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Summary. Several notions of stability for sequences of convolution powers of probability
distributions on the real line are discussed. A characterization theorem for the weak convergence
of such sequences using Fourier seminorms is proved.
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0. INTRODUCTION

The aim of this paper is to study the classical problem of weak convergence of
convolution powers of finite nonnegative measures in FEuclidean spaces. H.
Bergstrém gave an outstanding systematic study in this field in [2] and [3]. His new
approach is based on the use of suitable seminorms on the space of finite signed
measures, especially Gaussian seminorms. He found necessary and sufficient con-
ditions in the form of Bolzano-Cauchy criteria for the weak convergence of con-
volution products and powers and derived a representation of infinitely divisible
measures by Gaussian functionals. We try to follow the traditional way in this
field, making use of Fourier transforms of measures and Fourier seminorms. Many
calculations seem to be easier and more illustrative in this approach than in the
,.Gaussian way”, and practically the same results can be obtained (however, the
Gassian and Fourier seminorms are not equivalent to each other — see [5], [6]).

Our theorem is motivated by its ,,Gaussian version” given in [3]. Though a great
part of the theorem could be proved by using general methods and results from [3],
we prefer a more straightforward proof based on traditional calculations with
Fourier transforms.

All results are given in the one-dimensional space R. This restriction should simplify
the formulation of the results. On the other hand, the generalization into morc
dimensions does not use any new ideas.
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1. NOTATION, PRELIMINARIES

Let .# denote the space of all finite signed measures on R (under a measure we shall
always understand a o-smooth Borel measure). With the natural addition and
multiplication by real numbers, (#, +, ) forms a vector space. ./ < 4 will
denote the cone of all nonnegative measures in 4 except the zero measure. Adding
the convolution we get an algebra (7, +, -, *) (see [3]). Obviously, the unit element
associated with % is the Dirac probability measure concentrated at the zero point
(denoted by e).

A seminorm on ./ is a function p from .# with the following properties:

(1) p(p) 20 forevery pe.#,
p(0) =0,
(2) (e +v) = p(W) + P(v) ,
(3 plen) = |c| p(n) forevery ceR, pved.

(ie., p is a ,,norm” which need not distinguish nonzero elements). We say that .#
is seminormed under a set of seminorms & if the property p(u) = 0 for all pe 2
implies u = 0. We shall deal with the following types of seminorms:

a) let « > 0, p e A and put

)
Qo) = max {|u(R)], Jxizm 1] (@x), & Jye <oy ¥ #(dx)], @72 feg<a *2|u| (dx)} .

Q, is a seminorm on . for cach « > 0 and we shall call it the majorant seminorm.
Obviously .# is seminormed under the system of majorant seminorms 2 =

={Q;a> 0}.

b) We define the Fourier seminorms
(5) F(p) =l Isup |ﬂ(t)l , a>0, ped,
tjSa-1 :
where fi(t) = (2 exp (itx) u(dx) is the Fourier transform of p. . is seminormed

also under the system of Fourier seminorms & = {F,: a > 0}.
¢) H. Bergstrém uses most frequently the Gaussian seminorms
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B(x) = % o (21) "2 exp (—12[2) dt .

©) G(n) = sup

xeR

, a>0, ped,

where

(G.() is the supremum norm of the distribution function of the convolution of u
with the centred normal probability distribution of the variance «?.)
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Any system of seminorms & defines naturally a convergence on .#: p, AR U
if lim p(u, — p) = O for all pe 2. If p,, pe M, the convergence p, = 4 means

L iadl- 4]
nothing else than the locally uniform convergence of the characteristic functions
fi(t) to fi(t). Hence, the convergence of nonnegative measures under & is equivalent

to the weak convergence (see e.g. [7], §3.6; p, — p weakly if [fdp, — [fdu for
every bounded continuous function f). The same is true for the convergence under
Gaussian seminorms (see [3], §4.5).

However, the seminorms F, and G, are not equivalent on . (two different

countreexamples are given in [5] and [6]). The next lemma states their equivalence
for measures of a special form.

