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Časopis pro pěstováni matematiky a fysiky, roč. 72 (1947) 

On the asymptotic distribution of geodesies 
on surfaces of revolution. 

E. R. van Kampen and Aurel Wintner, Baltimore. 
(Received October 5*h, 1938.) 

The present note deals with the distribution questions of a geo­
desic on a surface of revolution in the recurrent case. I t is an 
immediate consequence of the Kronecker approximation theorem 
that such a geodesic, when not periodic, is dense on a domain 0 
which is either bordered by two parallel circles on the surface or 
is the whole surface (which then is of genus 1). It seems of some 
interest to go beyond this fact, by considering also the asymptotic 
density which, bellongs to the different points of 0. While the 
existence of such a density is implied by the general theory of 
distribution functions of almost periodic functions, it turns out 
that a direct consideration leads not only to an existence proof 
but also to the explicit representation of the density in geometrical 
terms. 

The result admits a dynamical interpretation, since the prin­
ciple of Maupertuis reduces the problem of a; particle moving in 
a field of force of radial symmetry to the problem of geodesies on 
a surface of revolution whose ds2 is determined by the force fun­
ction and the energy constant. The density of the asymptotic 
distribution on 0 then corresponds to the density of probability 
belonging to the points of the circular ring in which the path des­
cribed by the „rotating ellipse" is everywhere dense. Since this 
density is obtained in explicit form, the result might have some 
interest also in view of the applications, of the theory of adiabatic 
invariants*) to the classical dynamical problem in - question. In 
fact, the identity of a priori {„gejDmetrioal") probabilities with 
asymptotic relative frequencies is proved, instead of being postu­
lated. • . • 

In order to have a representation of the surface of revolution 
which is valio\ im .the large without exceptions whenever the geo* 

*) T*. lievi-Civita, Drei Vorlesungen uber adiabatische Invarianten, 
Hamburger Abhandlungen, 0 <192&), 323—3d& 



desic is not of the asymptotic type, it is convenient to use as 
Gaussian parameters the arc length along the meridian and the 
angle <p of rotation from a fixed meridian. Then the square of the 
line element is ds2 = dQ2 + r2d<p2, where r = r(g) denotes the di­
stance from the axis of rotation. 

Local singularities of the geometry of ds2 will be excluded by 
the assumption that the function r of Q has a continuous derivative 
and is positive in the ^-interval under consideration. Denoting by 
primes differentiations with respect to the arc length, those geo­
desies Q = Q(S), <p = q>(s) along which Q(S) is not constant are 
identical with the solutions of the pair of equations 

r(Q)2<p' = c, Q'2 + c2lr(Q)2 = 1, (1) 

which express the conservation of angular momentum and energy 
(the vis viva is 1, since the arc length s is the time variable). Geo­
desies which either d& not remain in a bounded portion of the 
surface or tend asymptotically to a second geodesic when s -> -f- oo 
or s -> — oo will be excluded. Writing the energy integral in the 
form 

Q>*= i—c2lr(Q)2, (2) 

it is easy to prove that only two cases are possible: 
(i) the expression on the right of (2), considered as a function 

of Q1, has two successive simple roots, say Q = a and Q = b, and 
this function of Q is positive for a < Q < b\ 

(ii) the function r(Q) of Q is periodic, the surface is a torus, 
and Q(S) is a strictly monotone function for — oo < s < + oo. 
Notice that a geodesic on a torus can. belong to case (i). 

In case (i), one sees from (2) that r(a) = r(b) = c, and that 
r(Q) <cila<Q<b. It also follows from (2) that the function 
Q[S) of s is periodic with the period 

0) 2/{l — c*/Ф)2) 4 , (3) 

and that a and b are the maximum and minimum of Q(S). Also if 
* - = 0 belongs to Q = a, then Q(S) is an even function which is 
strictly increasing for 0 < 8 < £ (o. 

In case (ii), one has r(Q) > c for every Q. The expression on 
the right of (2) is a periodic function of Q with the same period 
as r(g). Since the expression on the right of (2) has no zeros by 
assumption, it is clear from (2) that Q(S) is, for — oo < 8 < + oo; 
strictly monotone, say increasing, and that if X > 0 is the least 
positive period of r{Q) and co denotes the positive number 



eo= / { l — C-/r(e')-} } d e , <4) 
0 

then there exists a function x(s) such that 

e(«) = Zs/co + x(s)> where x(s + <*>) = x(s)- (5) 
(That the mean motion of Q(S) is A/a> follows from Q(S + co) — 
-Q(s) = L) 

The above description of the cases (i), (ii) implies that if the 
problem of geodesies is thought of, for a fixed value oi the inte­
gration constant c, as a conservative dynamical problem with a 
single degree of freedom, the case (ii) represents the case of a La-
grangian coordinate which is an angular variable (in the same sense 
as the coordinate of an overturning pendulum); while in the case 
(i) the coordinate Q is a linear coordinate which cannot be reduced 
to a suitable modulus. 

