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Plenary stable quasigroups

Philip Holgate

Abstract. Some results are obtained for quasigroups in which the operation of iterated
squaring always leads to stability irrespective of the initial element.
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An algebra A, not necessarily associative, that admits a homomorphism w :
A → F into its ground field F , is called baric; and a baric algebra that satisfies the
identity (a2)2 = w2(a)a2 is said to be Bernstein. Since their introduction in [4],
Bernstein algebras have been the subject of much research. In a nonassociative
system the right principal powers aj of an element a are defined by a1 = a, aj =

aj−1a, and the plenary powers a[j] by a[1] = a, a[j] = (a[j−1])2. If instead of the

above identity, A satisfies a[k+1] = w2
k

(a)a[k], it is called a generalised Bernstein
algebra (see [5]). Since quasigroups stand in the same relation to groups that
nonassociative algebras do to associative algebras, it is natural to investigate the

classes Vk of quasigroups defined by the identities a
[k] = a[k+1], k ≥ 1. A quasigroup

Q satisfying such an identity will be called plenary stable. The difference class
Uk = Vk/Vk−1 will be said to have plenary stability index k. This note presents
some properties of these quasigroups.
Bruck [2] defined and obtained some results for unipotent and idempotent quasi-

groups, which are respectively those in which (i) a2 = b for some fixed b, all a ∈ Q,
and (ii) a2 = a, all a ∈ Q. The idempotent quasigroups make up V1, while the
unipotent quasigroups belong to V2, and correspond to the ‘quasiconstant’ Bern-
stein algebras. He [2, p. 34] showed that every finite commutative quasigroup of odd
order, and every finite group of odd order, is isotopic to an idempotent quasigroup.
He showed further that, given an idempotent quasigroup of order n, it is possible to
construct from it a unipotent quasigroup of order n+ 1, and that this construction
can moreover be carried out within the class of totally symmetric quasigroups. On
the other hand, every quasigroup is isotopic to a unipotent quasigroup [4, p. 31].
For each quasigroup Q of order n, we construct a directed graph D(Q). The n

nodes of D(Q) are labelled with the elements of Q, and if a2 = b, an edge is directed
from a to b. ThusD(Q) has no multiple edges, but may have single loops attached to
some nodes. Then Q is plenary stable if and only if D(Q) contains no proper cycles.
In this case D(Q) is a union (often called a forest) of disjoint trees, each of which
contains one node representing an idempotent. These nodes have loops attached,
and otherwise only in-edges, and can be taken as the roots of their respective trees.
Every edge of D(Q) is directed towards the root of the tree to which it belongs.
Plenary stable quasigroups corresponding to the same directed rooted tree will be
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said to be of the same type, and D(Q) will be called the type graph. However, not
every rooted forest with loops attached to each root corresponds to a non-empty
class of plenary stable quasigroups.

At one extreme the type graph with n unconnected nodes arises from the idem-
potent quasigroups, which exist for every order n ≥ 3. The tree with a single root
from which spring n − 1 stems corresponds to the unipotent quasigroups, which
exist for every order n ≥ 2. At the other extreme is the single directed chain of
length n. A quasigroup of this type has maximal index of plenary stability. For
n ≤ 3, the corresponding quasigroup set is empty.

For n = 4, we have the example

a b c d

a b d a c
b d c b a.
c c a d b
d a b c d

The isotope of this obtained by applying the transposition (c, d) to the head and
sidelines also has maximal index of plenary stability, but that obtained by applying
(b, d) does not. In general, stability properties are not preserved under isotopy.

Proposition 1. Every quasigroup Q has a symmetric principal isotope that is
plenary stable. Every quasigroup of order n ≥ 3 has a principal isotope that is
not plenary stable. If Q is not unipotent or diagonal, the isotope can be taken
symmetric principal.

Proof: (i) By making corresponding changes in the order of rows and columns
while keeping head and sidelines fixed, we can arrange the diagonal elements of the
multiplication table in ascending order. (ii) If there are at least two elements on
the diagonal of the multiplication table, we can make corresponding interchanges
of rows and columns to produce a cycle. If this condition is not satisfied, we can
produce it by interchanges of either rows or columns. �

Plenary stability is well behaved with respect to elementary quasigroup structure.

Proposition 2. Every subquasigroup and every homomorphic image of a plenary

stable quasigroup is plenary stable. The direct product of a finite collection of

plenary stable quasigroups of indices k1, k2, . . . , km, is plenary stable, with index

max (k1, k2, . . . , km).

Proof: The last result follows from (a1 ⊗ a2 ⊗ · · · ⊗ ak)
[s] = a

[s]
1 ⊗ a

[s]
2 ⊗ · · · ⊗ a

[s]
k
.