Lemma 1. The seminorms F,, G, and Q, are equivalent to each other and uni-
formly in a on the space

M—e={p—e ped}.
(Seminorms p and g are equivalent on X if there are constants ¢, ¢, > 0 such that
¢y P(x) < q(x) < ¢, p(x) foreach xeX.)

The equivalence of G, and Q, follows from [3], § 4.4; for the equivalence of F,
and Q, see [9] and [10].

2. STABILITY CONDITIONS FOR CONVOLUTION PRODUCTS

Let {p,j, 1 £Jj =k, neN} be a double sequence of measures from # with
k, 1 . Following the classical approach we are interested in the weak convergence
of the sequence of convolution products

kn
{H“n.i’ neN} .
j=1

First we shall state some techaical conditions useful in the study of weak convergence.

Definition. We say that {,;} (or the sequence of convolution products H Hnj) is
a) uniformly assymptotically negligible (u.a.n.) if I

) lim max Q,(u,; —e) =0 foreach «>0,

n=w JSjsSkn

b) stable, if

(8) lim supz Quttn; — €) < © foreach «>0.

n=o j=1
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Comments.

1) According to Lemma 1, in (7) and (8) we can replace equwalently Q,by F,or G,.

2) The notion of stability was defined in a more general sense, for arbltrary classes
of seminorms, in [3]. v

3) Consider, as a particular case, a sequence of convolution powers {u ,HE N}
(i.e. p,; j = M, for each j). Then the stability obviously implies the u.a.n. condition.:

The next lemma shows a connection beteen stability and weak convergence.

Lemma 2. Let {y,;, 1 £j < k,, ne N} be a double sequence of probabifity
kn

measures on R, k, 1 oo. Suppose [] p,; converges weakly. Then there are constants
nj € R such that for alla >0 J=!

% <o
©) lim sup 2 Juxiza) Hnilan; + dx)\
now j= -0 if a- oo,
k'l
(10) lim sup Zl|_|'(|x|<a) X tp(@,; + dx)| < o0,
n—ow j=
k'l
(11) limsup Y fixj<ay X* taj{@; + dx) < 0.
n-o j=1

If w,; are symmetrical, (9)—(11) hold with a,; = 0.

For the proof see [3], § 4.6.

In general, Lemma 2 does not hold with a,; = 0 even if the u.a.n. condition is
fulfilled: consider the example

kn = 2n ’ Aunj = 5((_1)’ n—l/Z) s 1 é.} é kn s

where d(x) denotes the Dirac probability measure concentrated at x € R.

According to (4), the conditions (9)—(11) without the limit condition in (9) are
equivalent to the stability of the shifted measures v,;(*) = p,;(a,;+ *). If we now take
arbitrary o > f > 0 we see that

(12) lim sup Z a” ”(|x|<,,} x v,(dx)| <

kn
< o~ !lim SUPJZJI(I*K#) X Vp(dx)| + lim supjzlj”,,lg“ Voi{(dx) .
n—o = n— oo =

Assuming that (9)—(11) hold, we can make the second term on the right hand side
arbitrarily small taking a great f > 0, and the first term tends to zero with « tending
to infinity. Thus the expression on the left hand side in (12) tends to zero when & — 00.
In quite a similar way we can see that

kn
lim sup a7 2 Y. f(jj<ay X* Vaj(dx) > 0 (a > ).
j=1

n-* oo
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These conditions lead us to the following definition. We shall say that {u, ;} is strongly
stable if it is stable and
* kn

(13) limsup Y. Q,(ttn; — €) > 0 (a— )

n—-o0 j=1

(this condition can be again expressed equivalently using F, or G, instead of Q,).
Now we can reformulate Lemma 2.

Corollary 1. If the assumptions of Lemma 2 are satisfied, there exist a,; € R such
that the double sequence of shifted measures {,/(a,;+*)} is strongly stable.

On the other hand, we shall show later that the strong stability implies the ,,abso-
lute” tightness for convolution products.

In the rest of this section we shall consider only probability measures. If p is
a probability measure, the characteristic function f(t) need not have in general
nice properties to make taking logarithms possible. Under suitable conditions,
however, we avoid difficulties.

