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CGasopis pro pastovani matematiky a fysiky, rod. 72 (1947)

- On the asymptotic distribution of geodesics
-on surfaces of revolution.

E.R. van Kampen and Aurel Wintner, Baltimore.
(Received October 5th, 1938.)

The present note deals with the distribution questions of a geo-
desic on a surface of revolution in the recurrent case. It is an
immediate consequence of the Kronecker approximation theorem
that such a geodesic, when not periodic, is dense on a domain &
which is either bordered by two parallel circles on the surface or -
_is the whole surface (which then is of genus 1). It seems of some
interest to go beyond this fact, by considering also the asymptotic
density which bellongs to the different points of @. While the
existence of such a density is implied by the general theory of
distribution functions of almost periodic functions, it turns. out
that a direct consideration leads not only to an existence proof
but also to the exphclt representation of the density in geometrical
terms.

The result admits a dynamical interpretation, since the prin-
ciple of Maupertuis reduces the problem of a particle moving in
a field of force of radial symmetry to the problem of geodesics on
a surface of revolution whose ds? is determined by the force fun-
ction and the energy constant. The density of the asymptotic
distribution on @ then corresponds to the density of probability
belonging to the points of the circular ring in which the path des-
cribed by the ,rotating ellipse“ is everywhere dense. Since this .
density is obtained in explicit form, the result might have some
interest also in view of the applications of the theory of adiabatic
invariants*) to the’classical dynamical problem in-question. In
fact, the identity of a priori (,,geometrical®) probabilities with
asymptotic relatlve frequencles is proved, instead of being postu-
-lated.

In order to have a representatlon of the surface of revolution
which is valid in the large without exceptions whenever the geo-
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desic is not of the 'asymptotic type, it is convenient to use as
Gaussian parameters the arc length along the meridian and the
angle ¢ of rotation from a fixed meridian. Then the square of the
line element is ds* = do® + r?dg?, where r = r(g) denotes the" di-
stance from the axis of rotation.
Local singularities of the geometry of ds? will be excluded by
the assumption that the function 7 of ¢ has a continuous derivative
" and is positive in the g-interval under consideration. Denoting by
primes differentiations with respect to the arc length, those geo-
desics o = p(8), ¢ = ¢(s) along which p(s) is not constant are
identical with the solutions of the pair of equations

Ty =c, e + ¢r(e)* =1, (1)

which ‘express the conservation of angular momentum and energy
(the vis viva is 1, since the arc length s is the time variable). Geo-
desics which either de not remain in a bounded portion of the
surface or tend asymptotically to a second geodesic when 8 — + o
or 8 > — oo will be excluded. Writing the energy integral in the

form .
e?=1—cr(e)? . (2)

it is easy to prove that only two cases are possible:

(i) the expression on the right of (2), considered as a function
of g, has two successive simple roots, say ¢ = a and ¢ = b, and
this function of g is positive for a < ¢ < b;

(#¢) the function r(g) of g is periodic, the surface is a torus,
and p(s) is a strictly monotone function for — o0 < 8 << + 0.
. Notice that a geodesic on a torus can.belong to case (3).

In case (i), one sees from (2) that r(a) = r(b) = ¢, and that
r(o) <c if a < g < b. It also follows from (2) that the function
o(8) of s is periodic with the period

. b
w=2[{1—crie de, G

and that @ and b are the maximum and minimum of g(s). Also if

- 8=.0 belongs to ¢ = a, then g(s) is an even functlon whmh is

striotly. increasing for 0 < s < { o. _
: In case (i1), one has r(g) > c for every g. The expresmon on
. the right of (2) is a periodic function of o- with the same period
" a8 r(p). Since the expression on the nght of (2) has no zeros by
assumption, it is clear from (2) that g(s) is, for — o < 8 < + o
strictly monotone, say increasing, and ‘that if 1 > 0.is the least
- positive penod of r(g) and o denotes the positive number
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= f (1 —exfr(o)y} ¥ do, : (4)
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then there exists a function yx(s) such that :
0(8) = 2s/w + x(s), where x(s + @) = y(s). - (5)

(That the mean motion of g(s) is i/w follows from (s + w)
—o(8) = 4) _

The above descnptlon of the cases (¢), (42) implies that 1f the
problem of geodesics is thought of, for a fixed value of the inte-
gration constant ¢, as a conservative dynamical problem with a
single degree of freedom the case (ii) represents the case of a La-
grangian coordinate which is an angular variable (in the same sense
- as the coordinate of an overturning. pendulum); while in the case
(¢) the coordinate g is a'linear coordinate which cannot be reduced
to a suitable modulus.