�

The product of two plenary stable subquasigroups Q1, Q2, of a quasigroup, in
the sense of the subquasigroup generated by Q1 ∩ Q2, is not necessarily plenary
stable. This was pointed out by the referee who supplied the following example:
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a b c d e f g

a a c e g f b d
b c b g f e d a
c e g d b a f c.
d g f b c d a e
e f e a d g c b
f b d f a c e g
g d a c e b g f

The commutative quasigroup Q is generated by its subquasigroups Q1 = (a),
Q2 = (b), which are trivially plenary stable, but since c2 = d, d2 = c, it is not itself
plenary stable. Certain properties prevent plenary stability. A diagonal quasigroup
is one that contains each of its n elements on the diagonal.

Proposition 3. A diagonal quasigroup Q which is not idempotent cannot be ple-
nary stable.

Proof: Since all elements occur as squares, the sequence of plenary powers must
contain cycles, proper or degenerate. If they are all of length one Q is idempotent,
and otherwise there is a proper cycle. �

Every commutative quasigroup of odd order is diagonal, as is every Bol-loop,
i.e. loop satisfying (a((bc)b)) = (((ab)c)b), [3, pp. 31, 32]. A square with one a,
and n − 1 b’s on its diagonal cannot be completed to a Latin square. In this case
there are two possible type graphs. If a2 = a, the node corresponding to a is
isolated, and the node corresponding to b has arrows to each of the remaining n− 2
nodes. This partial multiplication table can be completed to the multiplication

table of a groupoid satisfying a[3] = a[2], but it cannot be completed to that of
a quasigroup. If a2 = b, we obtain the type graph with n − 2 nodes joined to the
root, with one of the n − 2 leading to a further node.

Lemma. The type graph of a plenary stable loop Q is a single rooted tree.

Proof: In a loop the identity is the unique idempotent. Hence it must be the only
root. �

Proposition 4. No group of odd order can be plenary stable.

Proof: The node adjacent to the root is of order 2, hence the result. �

The tables of quasigroups and loops provided in [7] and [3, pp. 129–137] enable us
to examine the prevalence of plenary stability among quasigroups and loops of small
order. For n = 4, the two possible non-isomorphic loops are both groups, of which
Klein’s 4-group is plenary stable, while the cyclic group of order 4 is not. There
are 15 non-isomorphic sets of quasigroups of order 4. The following contingency
table shows the numbers of these sets, and in brackets the corresponding numbers
of distinct quasigroups that they account for, classified by whether they are isotopic
to the cyclic group Z4 or to Klein’s 4-groupK, and whether or not they are plenary
stable.
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Stable Not Stable Total

Isotopic to Z4 3 (42) 3 (66) 6 (108)
Isotopic to K 5 (288) 4 (180) 9 (468)
All cases 8 (330) 7 (246) 15 (576)

It appears that there is a statistical propensity to greater plenary stability among
the isotopes of K compared with those of Z4. For n = 5, two of the six isomorphism
classes of loops are plenary stable. One of these is unipotent and the other satisfies
a2 = e, b2 = c2 = d2 = a. There are 109 isomorphism classes of loops for n = 6, of
which 40 are plenary stable. These are distributed among 15 different type graphs.
Two of the plenary stable isomorphism classes have maximal index, and there are
4 distinct isomorphism classes of unipotent loops. Of the 18 possible unlabelled
rooted trees on six nodes, three do not correspond to non-empty classes of plenary
stable loops. One of these, the root joined to four nodes, one of which is joined to
the sixth, does not even have a corresponding plenary stable quasigroup.
The above statistics suggest that a high proportion of quasigroups are plenary

stable. For larger order I conjecture that this is not so. Consider the category
of groupoids. Let the head and sidelines of the multiplication table of a random
groupoid G∗ be fixed, and each cell filled in independently and randomly, each of
the n possible entries being equally likely. We investigate the probability that the
random graph D(G∗) contains a cycle. Each of the ordered sets of k nodes will

give rise to a cycle with probability (n−1)k, each of the n(k) possible cycles being

counted k times. Hence the expected number of cycles of length k is k−1n(k)n−k.

The expected number of cycles of any length is µn =
∑n
2 k−1n(k)n−k. Only a small

proportion of pairs of possible cycles are dependent, and the distribution of the
number of cycles is asymptotically Poisson. The probability of zero, and hence of
G∗ being plenary stable, is approximately exp (−µn) = O(n−1). Thus of the n3

groupoids on n distinguishable elements, about cn2 are plenary stable. Quasigroups
constitute an infinitesimal proportion of groupoids, and it would be interesting to
make carry out a similar calculation for them.
We have seen that, given a rooted forest, it is not always possible to construct
a plenary stable quasigroup for which it is the type. We may ask which forests
are admissible in the sense that there is a corresponding type. It is of particular
interest to investigate the existence of plenary stable quasigroups with maximal
possible index.

Proposition 5. For every even n ≥ 4 there exists a quasigroup of order n which
is plenary stable of index n − 1.

We present two proofs. The first, provided by the referee, leads to the explicit
construction of a plenary stable quasigroup with maximal index for each order
n ≥ 4.

