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NATURAL OPERATORS TRANSFORMING VECTOR FIELDS
TO THE SECOND ORDER TANGENT BUNDLE

MirosrAv DouPoVEC, Brno
(Received November 30, 1987)

Summary. We study some properties of the non-product-preserving functor T2 of the second
order tangent vectors. We determine all natural operators T— TT? transforming vector fields
to the second order tangent bundle, and all natural transformations TT2— TT? over the identity
of the functor T2.
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Recently, Koldf has determined all natural operators T — TF transforming every
vector field on a manifold M into a vector field on FM, where F is any natural
bundle corresponding to a product-preserving functor, [6]. The proof is based on the
result by Kainz and Michor that every such a functor coincides with a Weil functor
T® defined by a Weil algebra B. The functor T" of the r-th order tangent vectors is
an example of a non-product-preserving functor, which has different properties.

Using a general method by Kolaf, [4], we determine all natural operators trans-
forming every vector field on a manifold M into a vector field on its second order
tangent bundle T2M. We deduce that all such operators form a 4-parameter family.
In this connection we find all natural transformations TT? — TT? over the identity
of the second order tangent functor. — All manifolds and maps are assumed to be
infinitely differentiable. The author is grateful to Prof. I. Kol4¥ for suggesting the
problem, useful discussions and valuable comments.

1. THE SECOND ORDER TANGENT FUNCTOR

Denote by #f the category of all manifolds and all smooth maps, by & the
category of fibred manifolds, by ¥"%# the category of differentiable vector bundles
and by #f,, the category of m-dimensional manifolds and their local diffeomorphisms.

The space T?*M = J*(M, R), of all 2-jets of a manifold M into reals with target
zero is a vector bundle over M. The dual vector bundle

T*M = (T**M)*
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is called the second order tangent bundle of M, [9]. Given a map f: M — N, we
can define a linear map T;4,N — T2*M by the composition of jets ¥ - Vo j2f for
any Ve T/%)N. The dual map T?M — T7,,N is said to be the second order tangent
map of f: M — N at x and is denoted by T'?f. We have defined the functor T?: #f —
— ¥"4. Since any linear functional on T?*M can be expressed in the form

2
ul -?L + ub ____6 /
ox’ dx* ox’

with u*/ symmetric in i and j, any local chart (x*) on M induces a local chart (x', u’,
u'/) on T2M. Given some local coordinates (x’) or (y*) on M or N, the corresponding

fibre coordinateson T2M or T?N are (x!, u’, u'/) or (y?, v?, v"9), respectively. Let

y* = f?(x) be the coordinate expression of a map f: M — N, and jif = (x', y?,
?, /7). Then the coordinate formula for T%f is, [3],

(1) v = ffui + f{’,u” ’

vy = fRfu.

2. NATURAL OPERATORS

Let us recall the concept of a natural bundle in the sense of Nijenhuis, [7].

A natural bundle over m-manifolds is a functor F: Af,, - & # such that

(a) every manifold M € Ob .#f,, is transformed into a fibred manifold p,: FM—
— M over M,

(b) every local diffeomorphism ft M — N of m-manifolds is transformed into
an . — morphism Ff over f,

(c) for every inclusion of an open subset i: U — M, we have FU = py'(U) and Fi
is the inclusion py'(U) — FM, see also [8].

A natural bundle F: /f,, » & 4 is said to be of an order r, if, for any local
diffeomorphisms f, g: M — N and any x € M, the relation j* f(x) = j" g(x) implies
Ff|F.M = Fg | F,M, where F.M denotes the fibre of FM over x e M. Let
C*(Y - X) denote the set of all smooth sections of a fibred manifold ¥ - X. Given
two fibred manifolds Y — X and W — Z such that g: Z — X is also a fibred manifold,
a map A: C*(Y— X) » C*(W — Z) is called a base extending operator, [5]. We
say that 4 is an r-th order operator, if j's,(x) = j's,(x) implies A4s,(z) = A4 5,(2) for
any sy, s, € C*(Y— X), any x € X and all z € g~*(x). Such an operator is said to be
regular, if it transforms every smoothly parametrized family of sections into
a smoothly parametrized family.

Let F and G be two natural bundles on .#f, and let E be a natural bundle on .£f,,
m = dim GR". A natural operator A: F — EG is defined as a system of regular base
extending operators Ay: C*(FM — M) —» C*(EGM — GM) for all M € Ob f,
such that for every se C*FM we have Ay(Ffosof™") = EGf o Ays o (Gf)™! for
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every diffeomorphism f:M — N, and Ays = (Ays) | GU for every open subset
U < M. A natural operator A: T — TF is said to be absolute, if 4,X = AyOpy
for every vector field X on the manifold M, provided O, is the zero vector field on M.