Let the case (i) be considered first. Then, placing w(s) =
= ¢[r(g(s))? the first of the integrals (1) can be written as

¢'(8) = y(s), where y(s 4 w) = y(s), since g(s + w) = o(s).  (6)
If « denotes the integral of the periodic function y(s) over a period,

and ¢ = o(s) the. indefinite mtegral of the function y(s) —-cx/w,
then, from (6),

@(8) = asjw + a(s), where o(s + w) = a(s). ' (7)

Since r(g) is positive for ¢ < ¢ < b, and since x/w.is the mean
value of the periodic function y(s) = ¢/r(o(s))?, where min p(s) = @
and max g(8) = b, it is clear that the constant « is positive. Now
there are two cases possible, according as «_is or is not commen-
surable with 2z. In the first case, (7) together with o(s + w) = g(s)
_ implies that the geodesic is a elosed curve on the surface; while.in
the second case the-approximation theorem of Kronecker shows
that the geodesic is everywhere dense on the portion

0 : a<o<h, OS¢<21!:' : (8)

of the surface. Only the latter case will be consldered in what v
follows.:
Choosing the notation such that a = min p(s) is attained at
8 = 0, the even periodic function gfs) of period @ is stnctly in-
creasing on the interval 0 < ¢ < } w. If p = p(s) is & point of the
_ geodesic belonging to a fixed s of this interval, let # = &(s), where
0 < @ < }n, be the angle betweeen the para.llel circle ¢ = const.
through the point p(s) and the geodeslc Then : d g/ds == sm0
Hence (2 can be written in the form :

. sind = {1— c’/r(g)' s 8o that cos & = c/r(g) © < 8 < }w), (9) -
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if one chooses the orientation of the geodesic so that the integration
constant ¢ defined by (1) is non-negative. Actually, ¢ > 0, since
¢ = 0 would, by (1), imply that ¢ = ¢(s) = const., which contra-
dicts the assumptions.
For fixed numbers s,, s,; ¢;, @, such that
0<s8 <8<} w; 05 o < @ < 2m, (10)
let A denote the (g, p)-region on @ characterised by

4: Q=Q(3)’ P6) + 1 <@ < P(s) + @2, 81 <8< 8y, (11)

where o(s), ¢(s) are the Gaussian parameters along the given geo-
desic. For a fixed integer n, let Cy = Cx(s,, 8,) denote the arc of
the geodesic determined by

- O g=gw+3), ¢g=gho+s) 6 <s<s (12)
It is seen from (6), (7) that this C, is contained in the region (11)

if and only if
: P < on < @y (mod 2x). (13)

It is also seen that if a point P of the geodesic is in the region (11)
and if the function p(s) is increasing at P, then there exists an
integer n such that P is on C,. Hence, if s is considered as a time
variable, the asymptotic relative measure of those dates s at which
(8) is increasing and the point (o(s), ¢(s)) isin A is
A (2rw) = (P2 —P1) (83— 8y)-

This 'is clear, in view of the irrationality of «/2x, from the Kro-
necker-Weyl approximation theorem. Now, from (2), '

(270)~ (pa— 1) (83— 81) = (270) (pa— 1) f {(1—cir(e)}tdo,

where p, = 0(8;), 03 = 0(8,). On the other hand if | A | denotes
the area of the subregion (11) of @, then

4] = B f 277 (o)de,
since the square of the line element on @ is ds? = dp? 4 rzdcp

Hence, the asymptotic relative amount of time which the
geodesic spends in A in such » way that g(s) is increasing is

| f (1 —e¥jrieyy de.
: _(2nw)_1 (pa— ‘Px)‘ (83— 81)/!/1'

) f 2nr(g)dg

@
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Letting ¢; and g, tend to a common limit 0, it follows that if one
considers only the s-intervals at which g(s) is increasing, i. e. the
intervals

