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COMPLETE SPACELIKE HYPERSURFACES
WITH CONSTANT SCALAR CURVATURE

Shu Shichang

Abstract. In this paper, we characterize the n-dimensional (n ≥ 3) com-
plete spacelike hypersurfaces Mn in a de Sitter space Sn+1

1 with constant
scalar curvature and with two distinct principal curvatures one of which
is simple.We show that Mn is a locus of moving (n − 1)-dimensional sub-
manifold Mn−1

1 (s), along Mn−1
1 (s) the principal curvature λ of multipli-

city n − 1 is constant and Mn−1
1 (s) is umbilical in Sn+1

1 and is contai-
ned in an (n − 1)-dimensional sphere Sn−1

(
c(s)
)

= En(s) ∩ Sn+1
1 and

is of constant curvature
(
d{log |λ2−(1−R)|1/n}

ds

)2
− λ2 + 1,where s is the

arc length of an orthogonal trajectory of the family Mn−1
1 (s), En(s) is an

n-dimensional linear subspace in Rn+2
1 which is parallel to a fixed En(s0) and

u =
∣∣λ2 − (1− R)

∣∣− 1
n satisfies the ordinary differental equation of order 2,

d2u
ds2 − u

(
± n−2

2
1
un

+R− 2
)

= 0.

1. Introduction

Let Rn+2
1 be the (n+ 2)-dimensional Lorentz-Minkowski space and Sn+1

1 be the
de Sitter space given by Sn+1

1 = {p ∈ Rn+2
1 | 〈p, p〉p = 1}. A hypersurface Mn of

Sn+1
1 is said to be spacelike if the induced metric on Mn from that of ambient

space is positive definite. In [4] we investigated the spacelike hypersurfaces Mn

in a de Sitter space Sn+1
1 with constant scalar curvature and with two distinct

principal curvatures whose multiplicities are greater than 1. We showed that

Theorem 1.1 ([4]). Let Mn be an n-dimensional complete spacelike hypersurface in
Sn+1

1 with constant scalar curvature and with two distinct principal curvatures. If the
multiplicities of these two distinct principal curvatures are greater than 1, then Mn

is isometric to the Riemannian product Hk(sinh r)× Sn−k(cosh r), 1 < k < n− 1.

As we know that Otsuki [3] characterized the minimal hypersurfaces in a Rie-
mannian manifold M̄ of constant curvature c̄ with two distinct principal curvatures
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one of which is simple and Cheng [2] investigated the n-dimensional oriented com-
plete hypersurfaces (n ≥ 3) in Euclidean space Rn+1 with constant scalar curvature
and with two distinct principal curvatures one of which is simple. It is natural and
important to investigate the spacelike hypersurfaces Mn in a de Sitter space Sn+1

1
with constant scalar curvature and with two distinct principal curvatures one of
which is simple. In this paper, we obtain the following

Theorem 1.2. Let Mn be an n-dimensional (n ≥ 3) complete spacelike hypersur-
face in a de Sitter space Sn+1

1 with constant scalar curvature n(n− 1)R and with
two distinct principal curvatures one of which is simple, then Mn is a locus of
moving (n− 1)-dimensional submanifold Mn−1

1 (s), along Mn−1
1 (s) the principal

curvature λ of multiplicity n− 1 is constant and Mn−1
1 (s) is umbilical in Sn+1

1 and
is contained in an (n− 1)-dimensional sphere Sn−1(c(s)) = En(s) ∩ Sn+1

1 and is
of constant curvature

(d{log |λ2−(1−R)|1/n}
ds

)2 − λ2 + 1, where s is the arc length of
an orthogonal trajectory of the family Mn−1

1 (s), En(s) is an n-dimensional linear
subspace in Rn+2

1 which is parallel to a fixed En(s0) and u =
∣∣λ2 − (1 − R)

∣∣− 1
n

satisfies the ordinary differental equation of order 2
d2u

ds2 − u
(
± n− 2

2
1
un

+R− 2
)

= 0 .

2. Preliminaries

Let Mn be an n-dimensional spacelike hypersurfaces in Sn+1
1 , we choose a local

field of semi-Riemannian orthonormal frames e1, . . . , en+1 in Sn+1
1 such that at

each point of Mn, e1, . . . , en span the tangent space of Mn and form an othonormal
frame there. We use the following convention on the range of indices:

1 ≤ A,B,C, · · · ≤ n+ 1 ; 1 ≤ i, j, k, · · · ≤ n .
Let ω1, . . . , ωn+1 be the dual frame field so that the semi-Riemannian metric of
Sn+1

1 is given by ds̄2 =
∑
i

ω2
i − ω2

n+1 =
∑
A

εAω
2
A, where εi = 1 and εn+1 = −1.