Denote by J™ the functor which transforms every fibred manifold Y — X into its
r-th jet prolongation J'Y - X and every fibred manifold morphism ¢: Y — Y over
a local diffeomorphism ¢4: X — X into the induced map J'¢: J'Y —» J'Y given by
JO(jof) = Jooe(® o f o 05 ). If F is an arbitrary s-th order natural bundle, then
J'Fis an (r + s)-th order natural bundle.

Remark 1. To describe all natural operators A: F — EG, we shall use thefol-
lowing assertion, [S]. Let (J'F)o = (J’FR™),, G, = (GR™),, (EG) = (EGR™),
be the standard fibres. There is a bijection between the G}, — equivariant maps
(JF)y x Gy — (EG), over the identity of G, and the r-th order natural operators
F — EG, provided s is the maximum of the orders of the functors J'F and EG, and G;,
means the group of all invertible s-jets from R™ into R™ with source and target O.

3. NATURAL OPERATORS T— TT?

Denote by 2 the flow operator transforming every vector field X on M into its
flow prolongation J2X = 8/at|, (T*(exp tX)), where exp tX means the flow of X.
If X¥(x)(8/ox") is the coordinate expression of X and X} = (0X'(x)[ox’), X}, =
= (02X(x)/0x’ 9x*), then one easily evaluates the coordinate expression of J2X

X‘i, + (Xju + XEu') i + (XM + Xiu'™) —.
oax* ou’ ou"
Further, the multiplication of vectors by real numbers determines the Liouville
vector field L(M) on T?M, the coordinate form of which is

. 0
u — + u'l _—
ou’ ou'
Clearly, X — L(M), X € C*TM is an absolute operator T — TT>. Moreover, given
a vector field X on M and a function f: M — R, we can iterate the derivative X(Xf)
of f with respect to X. In this way we obtain an operator D,: C*(TM) — C*(T*M)
with the coordinate expression
x0 Ly B Y iy T
ox' o0xJ ox* - ox* ox’
Analogously, using the derivative Xf of f with respect to X, we obtain the identity
operator D,: C*(TM) —» C®(TM). Further, we have a canonical inclusion TM <
< T2M. The section D,X: M — T?M, k = 1,2, can be extended by means of the
fibre translations into a vector field constant on each fibre, so that we have constructed
natural operators D,, D,: T— TT>.
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Proposition 1. All natural operators T — TT? form the 4-parameter family
(2) [ky72 + k,L+ k3D, + kyD,, k;eR.

Proof. Lemma 1 in [6] implies that the order of any natural operator A: T — TT?
is less than or equal to 2. By Remark 1 there is a bijective correspondence between
such operators and certain G2, — equivariant maps of the standard fibres. The co-
ordinates on the standard fibre S = TZR™ are u’, u". Since T? is a second order
functor, S is a G2 — space. Denote by

3) aj, @y A

the canonical coordinates on G2 and by tilda the coordinates of the element inverse
to (3} in GJ. By (1), the action of G on S is

(4) it = a + aju’,
uu _ al j kl

Let V2 = J3(TR™) be the space of all 2-jets of the vector fields on R™ at the origin.
Using standard evaluations we find the following equations of the action of G2 on V>

X' =ax',
X} = a,,@’X' + aiX%a;,
while for X we need only the action of the subgroup a}, = 0:
X} = ahn,d7aiX? + ajXmaay .

The standard fibre of TT? is Z = S x R™ x S with the coordinates u’, u'/, Y’ =
= dx’, U' = du’, UY = du". Using (4), we deduce the transfermation laws of the
coordinates Y, U, UV

Y: ajy’,
b= aU + ap U + ah Y + al 'Y

<
|

UV = ajalU" + (a}na] + alal,) u'Y™.
We have to determine all G2 — equivariant maps f: V2 x S — Z over ids. Let
Y= fi(X4 X5, X, ut, ut)
denote the first series of components of f. Consider first the cquivariancy of f*
with respect to the kernel K5 of the jet projection G2, — G given by a! = 8%, aj, = 0.
We obtain
FiXE X5 X, b, ull) = X X5 X0, + abuX' ul, u),
which indicates that f¥ are independent of X*, ix- Further, the homotheties a; i = ké} ;
and the other a's vanishing give the homogeneity condition
kfi = fikX, XJ‘:, ku', k*u').
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Therefore
= gj(X )X’ + h_,(X") ul
where g} and hj“are smooth functions. The equivariancy of Y’ with respect to the
kernel K, of the jet projection G2, — G, characterized by aj = 6] means
g X x! + h,i(X'f) w = ghX% + af, X™) v + (X} + ab,X™) (v + af ).