L nw<s<(n+1})w,n=0,il,;J:2,...., (14)

the gelodesic is asymptotically distributed on @ in such a Way
as to have the function

(2rw)~ {1 — c?/r( (@ Hr(e) = 2ﬂw)‘1 {rle)?—c}"t (15)

of the position on @ as asymptotic density of probability. It is
understood that this density is referred to the area measure on 6.
Now, the density (15) depends only on the first of the Gaussian
parameters g, ¢, i. e., the density is constant along every parallel
circle of @. Since (15) has been calculated on the assumption that
8 is restricted to intervals of the form (14) and since the function
o(s) = o(s - w) is even, it is clear that the actual asymptotic density
of the geodesic is twice as much as (15). This means in view of (3)
and (9) that the asymptotic density of the geodesic on O is

() {r(@)t — ¢} = (new tan 9L . (16)

Since (4) also shows that tand vanishes only when the geodesic
reaches the bordering parallel circles ¢ = a and ¢ = b, it follows
that the density of thé geodesic-on @ is a function of the portion
along the meridian and becomes infinite on the boundaries of 6.
Needless to say, the integral of the density over @ is 1, as easily
verified from (16); (3), and from the fact that the surface element
is d | A | =r(o)dode. . :

The above. considerations were concerned. with the case (z)
In the case (it) of a torus, where g(s) varies monotonously from
— © to + oo, the densu;y of probablhty of a non-periodic geo-
desic is given by

(27cw)—1 {r(g)z} b= (2ncw tan 9)—1. _an

: It is not necessary to give a proof. In fact, the expression (15),
which is in case () the half of the density, is in case (i7) the actual
dens1ty, since in case (i4) one need not separate intervals (11) of
increase of g(s) from the complementary intervals. Notice that
while the density (16) in case (i) necessarily becomes infinite at
¢ =a and ¢ = b, the densuty (17) on the torus is nowhere infinite.
This agrees with the fact o’(8) vanishes in case (¢2) when the geo-
desic reaches the boundary of @ but cannot vanish in the case {it)
of the torus.
As an application, cons1der the path of a particle which moves
in an euclidean (X, Y)-plane under the action of a central force.
If R, @ are the polar coordinates in the (x, y)-plane, U(R) denotes
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the force function and % the energy constant, Maupertuis’ principle
shows that the paths of energy % can be thought of as geodesics.
on a surface of revolution whose squared line element is

dst = 2(U(R) + h) (dR? + Rd?). (18)

-Assummg that the path in the (x, y)-plane is bounded, neither
. asymptotic nor periodic, and such that the origin of the plane is
not reached, the closure of the path will be a ring, R, < R< R,
bordered by two concentric circles about the origin of “the (z, y)-
plane (rotating ellipse). This means that, in virtue of (18), one
has to do with the case (¢). In order to a.pply the explicit repre-
sentation of the density obtained above, one merely has to replace
in (18) the radius vector R by a Gaussian parameter o = p(R) for
which :
: do = {2(U(R) + h)}} dR.
Hence an elementary reduction shows that in the ring of the
(x, y)-plane on which the path is everywhere dense the asymptotic
density of the path is given by

2 {U(R) + h} (nw) {2(U(R) + h)R2—c2} 7, . (19)

where ¢ is the constant of the angular momentum and the period
o of the functlon R(t) is determmed by

w = 4f (U(R) + h} {2(U(R) + h)Rz — ) Y RiR.

It is understood that the asymptotic probablhty belonglng to a
portion of the ring in” the (z, y)-plane is obtained by multiplying
(19) by the euclidean area element RdRd®P, and then integrating
over the portion of the ring under consideration.
* * *
. 0 asymptotlckém rozloZenf geodetickych &ar na rota®ni plo§e
(Obsah predeéleho ¢lanku.)

" Jde o studium geodetlckych ¢ar na_rotacni plose, které ]sou
hustd rozloZeny v obaru @, pii éem% @ jest vymezen dvéma rovno-
bézkami plochy anebo jest celd plocha. RozloZenf takovych geo-
detickych &ar v jednotlivych bodech oboru @ vyjadiuji autofi t.
zv. asymptotickou hustotou, pro niz odvozuji vzorce (16), (17). '
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