The structure equations of Sn+1
1 are given by

dωA =
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0 ,(2.1)

dωAB =
∑
C

εCωAC ∧ ωCB + ΩAB ,(2.2)

where

ΩAB = −1
2
∑
C,D

KABCDωC ∧ ωD ,(2.3)

KABCD = εAεB(δACδBD − δADδBC) .(2.4)
Restrict these forms to Mn, we have
(2.5) ωn+1 = 0 .
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Cartan’s Lemma implies that

(2.6) ωn+1i =
∑
j

hijωj , hij = hji .

The structure equations of Mn are

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0 ,(2.7)

dωij =
∑
k

ωik ∧ ωkj −
1
2
∑
k,l

Rijklωk ∧ ωl ,(2.8)

Rijkl = (δikδjl − δilδjk)− (hikhjl − hilhjk) ,(2.9)

where Rijkl are the components of the curvature tensor of Mn and

(2.10) h =
∑
i,j

hijωi ⊗ ωj

is the second fundamental form of Mn.
From the above equation, we have

(2.11) n(n− 1)R = n(n− 1)− n2H2 + |h|2 ,

where n(n − 1)R is the scalar curvature of Mn, H is the mean curvature, and
|h|2 =

∑
i,j

h2
ij is the squared norm of the second fundamental form of Mn.

The Codazzi equation and the Ricci identity are

hijk = hikj ,(2.12)

hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl ,(2.13)

where hijk and hijkl denote the first and the second covariant derivatives of hij .
We choose e1, . . . , en such that hij = λiδij . From (2.6) we have

(2.14) ωn+1i = λiωi , i = 1, 2, . . . , n .

Hence, we have from the structure equations of Mn

(2.15)
dωn+1i = dλi ∧ ωi + λidωi

= dλi ∧ ωi + λi
∑
j

ωij ∧ ωj .

On the other hand, we have on the curvature forms of Sn+1
1 ,

(2.16)

Ωn+1i = −1
2
∑
C,D

Kn+1iCDωC ∧ ωD

= 1
2
∑
C,D

(δn+1CδiD − δn+1DδiC)ωC ∧ ωD

= ωn+1 ∧ ωi = 0 .
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Therefore, from the structure equations of Sn+1
1 , we have

(2.17)

dωn+1i =
∑
j

ωn+1j ∧ ωji − ωn+1n+1 ∧ ωn+1i + Ωn+1i

=
∑
j

λjωij ∧ ωj .

From (2.15) and (2.17), we obtain

(2.18) dλi ∧ ωi +
∑
j

(λi − λj)ωij ∧ ωj = 0 .

Putting
(2.19) ψij = (λi − λj)ωij .
Then ψij = ψji. (2.18) can be written as

(2.20)
∑
j

(ψij + δijdλj) ∧ ωj = 0 .

By E. Cartan’s Lemma, we get

(2.21) ψij + δijdλj =
∑
k

Qijkωk ,

where Qijk are uniquely determined functions such that
(2.22) Qijk = Qikj .

3. Proof of theorem

We firstly have the following Proposition 3.1 due to [1], which original due to
Otsuki [3] for Riemannian space forms.

Proposition 3.1 ([1]). Let Mn be a spacelike hypersurface in Sn+1
1 such that the

multiplicities of the principal curvatures are constant. Then the distribution of the
space of principal vectors corresponding to each principal curvature λ is completely
integrable. In particular, if the multiplicity of a principal curvature is greater than
1, then this principal curvature is constant on each integral submanifold of the
corresponding distribution of the space of the principal vectors.

Proof of Theorem 1.2. Let Mn be an n-dimensional complete spacelike hyper-
surface with constant scalar curvature and with two distinct principal curvatures
one of which is simple, that is, without lose of generality, we may assume

λ1 = λ2 = · · · = λn−1 = λ , λn = µ ,

where λi for i = 1, 2, . . . , n are the principal curvatures of Mn. Since the scalar
curvature n(n− 1)R is constant, from (2.11), we obtain
(3.1) n(n− 1)(1−R) = (n− 1)(n− 2)λ2 + 2(n− 1)λµ .
If λ = 0 at some points, then R = 1 at these points from (3.1), since R is constant,
we know R = 1 on Mn. Since these principal curvatures λ and µ are continuous
on Mn, from (3.1) and R = 1 we obtain λ = 0 on Mn. Hence, from the Gauss



COMPLETE SPACELIKE HYPERSURFACES . . . 109

equation, the sectional curvature of Mn Rijij = 1−λµ = 1 > 0, by Myers’ theorem
we know that Mn is compact. From the result of Zheng [6, 5], we know that Mn is
a totally umbilical spacelike hypersurface. This is impossible because we assumed
that Mn is of two distinct principal curvatures. Hence, we can assume λ 6= 0 on
Mn. From (3.1), we have

(3.2) µ = n(1−R)
2λ − (n− 2)λ

2 .