Let the case (i) be considered first. Then, placing ip(s) = 
= c/r(Q(s))2, the first of the integrals (1) can be written as 

<pf(s) = ip(s), where ip(s + co) = ip(s), since Q(S + co) = Q(S). (6) 

If a denotes the integral of the periodic function ip(s) over a period, 
and a = a(s) the indefinite integral of the function ip(s) — a\co, 
then, from (6), 

<p(s) == asjco + a(s), where a(s + co) = a(s). (7) 

Since r(Q) is positive for a <£ Q ._ b, and since a/co.is the mean 
value of the periodic function ip(s) = cjr(Q(s))2,. where min Q(S) = # 
and max Q(S) = b, it is clear that the constant a is positive. Now 
there are two cases possible, according as a. is or is not commen­
surable with 2n. In the first case, (7) together with Q(S + co) = Q(S) 
implies that the geodesic is a^elosed curve on the surface; while an 
the second case the-approximation theorem of Kronecker shows 
that the geodesic is everywhere dense on the "portion 

0 : a <; Q ^ b, 0 ^ <p < 2n (8) 
of the surface. Only the latter case will be considered in what 
follows. ; 

Choosing the notation such that a = min Q(S) is attained at 
$ = 0, the even periodic function Q(S) of period co is strictly in­
creasing on the interval 0 < s < % co. It p = p(s) is a point of the 
geodesic belonging to a fixed s of this interval, let & = &(s), where 
0 ;_ & < \n, be the angle betweeen the parallel circle Q =-= const, 
through the point p(s) and the geotlesic. Then d qjds =-= sin #. 
Hence (2) can be written in the,form 

sin # = { 1 — c*fr(Q)* }*; so that cos # = cjr(Q) (6 < s < £ to), (9) 



if one chooses the orientation of the geodesic so t h a t the integration 
constant c defined by (1) is non-negative. Actually, c > 0, since 
c = 0 would, by (1), imply that <p = <p(s) = const., which contra­
dicts the assumptions. 

For fixed numbers 8l9 s2; <pl9 <p2 such t h a t 

0 < s1 < s2 < i co; 0 <: cpi < <p2 < 2TZ, (10) 

let A denote the (Q, <p)-region on 0 characterised by 

A: Q = Q(S), <p(s) + <p1 < <p < <p(s) + <p2, s± < s < s2, (11) 

where Q(S), <p(s) are the Gaussian parameters along the given geo­
desic. For a fixed integer n, let Cn = Cn(sx, s2) denote the arc of 
the geodesic determined by 

Cn: Q = Q(nco + 8), <p = <p(nco + s), sx < s < s2. (12) 

I t is seen from (6), (7) t h a t this Cn is contained in the region (11) 
if and only if 

<px < an < cp2 (mod 2n). (13) 

I t is also seen t h a t if a point P of the geodesic is in the region (11) 
and if the function Q(S) is increasing at P, then there exists an 
integer n such t h a t P is on Cn. Hence, if s is considered as a time 
variable, the asymptotic relative measure of those dates s at which 
Q(S) is increasing and the point (Q(S), <p(s)) is in A is 

(2nco)~1(<p2—<p1)(s2 — s1). 

This is clear, in view of the irrationality of a\2n, from the Kro-
Uecker-Weyl approximation theorem. Now, from (2), 

Qt 

(27UO)-1 (n—ipj (s2—81) = (2mo)-- (<p2—9l) J {l—c*lr(Q)*}-ldQ, 

01 

where QX = Q(S1), Q2 = Q(S2). On the other hand, if | A \ denotes 
the area of the subregion (11) of 0, then 

\A\=^^eJ2nr(Q)dQ, 
Pi 

since the square of the line element on 0 is ds2 = dQ2 + r2dcp2. 
Heftce, the asymptotic relative amount of time which the 

geodesic spends in A in such u way t h a t Q(S) is increasing is 

{l-C^QnUQ. 
\— 1 

/ 
(2шo)-k (<p2 — fl) (зt — в l ) / | Л | = ?J-

K i 

co í 2лr(Q)dQ 



Letting Qi and Q2 tend to a common limit Q, it follows tha t if one 
considers only the s-intervals a t which Q(S) is increasing, i, e. the 
intervals 

nco < s < (n + $)co, n = 0, ± 1, ± 2, . . . . , (14) 

the geodesic is asymptotically distributed on 0 in such a way 
as to have the function 