This implies h} = 0, g,‘- = const. Evaluating the equivariancy of Y* with respect
to the subgroup G = G2 given by arbitrary a} and the other a’s vanishing we find
that g} are G — equivariant. By the theory of invariant tensors, [1], g} = k,5},
so that

) Y =k, X', k,eR.

Consider now the difference A — k,7°%, where 72 means the flow operator and k,
is taken from (5). This operator transforms every vector field X e C*(TM) into
a vertical vector field on T2M. We have VT?>M = T?M @ T*M, so that the compo-
nents h*/ of the difference operator have the tensorial transformation law. Similarly
to the case of f* we prove that h*/ are independent of X},. The homotheties lead to the
condition k*h* = hY(kX', X}, ku', kzu”). Hence

WY = fAXm) uf + gd(X7) vwhu® + X7 XM + k(X)) XHXE
where fi, gl hl4 and kY are smooth functions. Further, taking into account the
equivariancy of A" with respect to the kernel K, we obtain
() FHX™) ub + glXT) utu’ + RE(X™) XMul o+ KH(XT) XX =
Igl(Xm) ukl + g“{Xm (u + ak rs) (u + atq tq) +
+ hJ(X7) XHu' + alu™) + KX XX
This implies g;} = 0. Setting ' = 0 and u”/ = 0 in (6), we obtain
k(XT) XX = k(X + ap,X?) XX,
This gives, similarly to the case of g/, k| (X"‘) X*X' = k;X'X, k4 € R. Analogously,
putting u¥ = 0 in (6) we prove that hj(X7) X*u' = e(X'u/ + X'u'), ee R. The
remaining part of (6) has the form
FAXT) Ut + (X' + Xu') = fHXT + ap Xy ut +
+ e[ Xi(w + alu*) + X(u' + aju)].
Differentiating the latter relatlon with respect to X7 we get df;j/0XT = const, so that
SHXTY ut! = (gifn X + cii) u*'. Applying the theory of invariant tensors, [4], we

find fiju*' = ku' + fXfu" + g(XiuM + Xiu™), k,, f, g € R. Up to now, we have
deduced

) W = ks X'X9 + kyu¥ + o(X'ud + Xu®) + fX5ulT + g(XiuM + Xiu™).
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The equivariancy with respect to the subgroup G, = G2, characterized by a,‘ = 6;
then leads to the relation

e(X'af u + X'alu*) + faf X' + g(ap X't + af X'u™) =0.

If the dimension m of the manifold M is greater than or equal to 2, then e = f =
= g = 0, while in the case m = 1 we have

(8) 2e +29 4 f=0.
Suppose first that m = 2. Then
9) hi = ku' + kXX,

Now, we can take the difference A — k, 72 — k,L — k3D,. Its components h’
have the tensorial transformation law. Evaluating first the equivariancy with respect
to the kernel K; and then with respect to the homotheties we obtain

h' = fUXT) X7 + gji(X7)u! .
In the same way as in the case of f¥ we find
(10) hi = k4Xi s, k4 € R .
Hence (5), (9) and (10) prove the proposition form = 2. :

Finally, let m = 1. Denote by (uy, u,) the coordinates on S, by (ay, a,, a;) the
coordinates on Gj3, by (X, X,, X,) the coordinates on V7 and hy, h, the components
of the difference 4 — k;72. It follows from (7) and (8) that

hy = kyu, + k3X? + o(X,u, — Xu,), «eR.
We easily evaluate that
(11) alhl(X, Xl’ Xz, Uy, uz) + azkzuz + a2k3X2 + aza(Xluz - X“l) =
= hl(X> X_x,Xz, 1—41, ’72) >
Where ﬁl = alul + azuz, ﬁz = a%uz, X = aIX, Xl = Xl + (azlal)X, While
for X, we need only the action of the subgroup a, = 0: X, = (1/a,) X, + (as/a?) X.
Putting a; = 1, a, = 0 in (11) we show that h; does not depend on X,. Next, the
homotheties a; = k, a, = 0 imply hy = f,(X,) X + g4(X,) u;. Further, the equi-
variancy of h; with a, = 1 leads to the relation
(12) FiX )X + go(X0) uy + az[kau; + ka3X? + (X u; — Xu,y)] =
=f1(X1 + CIZX)X + gl(Xl + a2X) (“1 + azuz) .
Differentiating with respect to u, we obtain
a)[k;y + aX ] = g(X{ + a2X)a,.

