl, j -> co. Then 

(32) A./ . fV ' i -* v r(0 , j - co , l.u. It] . 

Simultaneously we have 
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(33) finj(tf"j = (A, i(r)
[V'J)' A / t y - i 

for some jSnj _̂  r, j e N. 
By the assumption, finj(t)

knJ converges to /1(f) Z.w. [f]. The u.a.n. condition (which 
is here a consequence of stability) implies finj(t) -> 1 J.u. [f], hence also finj(if

nJ -* 1 
/.M. [*]. Thus from (32) and (33) we conclude vr = fl. 

Suppose now that vr is not the weak limit of the whole sequence fin
knfr^. Then 

there must exist another weak limit Cr + vr of another subsequence. By the same 
argument we get £r = fl- However, Lemma 7 implies £r = vr. This is a contradiction 
which completes the proof of (iv). 

The case of nonnegative measures \in can be again easily modified to the „pro-
bability case". 

Since the implication (iv) => (iii) is trivial, the proof of the theorem is complete. 
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Souhrn 

CHARAKTERIZACE SLABÉ KONVERGENCE KONVOLUČNÍCH MOCNIN 

JAN RATAJ 

V článku je zkoumáno několik pojmů stability posloupností konvolučních mocnin pravdě­
podobnostních měr na přímce. Za použití fourierovských seminorem se dokazuje věta o charak­
terizaci slabé konvergence takových posloupností. 
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Peзюмe 

XAPA TEPИЗAЦИЯ CЛAБOЙ CXOДИMOCTИ CTEПEHEЙ CBEPTKИ 

JAN RATAJ 

B paбoтe paзбиpaюитcя нeкoтopыe пoнятия ycтoйчивocти пocлeдoвaтeльнocтeй cтeпeнeй 
cвepтҡи вepoятнocтныx мep нa пpямoй. Иcпoльзyя ceминopмы Фypьe, aвтop дoкaзывaeт 
тeopeмy o xapaктepизaции cлaбoй cxoдимocти тaкиx пocлeдoвaтeльнocтeй. 
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