(27ZCO)-1 {1 — c2lr(Q)2}-i/r(Q) = (271CO)-1 {r(o)2 — c2}~~* (15) 

of the position on 0 as asymptotic density of probability. I t is 
understood that this density is referred to the area measure on 6>. 
Now, the density (15) depends only on the first of the Gaussian 
parameters Q, cp, i. e., the density is constant along every parallel 
circle of 0. Since (15) has been calculated on the assumption that 
s is restricted to intervals of the form (14) and since the function 
Q(S) = Q(S + co) is even, it is clear that the actual asymptotic density 
of the geodesic is twice as much as (15). This means in view of (3) 
and (9) tha t the asymptotic density of the geodesic on O is ". 

(nco)-1 {r(Q)2 — c2}"* = (ncco tan 0 ) - 1 . " • (16) 

Since (4) also shows tha t tan# vanishes only when the geodesic 
reaches the bordering parallel circles Q = a and Q ==- b, it follows 
tha t the density of the geodesic on 0 is a function of the portioii 
along the meridian and becomes infinite on the boundaries of 0. 
Needless to say, the integral of the density over 0 is 1, as easily 
verified from (16)* (3), and from the fact tha t the surface element 
is d I A J = r(o)dod(p. / . • 

The above considerations were concerned with the case (»)* 
In the case (ii) of a torus, where, Q(S) varies monotonously from 
— 00 to + °o» tf-e density of probability of a non-periodic geo­
desic is given by 

(27ZCO)-1 {r(o)2}~% = (2TZCCO t a n 0 ) - * . (17) 

I t is not necessary to give a proof. In fact, the expression (15), 
which is in case (i) the half of the density, is in case (ii) the actual 
density, since in case (ii) one need not separate intervals (11) of 
increase of Q(S) from the complementary intervals^ Notice tha t 
while the density (16) in case (i) necessarily becomes infinite a t 
Q = a and Q = b, the density (17) on the torus is nowhere infinite. 
This agrees with the fact Q'(S) vanishes in case (ii) when the geo­
desic reaches the boundary of 0 but cannot vanish in the case \ii) 
of the torus. 

As an application, consider the path of a particle which moves 
in an euclidean (X, TJ-plane under the action of a central force. 
If R, 0 are the polar coordinates in the (x, y)-plane, U(R) denotes 



the force function and h the energy constant, Maupertuis' principle 
shows that the paths of energy h can be thought of as geodesies 
on a surface of revolution whose squared line element is 

. ds2 = 2(U(R) + h) (dR* + RH02). (18) 
Assuming that the path in the (x, i/)-plane is bounded, neither 
asymptotic nor periodic, and such that the origin of the plane is 
not reached, the closure of the path will be a ring, Rx <̂  R 5^ R2, 
bordered by two concentric circles about the origin of the (x, y)-
plane (rotating ellipse). This means that, in virtue of (18), one 
has to do with the case (i). In order to apply the explicit repre­
sentation of the density obtained above, one merely has to replace 
in (18) the radius vector R by a Gaussian parameter Q = Q(R) for 
which 

dq = {2(U(R) + h)}±dR. 
Hence, an elementary reduction shows that in the ring of the 
(x> J/)-plane on which the path is everywhere dense the asymptotic 
density of the path is given by 

2 {U(R) + h} (nco)-1 {2(U(R) + h)R* — c2}~i, (19) 
where c is the constant of the angular momentum and the period 
<o of the function R(t) is determined by 

R. 

a, = if{U(R) + h} {2(U(R) +.h)R* — c2}~* RdR. 
Ri 

It is understood that the asymptotic probability belonging to a 
portion of the ring in the (x, y)-plane is obtained by multiplying 
(19) by the euclidean area element RdRd0, and then integrating 
over the portion of the ring under consideration. 

0 asymptotickém rozložení geodetických čar na rotační ploše. 

( O b s a h p ř e d e š l é h o č lánku.) 

Jde o studium geodetických čar na rotační ploše, které jsou 
hustě rozloženy v oboru 0, při čemž 0 jest vymezen dvěma rovno­
běžkami plochy anebo jest celá plocha. Rozložení takových geo­
detických čar v jednotlivých bodech oboru 0 vyjadřují autoři t. 
zv. asymptotickou hustotou, pro niž odvozují vzorce (16), (17). 
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