Lemma 3. Let u be a probability measure such that ji(t) + 0 for all Itl <T
Then there exists a unique continuous branch of logarithm log [Z(t) defined on
[T, T] such that log ji(0) = 0.

Lemma 3 is a consequence of a classical result of complex analysis (see [1]).

The u.a.n. condition in the ,,Fourier expression” implies that max |;I,, () — ll - 0,

J

n > o, locally uniformly in ¢ (abbreviation lLu. [f]). Thus, given any T > 0, the
functions fi,;(t) are nonzero on [—T, T] for sufficiently large n and all 1 £ j £ k,
and we can consider their logarithms, according to Lemma 3.

Lemma 4. Let {u,;} be a double sequence of probability measures and suppose
{1} is stable and u.a.n.. Then

kn kgl‘ -
(14) lim sup |log A -3 () — Ul =0
n-oow |t|ST j=1 j=1

for each T > 0.

Proof. The Taylor expansion of the complex logarithm gives

(19 g1 = ¥ 108 () = X (k) = 1) + rlaf0) ~ 1)

where Ir(z)l = o(|z|), z -0,

Given any T > 0, the u.a.n. condition enables us to make |f,/t) — 1| arbitrarily
small for all |f| < T and sufficiently large n. Hence we have|r(i1, (1) — I)I =<
< nlin(e) - 1| for any given > 0, all |¢| £ Tand sufficiently large n. Consequently,

|:2;r(ﬁn1(t) -1 = njzllﬁ,;j(t) -1,
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where the right hand side can be made arbijtrarily small by the choice of n > 0, due
to the stability condition. Now the result follows from (15).

Lemma 5. Let {y,;} be u.a.n. and strongly stable and let J, = {1,2, ..., k,} ‘be

arbitrary nonempty subsets. Then the sequence { [| p,;, n € N} is tight.
Jjeln

Proof. The well-known Doob’s inequality (see e.g. [4], §8.3) implies

(16) (I1 ) {lef zo} (1 + 200 a5 Re(1 - Ha0)d =
(1 + 21t)2 sup |t —JD (1)) -

The complex exponent1al is Lipschitzian on the half-plane {Re(z) < 0}, hence
there is a constant y > 0 such that lexp (z) — exp (u)| < ylz - uI for Re(z) £ 0,
Re (u) < 0. Hence we have

|1 - I_I #nl(t)l - |exp (0) — €xp (IOg H /‘n.’(t))l =

< o8 T 701 = ]2 Gul®) - )]+ o0).

n — co, Lu. [t] (we have used Lemma 4).
From (16) we obtain

(ITm){lel 2 o = (1 + 20"y & Fliy = ) + of1),

n — co. The strong stability now guarantees the assertion of the lemma.
Finally we show that the unpleasant constants a,; from Lemma 2 can be avoided
in the case of convolution powers.

Lemma 6. Let p, be probability measures and k, | oo natural numbers. Suppose
{ jfn

pkn converge weakly. Then {1} is strongly stable.
Proof. By Lemma 2 there are constants a, € R such that {+}"} is strongly stable,
where v,(*) = p,(a,+ ). We shall show that

(17) sup k,|a,| < o .

Suppose (17) is not true. Turning to a suitable subsequence we can assume, say,
k,a, - oo (the case with —oo would be analogous). Lemma 5 now implies that
{v""} is tight (see also Comment 3). However, we have vi*(*) = pi(k,a,+*), and
since k,a, — oo it is not possible for both sequences {14} and {vi"} to be tight.-This
contradiction proves (17).

To show the strong stability of {yi"} we take some a > 0 and verify (9) (11)
with a, = 0. For n so large that |a,| < a/2 we have

(18) K Ji1x12a) ta (%) = ki [(1x+an12a) Va(dX) S K, j(lxléaﬂ) v(dx),
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(19) kol [t <o) % Ba(dX)] = Kol Jjeant <ay (% + @) va(dx)] <
< k) j(’,,,q, x v(dx)| + k.(30[2) [(ix2a2) va(dx) + K,

(20). kn §ux1<ay X* 1(d%) = ki f(jxrani<ay (x + 2,)? v,(dx) <
< Ky [(ixj<3ar2y X va(dx) + 2k, an‘ Siix1<ay X Vn(dx)‘ +
+ 2k,|a,| (3a/2) [yx1zarzy va(dx) + Kia.

ar.

