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Let (X, dx), (Y, dy) be metric spaces. A sequence S in X is a mapping of the set N
of all positive integers into X; R denotes the set of reals and cl 4 denotes the closure
of A. Let Fy denote the set of all Cauchy sequences in X. Further, let C(X, Y) and
U(X,Y) denote the set of all continuous and uniformly continuous mappings
f: X - Y, respectively. Let F(X, Y) be the set of all mappings f: X — Y preserving
Cauchy sequences, i.e.

FX,Y)={f:X>Y:SeFy=>foSeFy}.
R. F. Snipes in [2] has investigated the properties of F(X, Y). He has shown that
(1) U(X, Y) = F(X, Y) = C(X, Y).

We recall some properties of F(X, Y) by [2].
Let (X, dy), (Y, dy), (Z, dz) be metric spaces. Then

(2) if fe F(X,Y) and g€ F(Y, Z), then g o fe F(X, Z);
(3) if fe F(X, Y) and A c X, then f|, € F(4, Y);
(4) if (X, dy) is a complete metric space, then F(X, Y) = C(X, Y);

(5) if (Y, dy) is a complete metri¢ space, 4 a subset of X and f € F(4, Y), then there
is g € F(cl 4, Y) such that g|, = f;

(6) if Yis a normed linear space, then F(X, Y) is a linear space.

In this paper we investigate on what assumptions the equalities in (1) hold.

We recall that a subset A of a metric space (X, d) is discrete if for every xe 4
there is a positive & such that d(x, y) > & whenever ye 4 and y + x. A set 4 is
uniformly discrete if ¢ does not depend on x.
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Definition 1. Let (X, d) be a metric space. A set A = X is called F-discrete if
every totally bounded subset B of 4 is finite.

Remark 1. Every uniformly discrete set is F-discrete and every F-discrete set is
discrete.

In fact, let A be a uniformly discrete set. Then there is a positive ¢ such that
d(x, y) > ¢ for any x,y€ A, x + y. Let B< A be a totally bounded set. Then
there is a finite set C = A such that B = {J S(x, ¢). By virtue of the uniform dis-

xeC
creteness of 4 we have B = C.

If A is not discrete, then there is a point a € A and a sequence S in A converging
to a such that {S(n): n e N} is infinite. But {S(n): n e N} is a totally bounded set
and hence A is not F-discrete.

Definition 2. We say that a metric space (X, d) has the property (V) if there is
a sequence S in X such that

(7) the sequence S has no Cauchy subsequence,

(8) for every positive ¢ there are positive integers m, n such that 0 < d(S(m), S(n) <
<e.

Remark 2. Evidently any totally bounded space does not possess the property (V).

Lemma 1. Let (X, d) be a metric space. Then the following three conditions are
equivalent:

(9) (X, d) is a complete metric space;

(10) if A and B are disjoint closed subsets of X, then there is a function f € F(X, R)
such that f|, = 0 and f|z = 1;

(11) every closed discrete set in X is F-discrete.

Proof. (9) = (10): In view of the normality of X there is a function f € C(X, R)
such that f|, = 0 and f|5 = 1. According to (4), f € F(X, R).

(10) = (11): Let us assume that there is a closed discrete set M in X which is not
F-discrete. Therefore there is an infinite totally bounded set P = M. Hence there is
a one-to-one Cauchy sequence S in P.

From the closedness and discreteness of M we obtain that the sequence S does not
converge. Then any subsequence of S does not converge, either. Let us denote
A ={S(2n — 1): ne N} and B = {S(2n): ne N}. Then 4 and B are closed disjoint
sets in X. Let f: X — R be a function such that f|, = 0 and f|z = 1. Then S € Fy,
but fo S ¢ Fg; i.e. f ¢ F(X, R).

(11) = (9): Let us assume that (X, d) is not a complete metric space. Then there
is a Cauchy sequence S in X which does not converge. Then any subsequence of S
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does not converge, either. It is easy to verify that 4 = {S(n): ne N} is a closed,
discrete, totally bounded and infinite set. Therefore A is not F-discrete.

Lemma 2. Let (X, d) be a metric space. Then (X, d) does not possess the property
(V) if and only if every F-discrete subset of X is uniformly discrete.

Proof. Necessity. Let (X, d) fail to have the property (V). Let us assume that
there is an F-discrete set 4 in X which is not uniformly discrete. Then for ne N
there are x,, y, € 4 such that

(12) 0 < d(x,, y,) < 1/n.