Therefore, we get

λ− µ = n
λ2 − (1−R)

2λ 6= 0 ,

we know λ2 − (1−R) 6= 0.
Let u =

∣∣λ2 − (1−R)
∣∣− 1
n . We denote the integral submanifold through x ∈Mn

corresponding to λ by Mn−1
1 (x). Putting

(3.3) dλ =
n∑
k=1

λ,k ωk , dµ =
n∑
k=1

µ,k ωk .

From Proposition 3.1, we have
(3.4) λ,1 = λ,2 = · · · = λ,n−1 = 0 on Mn−1

1 (x) .
From (3.2), we have

(3.5) dµ =
[
− n(1−R)

2λ2 − n− 2
2

]
dλ .

Hence, we also have
(3.6) µ,1 = µ,2 = · · · = µ,n−1 = 0 on Mn−1

1 (x) .
In this case, we may consider locally λ is a function of the arc length s of the integral
curve of the principal vector field en corresponding to the principal curvature µ.
From (2.21) and (3.4), we have for 1 ≤ j ≤ n− 1,

(3.7)

dλ = dλj =
n∑
k=1

Qjjkωk

=
n−1∑
k=1

Qjjkωk +Qjjnωn = λ,n ωn .

Therefore, we have
(3.8) Qjjk = 0 , 1 ≤ k ≤ n− 1 , and Qjjn = λ,n .

By (2.21) and (3.6), we have

(3.9)

dµ = dλn =
n∑
k=1

Qnnkωk

=
n−1∑
k=1

Qnnkωk +Qnnnωn =
n∑
i=1

µ,i ωi = µ,n ωn .



110 S. SHICHANG

Hence, we obtain

(3.10) Qnnk = 0 , 1 ≤ k ≤ n− 1 , and Qnnn = µ,n .

From (3.5), we get

(3.11) Qnnn = µ,n =
[
− n(1−R)

2λ2 − n− 2
2

]
λ,n .

From the definition of ψij , if i 6= j, we have ψij = 0 for 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n− 1. Therefore, from (2.21), if i 6= j and 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1
we have

(3.12) Qijk = 0 , for any k .

By (2.21), (3.8), (3.10), (3.11) and (3.12), we get

(3.13)
ψjn =

n∑
k=1

Qjnkωk

= Qjjnωj +Qjnnωn = λ,n ωj .

Since λ and µ are two distinct principal curvatures of Mn, we have

λ− µ = n
λ2 − (1−R)

2λ 6= 0 .

From (2.19), (3.2)and (3.13)we have

ωjn = ψjn
λ− µ

= λ,n
λ− µ

ωj(3.14)

= λ,n

λ− [n(1−R)
2λ − n−2

2 λ]
ωj

= 2λλ,n
n[λ2 − (1−R)] ωj .

Therefore, from the structure equations of Mn we have

dωn =
n−1∑
k=1

ωk ∧ ωkn + ωnn ∧ ωn = 0 .

Therefore, we may put ωn = ds. By (3.7) and (3.9), we get

dλ = λ,n ds , λ,n = dλ

ds
,

and

dµ = µ,n ds , µ,n = dµ

ds
.
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Then we have

ωjn = 2λλ,n
n[λ2 − (1−R)] ωj =

2λdλds
n[λ2 − (1−R)] ωj(3.15)

= d{log |λ2 − (1−R)| 1
n }

ds
ωj .

(3.15) shows that the integral submanifold Mn−1
1 (x) corresponding to λ and s is

umbilical in Mn and Sn+1
1 .

From (3.15) and the structure equations of Sn+1
1 , we have

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn + ωjn+1 ∧ ωn+1n + Ωjn

=
n−1∑
k=1

ωjk ∧ ωkn + ωjn+1 ∧ ωn+1n − ωj ∧ ωn

= d{log |λ2 − (1−R)| 1
n }

ds

n−1∑
k=1

ωjk ∧ ωk − (λµ+ 1)ωj ∧ ds .

From (3.15) we have

dωjn = d2{log |λ2 − (1−R)| 1
n }

ds2 ds ∧ ωj + d{log |λ2 − (1−R)| 1
n }

ds
dωj

= d2{log |λ2 − (1−R)| 1
n }

ds2 ds ∧ ωj + d{log |λ2 − (1−R)| 1
n }

ds

n∑
k=1

ωjk ∧ ωk

=
{
− d2{log |λ2 − (1−R)| 1

n }
ds2 +

[d{log |λ2 − (1−R)| 1
n }

ds

]2}
ωj ∧ ds

+ d{log |λ2 − (1−R)| 1
n }

ds

n−1∑
k=1

ωjk ∧ ωk .

From the above two equalities, we have

(3.16) d2{log |λ2 − (1−R)| 1
n }

ds2 −
{d{log |λ2 − (1−R)| 1

n }
ds

}2
− (λµ+ 1) = 0 .