The last three inequalities together with the strong stability of {vi"} yield the strong
stability of {z"}.

3. INFINITELY DIVISIBLE MEASURES AND LEVY MEASURES

If a measure HE M satisfies
(21) L=V, %... %V, =V,

for each re N and suitable v, € 4, we call it an infinitely divisible measure (i.d.
measure). Of course, the roots v, are then i.d., too .

It is well-known that the characteristic function of an i.d. probability measure
is non-zero everywhere and thus we can consider its logarithm. (21) implies
log #,(t) = r~!log fi(t), r € N, which guarantees the uniqueness of the roots in (21).

Lemma 7. Any i.d. probability measure is uniquely infinitely divisible.
For the representation of i.d. measures we shall use Lévy measures.

Definition. Let A be a o-finite nonnegative Borel measure on R\ {0}. If A satisfies
(22) . Susizp Mdx) < o,
23 Jus1<my ** A(dx) < o
for all 8 > 0, we call it a Lévy measure.

Let now A,, A be Lévy measures, n € N. We say that A, - A weakly (n — o) if
lim [fdA, = [fdA for every bounded continuous function f on R which vanishes
n

in some neighbourhood of the zero point.

. 4. THE MAIN THEOREM

Let {u,} = # be a sequence of measures and k,1 oo be a sequence of natural
numbers. The following conditions are equivalent:

‘(i) Fk(tts — €) = kn(ttn — €)) = 0 (" - °°)

m— oo
for each a > 0;
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(i) there is a Lévy measure A such that
a) k,(u, — €) > A weakly (n - ),
b) there exist finite limits

lim k, [(z<py X pa(dx) = M§?, i=1,2,

for all B > 0 such that — B and B are A-continuity points,
¢) lim k,(u,(R) — 1) = ¢, where c is some real number;

(iii)  there is a (infinitely divisible) measure pe 4 such that p;» — p weakly
(n - 0);

(iv) for each re N there is v,e M such that pf'™ — v, weakly (n - o) and
v, = vy ([+] denotes the integral part).

Comments. 1) It is shown in [3] that the Bolzano-Cauchy criterion (i) implies
(iii) and (iv) for a more general class of seminorms. The inverse implication is shown
to be true in this general case under the additional assumption of stability. Our
proof does not refer to these results because our aim is to show the power of the
classical technique of Fourier transforms.

2) In [8] the implication (i) = (ii) was shown; it was formulated using functions
of bounded variations instead of measures.

Proof. 1) (i) implies (ii) and (iii).

First let us consider only probability measures p,. Denote f,(t) = k,(@,(t) — 1).
By virtue of the completeness of continuous functions with the supremum norm, the

assumption (i) implies the existence of a complex function f such that f,(t) - f(2),
n — o, Lu. [f]. Now we use the fact (see [7], § 5.4) that for each n

expfn = ¢Xp kn(ﬁn - 1)

is a characteristic function of an infinitely divisible probability measure, say {,. We
find now the Lévy - Khinchine representation of {,

(24) £ = ky j (@ = 1) ) =

—

=k"i:J:1+ un(dx)+kjw("‘— itx )u,,(dx)

. J'"" (itx itx )
= iyt + el —
- o0
where

® x
(25) Yo = ky J-_ —1+—Xz /‘n(dx) s

G(d)
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2
G,(dx) = k, L(dx
,(dx) 1+2u()

(G, is a finite meastre on R with the density x2/(1 + x?) with respect to Knit)-

Observe that {,(f) = exp f,(t) = exp f(t), n - o, Lu. [t], hence (see [7], §5.5)
exp f(t) must be a characteristic function of an i.d. probability measure, say p,
with the Lévy - Khinchine representation

(26)  log(t) = £(1) = int + j ( — 1 2)‘ * % 6(d)

1+ x x?

with

T =7 (n— o),

‘G, > G weakly (n— ).
Define a Lévy measure A on R\ {0} as

A(dx)~1+x

G(dx) .