Let S be a sequence defined by S(2n — 1) = x, and S(2n) = y,. Then S satisfies (8)
and hence S does not satisfy (7). Therefore there is a Cauchy subsequence T of S.
Then B = {T(n): ne N} is a totally bounded subset of A. In view of the F-dis-
creteness of A the set B is finite. Thus there is ¢ > 0 such that d(T(m), T(n)) ¢ (0, &)
for all m, n e N, which contradicts (12).

Sufficiency. Let (X, d) have the property (V). Then there is a sequence S in X
satisfying (7) and (8). Let A = {S(n): n € N}. Then in view of (8), 4 is not a uniformly
discrete set. If B is a totally bounded subset of 4, then by (7) B must be a finite set.
Therefore A is a F-discrete set.

Lemma 3. Let (X, d) be a metric space. Let A be a subset of X and f: A — {0, 1)
a function such that f € F(A, €0, 1)). Then there is a function g: X — <0, 1) such
that g € F(X, <0, 1)) and g|, = f.

Proof. Let (X*, dy.) be the completion of (X, dx). Therefore (X*, dx.) is a complete
metric space and there is a one-to-one mapping j: X — X* such that j e U(X, j(X)),
j~' e U(j(X), X) and j(X) is dense in X*. By (1) and (2) we have foj~ ' € F(j(4),
<0, 1)). According to (5) there is h e F(cl j(4), <0, 1)) such that h|;4 = foj™*.
By Tietze’s theorem there is a continuous function h*: X* — {0, 1) such that
h*| o154 = b. In view of (4), h* € F(X, <0, 1)).

Let g = h*|;ix)oJj. Then g e F(X, <0, 1)) by (3) and (2). It is easy to see that
g IA = f. ,

Now let Y be a normed linear space. If Y = {0} then obviously the equality in (1)
holds. Hence we shall assume that Y % {0}.

Theorem 1. Let (X, d) be a metric space and let (Y, ||||), Y # {0}, be a normed
linear space. Then F(X,Y) = C(X, Y) if and only if (X, d) is a complete metric
space.

Proof. Necessity. Let (X, d) fail to be a complete metric space. Then by Lemma 1
there is a closed discrete set M in X which is not F-discrete. Hence there is a one-to-one
Cauchy sequence S in M. Let g: M - <0, 1) be defined by

g(x) =1 if x=25(2n) forsome neN and g(x) =0 otherwise.
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In view of the discreteness of M, g is a continuous function. Hence by Tietze’s
theorem there is a continuous function g*: X — (0, 1) such that g*|M = g. Let
ye Y,y £ 0. Itis easy to see that h: {0, 1> — Y, defined by h(t) = ty, is a uniformly
continuous mapping. Hence the mapping f = hog* is continuous. However,
f¢#F(X,Y), because Se Fy and fo S ¢ Fy.

Sufficiency follows by (4).

Theorem 2. Let (X, d) be a metric space and let (Y, |-|), Y & {0}, be a normed
linear space. Then F(X,Y) = U(X, Y) if and only if (X, d) fails to have the property

).

Proof. Necessity. Let (X, d) have the property (V). Then by Lemma 2 there is
an F-discrete set M in X which is not uniformly discrete. It is easy to see that there
are sequences S, T'in M such that

(13) 0 < d(S(n), T(n)) < 1/n forall neN
and
(14) S(i) + T(j) foreach i,jeN.

Let us define a function g: M — (0, 1) as follows:

g(x) =1 if x=S(n) forsome neN and
g(x) =0 otherwise .

Then obviously g(T(n)) = 0 for ne N.

Let P be a Cauchy sequence in M. Then {P(n): n € N} is a totally bounded subset
of M and hence it is finite. The sequence P is thus eventually constant and hence f o P
is an eventually constant sequence, too. Hence g o P€ Fyand ge F (M , <0, 1)). By
Lemma 3 there exists g* € F(X, €0, 1)) such that g*|,; = g. Let ye Y, y % 0, and
let h:<0,1) — Y be defined by h(t) = ty. Then (2) implies f = hog*e F(X, Y).
However, f is not uniformly continuous because for any n e N we have

d(S(n), T(m)) < t/n and | £(S(m)) = A(T(m)] = [¥] -

Sufficiency. Let (X, d) fail to have the property (V). We will assume that there is
feF(X,Y)— U(X, Y). Then there are sequences S, T'in X and ¢ > 0 such that

(15) 0< d(Sn), T(n)) < l/n
and

(16) 1£(8(n)) = ATm)] 2 &

The set A = {S(n): ne N} U {T(n): ne N} is not uniformly discrete. Hence ac-
cording to Lemma 2, the set A4 is not F-discrete. Therefore there is an infinite totally
bounded set B = A. Let e.g. the set B n {S(n): n € N} be infinite. Then the sequence S
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has a Cauchy subsequence P, i.e. there is an increasing function u: N — N such that
P = Sou. Let Q be a sequence in M defined by

0(2n) = S(u(n)) and Q(2n — 1) = T(u(n)) forall neN.