From (3.2) we get

d2{log |λ2 − (1−R)| 1
n }

ds2 −
{d{log |λ2 − (1−R)| 1

n }
ds

}2
(3.17)

+ n− 2
2
[
λ2 − (1−R)

]
+R− 2 = 0 .

Since we define u =
∣∣λ2 − (1−R)

∣∣− 1
n , we obtain from the above equation

(3.18) d2u

ds2 − u
(
± n− 2

2
1
un

+R− 2
)

= 0 .
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Since Sn+1
1 is an (n + 1)-dimensional de Sitter space of constant 1 in Rn+2

1 . We
consider the frame e1, e2, . . . , en, en+1, en+2 in Rn+2

1 . Since the second fundamental
form of Sn+1

1 as the hypersurface Rn+2
1 is given by hAB = −

∑
B εBδAB , we have

ωn+1n+2 = 0 , and ωin+2 = −ωi .

Then, from (2.14), (3.15) and (3.16), we have

dei =
n−1∑
j=1

ωijej + ωinen + ωin+1en+1 + ωin+2en+2

=
n−1∑
j=1

ωijej + d{log |λ2 − (1−R)| 1
n }

ds
ωien − λωien+1 − en+2ωi

=
n−1∑
j=1

ωijej +
[d{log |λ2 − (1−R)| 1

n }
ds

en − λen+1 − en+2

]
ωi .

On the other hand, by means of (3.16) we get

d
{d{log |λ2 − (1−R)| 1

n }
ds

en − λen+1 − en+2

}
= d
{d{log |λ2 − (1−R)| 1

n }
ds

}
en

+ d{log |λ2 − (1−R)| 1
n }

ds
den − dλen+1 − λden+1 − den+2

=
{d2{log |λ2 − (1−R)| 1

n }
ds2 en −

dλ

ds
en+1

}
ds

+ d{log |λ2 − (1−R)| 1
n }

ds

( n−1∑
j=1

ωnjej + ωnn+1en+1 + ωnn+2en+2

)

− λ
( n−1∑
j=1

ωn+1jej + ωn+1nen + ωn+1n+2en+2

)
−
n−1∑
j=1

ωiej − ωnen

=
{d2{log |λ2 − (1−R)| 1

n }
ds2 en −

dλ

ds
en+1

}
ds

+ d{log |λ2 − (1−R)| 1
n }

ds

( n−1∑
j=1

ωnjej − µωnen+1 − ωnen+2

)

− λ
(
λ

n−1∑
j=1

ωjej + µωnen

)
−
n−1∑
j=1

ωiej − ωnen

≡
[d2{log |λ2 − (1−R)| 1

n }
ds2 − λµ− 1

]
enωn

−
{dλ
ds

+ d{log |λ2 − (1−R)| 1
n }

ds
µ
}
en+1ωn
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− d{log |λ2 − (1−R)| 1
n }

ds
en+2ωn (mod{e1, . . . , en−1})

= d{log |λ2 − (1−R)| 1
n }

ds

{d{log |λ2 − (1−R)| 1
n }

ds
en − λen+1 − en+2

}
ds .

We put

W = e1 ∧ · · · ∧ en−1 ∧
{d{log |λ2 − (1−R)| 1

n }
ds

en − λen+1 − en+2

}
.

Therefore we have

(3.19) dW = d{log |λ2 − (1−R)| 1
n }

ds
Wds ,

(3.19) shows that n-vector W in Rn+2
1 is constant along Mn−1

1 (x). Hence, there
exists an n-dimensional linear subspace En(s) in Rn+2

1 containing Mn−1
1 (x). By

(3.19), the n-vector field W depends only on s and by integrating it, we get

W =
{ λ2(s)− (1−R)
λ2(s0)− (1−R)

} 1
n = W (s0) .

Hence, we have that En(s) is parallel to En(s0) in Rn+2
1 .

Since Ωij = −ωi ∧ ωj , from (2.2) the curvature of Mn−1
1 (x) is given by

dωij −
n−1∑
k=1

ωik ∧ ωkj = ωin ∧ ωnj − ωin+1 ∧ ωn+1j − ωi ∧ ωj

= −
{(d{log |λ2 − (1−R)| 1

n }
ds

)2
− λ2 + 1

}
ωi ∧ ωj .

Therefore we know that the curvature of Mn−1
1 (x) is

(d{log |λ2−(1−R)|
1
n }

ds

)2 − λ2 + 1
and Mn−1

1 (x) is contained in an (n− 1)-dimensional sphere Sn−1(c(s)) = En(s) ∩
Sn+1

1 of the intersection of Sn+1
1 and an n-dimensional linear subspace En(s) in

Rn+2
1 which is parallel to a fixed En(s0). This completes the proof of Theorem 1.2.
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