By (25) and (26), k,u, — A weakly (n — o) (note that k,u, considered as a Lévy
measure coincides with k,(1, — e)). We can find the limit (n - o0)

kn §x1<py X% #i(d%) = f(1x1<p (1 + x?) G(dx) -
= [gz1<p (1 + x%) G(dx) = M§»,

provided —f and B are A-continuity points (and hence G-continuity points). More-
over, we have

(27) kn Juiz1ze) $in X pa(dx) > fijz1zp) sin x A(dx) (n — o),
(28) ky |2 sin x p,(dx) = k(f,(1) — @(—1))[2 >
- (f() - f(-1)2 (n> ),
(29) k,,J. (x — sin x) p(dx) = J' 1+ x?) ﬂ G,(dx) >
(Ix1<p) (Ixl<p) x*

- 'f a+ z)ﬂ G(dx)
Ux1<p) x?
(the last function under integration is bounded).
Using (27)—(29), we can find the limit
li:n kn fiixi<ay X ma(dx) = MG .
Condition ¢) in (ii) holds automatically when considering probability measures,
hence (ii) is proved.

We have already found the limit measure p for (iii) (see (26)); it remains to show
the weak convergence " — p. The assumption (i) implies the boundedness of
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F(k,(1t» — e)), hence the stability of {;f"}. The u.a.n. condition is fulfiled, too. Thus
we can apply Lemma 4 obtaining

|tog n(t) — k(1) — 1)) -0, n>oo, Lu[f],

consequently log ji&"(t) - f(t), n > oo, Lu. [f], and (iii) is proved.

Now let u, be arbitrary positive measures and let us write them in the form g, =
= ¢c,V,, C, being positive numbers and v, probability measures. Suppose (i) holds
for p,. Since ¢, = fi,(0). putting t = 0 in (i) expressed by characteristic functions
we get

|ku(cn = 1) = kn(cm — 1) = 0 (” ~ °°).

m — o0

Hence we have
(30) limk,(c, — 1) = ¢ forsome ceR
(consequently, lim ¢, = 1).

Now we find the Cauchy convergence

Cakia(Ta(t) — 1) = cpkn(Fn(t) — 1)| =
< [l Blt) = 1) — knliinft) — 1| +

+ oen — 1) = knfem — 1)] = 0 (’:n - °°) Lu. [1].

— 0

Since ¢, — 1, the Lu. convergence of k,(7,(f) — 1) follows. Thus the sequence {v,}
fulfils (i) and, consequently, it fulfils (ii) and (iii), too. To prove (ii) for p,, we take
the same Lévy measure A as we have for v, and realize that

k(u, — €) = ¢,k (v, — €) + ky(c, — 1)e.

The measure k,(c, — 1) e vanishes on R\ {0} and, using (30), we sce that a) holds.
The proof of b) and c) is immediate.

To prove (iii), use the fact that lim ck"= €, and hence pf" — ey weakly if Vi — u
(n > oo). "
2) (ii) implies (i).
The Taylor expansion gives the equalities
(1) kn(i1(t) — 1) = kn(fin(t) — 1) =
= (kn(cn - 1) - km(cm - 1)) + (kn(ﬁn(t) — ) — km(ﬁm(t) - cm» =
= (kaea = 1) = e = 1) + 2 (6% = 1) (ke — Fnit) (d5) =
= (kn(cn - 1) - km(cm - 1)) + I(IXIEI?) (e“x - 1) (kn”n - kmﬂnt) (dx) + .
+ Juxi<py 1% (kttn — Kt (dx) +
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+ Just<m (= 252[2) (Kapty = Knften) (dx) +
+ I(lxl<ﬁ) r(tx) (kn“n - kmuM) (dx) ’
where |r(u)| = o(u?). u - 0.
Denote by Iy, 14, I,, I3, I, in the given order the five summands in the last expres-
sion of (31). Fix arbitrary ¢ > 0 and T > 0; we want to show the expression in (31)
to be less than ¢ for all |t| < T and sufficiently large m, n. I, tends to zero with m, n