Then it is easy to verify (by (15)) that Q is a Cauchy sequence. Hence f o Q is a Cauchy
sequence, too. However, this contradicts (16).

Corollary. Let (X, d) be a metric space and let (Y, ||*|), Y % {0}, be a normed
linear space. Then U(X, Y) = C(X, Y) if and only if every closed discrete subset
of X is uniformly discrete.

Let X be a set and (Y, |-|) a normed lincar space. We recall that a mapping
f:X > Yis bounded if there is a positive k such that ||f(x)| < k for each x e X.
If (X, Y) = Y*, then bP(X, Y) denotes all bounded mappings belonging to P(X, Y).
If P(X, Y)is a linear space, then bP(X, Y)is a linear normed space with the sup-norm.

Lemma 4. Let X be a set and (Y, ||*||) a normed linear space. Let P(X,Y),
Q(X,Y) = Y* be linear spaces. Let P(X,Y) be a closed subset of Q(X,Y) with
respect to the topology of uniform convergence. If bP(X,Y) + bQ(X, Y), then
P(X,Y) is a nowhere dense set in Q(X,Y).

Proof. The uniform convergence in Q(X, Y) is metrizable with the metric

o(f, g) = min {1, sup {|f(x) — g(x)|: xe X}} for f,geQ(X.,Y).
In view of the closedness of P(X, Y), it is sufficient to show that P(X, Y) is a boundary
set. :

Let ¢ > 0 and fe Q(X, Y). We shall show that there is g € Q(X, Y) — P(X, Y)
such that o(f, g) < e. Since bP(X, Y) is a closed linear subspace of bQ(X, Y) and
bP(X,Y) + bQ(X,Y), according to [1] the set bP(X,Y) is nowhere dense in
bQ(X, Y). Hence there is he bQ(X, Y) — bP(X, Y) such that ||h(x)| < &/2 for all
xeX. If f¢ P(X,Y), then we put g = f. If fe P(X, Y), then we put g = f + h.
Then ge Q(X,Y) — P(X,Y) and o(f, 9) < .

Lemma 5. Let (X, dy), (Y, dy) be metric space. Let F, F(n) = f,, be a seq\uence
of functions belonging to F(X, Y) which uniformly converges to f. Then f belongs
to F(X, Y).

Proof. Let f, € F(X, Y) for all n e N and let F converge uniformly to f. We shall
show that fe F(X,Y). Let Se Fy and ¢ > 0. Then there is me N such that
dy(fu(x), f(x)) < /3 for each x e X.

Since f,, o S € Fy by the hypotheses, there is p € N such that dy(f,(S(i)), £(S(j))) <
< ¢[3 for i,j = p. Then for any i,j = p we have

dy(£(S(i)), £(S(7)). = dy(f(S(D), £(S(D))) +
+ dy(fu(S())s fu(S()) + Ax(Ful(S()), F(S(I))) < &[3 + 8[3 + 23 = 2.
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Therefore f o S € Fy, i.e. fe F(X, Y).

Theorem 3. Let (X, d) be a metric space and (Y, |*|), Y + {0} a normed linear
space. If (X, d) is not a complete metric space, then F(X,Y) is a nowhere dense
set in C(X, Y) with respect to the topology of uniform convergence. If (X, d) has
the property (V), then U(X, Y) is a nowhere dense set in F(X, Y) with respect to the
topology of uniform convergence.

Proof. Obviously C(X, Y), U(X, Y) and (by (6)) F(X, Y) are linear spaces. The
set U(X, Y) is closed in F(X, Y) and b Lemma 5 also F(X, Y) is closed in C(X, Y).
If (X, d) is not a complete metric space, then by Theorsm : *nd its proof and Lemma
4 we see that F(X, Y) is a nowhere dense set in C(X, Y). Simua:ly, if (X, d) has the
property (V), then by Theorem 2 and its proof and Lemma 4 we see that U(X, Y)
is a nowhere dense set in F(X, Y).
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