Next, differentiating the latter relation with respect to X and setting a, = 0 we get
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dg94(X,)/0X, = 0. This gives g,(X,) = g = const. Further, if we compare the
coefficients by u, in (12), we find « = 0, g = k,. The relation (12) has now the form

(13) © (X)X + agksX? = fi(X, + a,X) X .
Differentiating with respect to X; we show that df,/0X is constant. This yields
(14) Ju=1Xi+ ks, fkseR.

Finally, (13) and 14) imply f = k,. Thus, we have deduced
hy = kyu, + kX2,
hy = kauy + k3 X X + kX .
This completes the proof.

4. THE NATURAL TRANSFORMATIONS TT2— TT?

Proposition 2. All natural transformations TT?> — TT? over the identity of T?
- form a 3-parameter family .

=aY?,
i =uUi+ﬂYi+yu‘,
UY = aU"Y + yull

| o~

with any a, B,y € R.

Proof. According to the general theory [2], the natural transformations TT? —
— TT? over id: are in bijection with the G2, — equivariant maps f: Z — Z of the

standard fibres. The coordinate form of the map f is

i fi(ui’ uld, Y, U, UY),
i gi(ui, uij, Yi, Ui, Uii) R
{3 - hij(ul" uij’ Yi, Ul" Uij) .

SIS

Considering equivariancy with respect to the homotheties we obtain homogeneity
conditions
kft = fi(ku', K*u', kY, kKUY, K2UY),
kg' = g'(ku’, K*u", kY', KU', K*U"Y),
k%g" = g'(ku’, k2u¥, kY, kKU', K*UY).
This implies
(15) fPo=aw’ + BY + U,
g' =au' + bU' + cY,
g" = au + bUY + KY(u', Y, UY),
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where h'/ are certain polynomials. Consider now the equivariancy of f* with respect
to the kernel K,. We obtain

ayut + By Y + 9, Ut = oy (u' + ah’®) + B, Y +
+ 7(U* + ahU* + af! Y* + afu*Y").

Then we have a‘l =0, y, =0, and B, is arbitrary, so that the function f* in (15)
has the form

(16) fi = ﬁl Yi . .
Analogously, using the equivariancy of g’ with respect to the kernel K, we find
(17) az = al N b1 = b2 = ﬂl > hjk(ui, Yi, U‘) = 0 .

Substituting (16) and (17) to (15) we complete the proof.

Remark 2. For a Weil functor T%, all natural operators T — TT® can be construc-
ted from the flow operator 2 by applying all natural transformations H of TT®
into TT® over the identity of T, [6]. This is not true for the non-product-preserving
functor T2, In this case all natural operators T — TT? form a 4-parameter family,
while all natural transformations H: TT? — TT? over idy. form a 3-parameter
family. Hence the composition H - 2 forms a 3-parameter family only, in which
the operator D, is not included. ‘

Remark 3. In the case of a Weil functor T?, Theorem 1 from [6] implies that the
difference between a natural operator T — TT?® and its associated absolute operator
is a linear operator. This is not true for the non-product-preserving functors, the
operator D, being the simpliest counter-example.

Remark 4. The operators 7 2, L and D, transform every vector field on a manifold
M into a vector field on T2M tangent to the subbundle TM < T2M, but D, does
not. With a little surprise we can express it by saying that the natural operator D,:
T — TT? is not compatible with the natural inclusion TM <= T?M.
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Souhrn

PRIROZENE OPERATORY TRANSFORMUJICI VEKTOROVA POLE
NA TECNY BANDL DRUHEHO RADU

MIROSLAV DOUPOVEC
V é&lanku jsou urleny vSechny ptirozené operatory prevadgjici libovolné vektorové pole

na varietd M na vektorové pole na te¥ném bandlu druhého ¥adu T2M. V této souvislosti jsou
nalezeny vSechny ptirozené transformace TT 2 > TT? nad identickym zobrazenim funktoru T2

Pesiome

ECTECTBEHHBIE OIIEPATOPBI, ITPEOBPA3YIOIIME BEKTOPHBIE TTOJIA
B KACATEJILHOE PACCJIOEHUE BTOPOW CTEIMEHU

MIRrOSLAV DOUPOVEC
OmnpesiensiroTcsi BCE €CTECTBEHHbIE ONEPaTophl, mnpeobpasyrouiue MobOe BEKTOPHOE II0JIE Ha
mHorooOpaszuu M B BEKTOPHOE IOJIE HA KacaTebHOM PaCCIOCHAH BTOPOM CTENEHH T2M. B cBs3u

C TEM ONpPEHAENAIOTCS BCE €CTECTBEHHbIE MPeoOpPaA30BaHHUA TT? - TT? HaJl TOXOECTBEHHLIM OTO-
6paxennem dynkTopa T2.
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