tending to infinity (see c)). Taking 8 > 0 sufficiently small we can guarantee |r(tx)| =<
< nT*x? for all |x| < B, l l < Tand any given > 0. Then

|Ls| < nT? 2supk Jxi<s ** a(dx) < 0

(see (i) b)) and, hence, we can make |I4| < g2 for all |t| < T by prescribing suffi-
ciently smalln > 0. The Cauchy criterion applied to the convergent sequences in (ii)
b) yields I, —» 0 and I3 — 0 Lu. [{] when m, n — 0. In a similar way we see that
I, - 0 Lu. [t] (m, n > o) as a consequence of (ii) a). Thus (i) is proved.

3) (iii) implies (i).

First we supose pu, to be probability measures. Supposing (iii) holds we know by
Lemma 6 that {p "} is strongly stable. Lemma 4 implies

sup |log (1) — k(@ (t) — 1) > 0, n— oo,
lsT

and (iii) gives
sup |log At — log ﬁ(t)| -0, n—> o©.
I|sT

From these two tacts we derive
sup |k, (,(f) — 1) — log @(t)] > 0, n— .
It)sT

The Bolzano-Cauchy criterion (i) immediately follows.

In the general case consider again measures in the form yu, = ¢,v, with ¢, > 0 and
probability measures v,. The assumption p** —» u weakly gives cf» —» d = y(R) >0,
thus k,(c, — 1) - ¢ = log d and vj» - d~'u weakly. Now the proof of (i) for {u,}
follows from its validity for {v,}.

4. (iii) implies (iv).

We again suppose p, to be probability measures. Supposmg that (jii) holds we
know by Lemma 6 that {p,,"} is strongly stable. Then, for any fixed r € IV, Lemma 5
guarantees the tightness of the sequence {u!*"l, n e N}. Let v, be a weak limit of
some subsequence pff~/1, j — co. Then

(32) iy (O > 55, jo oo, Lu [f].

Simultaneously we have
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(33) A (&)1 = (fin (O 1, ()P ns
for some B,, < r,je V.

By the assumption, f, (t)*s converges to f(f) Lu. [t]. The u.a.n. condition (which
is here a consequence of stability) implies f, (t) — 1 Lu. [¢], hence also f, (1)’» — 1
Lu. []. Thus from (32) and (33) we conclude ¥} = f.

Suppose now that v, is not the weak limit of the whole sequence ul**"1, Then
there must exist another weak limit {, % v, of another subsequence. By the same
argument we get {" = . However, Lemma 7 implies {, = v,. This is a contradiction
which completes the proof of (iv).

The case of nonnegative measures g, can be again easily modified to the ,,pro-
bability case”.

Since the implication (iv) => (iii) is trivial, the proof of the theorem is complete.
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Souhrn

CHARAKTERIZACE SLABE KONVERGENCE KONVOLUCNICH MOCNIN

JAN RATAS

V ¢&lanku je zkoumano né&kolik pojmu stability posloupnosti konvolu&nich mocnin pravd&-
podobnostnich m&r na pfimce. Za pouZiti fourierovskych seminorem se dokazuje v&ta o charak-
terizaci slabé konvergence takovych posloupnosti.
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Pe3ome

XAPAKTEPM3ALIMS CJIABOYI CXOAUMOCTH CTEITEHEN CBEPTKU

JAN RATAJ

B paGoTe pa3GuparoMTCA HEKOTOPHIE HMOHATHS YCTOMYMBOCTHM IIOCIEJOBATENILHOCTEH CTENEHei
CBEPTKH BEPOATHOCTHBIX Mep Ha mpsmoi. Mcnonb3ys cemMmHOPMEI Pypbe, aBTOpP IOKa3bIBaeT
TEOpeMY O XapaKTepu3aluuH ciiaboil CXOOMMOCTH TaKHMX IOCIE0BATEILHOCTEMH.
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