First Proof: Consider the group Zn = {0, 1, . . . , n− 1} of integers with addition

modulo n. Let t(i) be the transformation t(i) = i+1 if i 6= 12n, n−1, 12n−1; t(
1
2n) =
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t(n − 1) = 1
2n; t(

1
2n − 1) = 1

2n + 1. Then
∑

t(i) = 0, and hence by a result
of M. Hall Jr. quoted in [6], there are permutations f and g of Zn such that
t(i) = f(i) + g(i) for every i ∈ Zn. Now if we define i∗j = f(i) + g(j), we obtain

a quasigroup Z∗

n isotopic to Zn. Now 0
∗0 = 0, 1∗1 = 2, . . . , (12n − 2)∗(12n − 2) =

1
2n−1, (

1
2n−1)

∗(12n−1) =
1
2n+1, (

1
2n+1)

∗(12n+1) =
1
2n+2, . . . , (n−2)

∗(n−2) =

n− 1, (n− 1)∗(n− 1) = 12n, 12n
∗ 1
2n =

1
2n. Thus Z∗

n is plenary stable of index n− 1.
�

The second proof does not involve computation but relies on properties of Latin
squares. If Q is a quasigroup on whose diagonal one element occurs k1 times,
another k2 times, etc., we say that it has diagonal partition (k1, . . . , kp). The
diagonal partition of a plenary stable quasigroup is determined by, but does not
determine, its type graph.

Lemma. There exists a quasigroup with diagonal partition (k1, . . . , kp) provided
that

∑
xjkj ≡ 0 (mod n) has a solution in distinct integers x1, . . . , xp.

This is equivalent to a result of Marica & Schönheim [6], which in turn follows
from the theorem of M. Hall Jr. already mentioned.

Second Proof: We begin with the set 1, 2, . . . , n, and replace one of its elements
y by the integer x 6= y, x ≤ n. By the Lemma, the new set can form the diagonal of
a Latin square if 12n(n+1)+x−y ≡ 0 (mod n), which has the solution x−y = 12n.

The set 2, 3, . . . , 12n+1 (twice) , . . . , n satisfies this condition. We now interchange

the numbers 12n and n in the table, and make equivalent changes in the order of
rows and columns so as to bring the diagonal into the order 2, 3, . . . , n, n. �

Corollary 1. The quasigroup of Proposition 5 can be taken to be a symmetric
isotope of an idempotent quasigroup.

Corollary 2. The single chain with n ≥ 4 nodes, with a loop at the initial node,
is admissible.

We have seen that there is no quasigroup of this type for n = 3. A plenary
stable quasigroup of odd order and maximal index, proposed by the referee, is the
following, which has canonical diagonal:

a b c d e

a b a e d c
b e c b a d
c c e d b a
d a d c e b
e d b a c e.

The parastrophes of a quasigroup Q, namely itself, its conjoint, reciprocal, ad-
joint, transpose, and reverse transpose, are the quasigroups with composition rules
ab; ba; a/b; a\b; b\a; b/a.

Proposition 6. The conjoint of Q has the same type of plenary stability as Q
itself. If Q is a loop, all the other parastrophes are unipotent.
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Despite the similar position of plenary stable quasigroups and Bernstein nonas-
sociative algebras, plenary stability cannot be transferred.

Proposition 7. A quasigroup algebra cannot be Bernstein.

Proof: A quasigroup algebra is baric with w(
∑

xiai) =
∑

xi. A Bernstein algebra
has a direct decomposition B = Fe ⊕ U ⊕ V , where e is an idempotent, F is the
ground field, U = {u; eu = 1

2u}, V = {v; ev = 0} (see e.g. [5]). Now if B were
a quasigroup algebra, the left multiplication by any element ai, hence by any element
a with w(a) 6= 0, and in particular by e, is nonsingular on A. Hence it is nonsingular
on Ker w. Thus the component V must be absent in this case. This implies that
ai−aj ∈ U . The Bernstein property now implies that e(ai−aj) =

1
2 (ai−aj), while

the quasigroup property implies e(ai − aj) = ak − al, k 6= l. This is a contradiction.
�

The noncommutative duplicate of an algebra A with basis a1, a2, . . . , an is the al-
gebraAD with basis the ordered pairs (ai, aj) and multiplication table (ai, aj) (au, av)
= (aiaj , auav). This construction is important in genetic applications. Duplication
cannot be carried out within the category of quasigroups. However, let G∗ be

a groupoid. The set G∗D of ordered pairs of elements of G∗, with multiplication
rule (a, b) (c, d) = (ab, cd) is also a groupoid.

Proposition 8. The noncommutative duplicate of a plenary stable groupoid (in
particular of a plenary stable quasigroup) of index d is plenary stable with index
d+ 1.

Proof: We have (a, b)[d+1] = (ab, ab)[d] = ((ab)[d], (ab)[d]). �

If for an element a ∈ Q, we have a[k] = a[k+1], we say that a is a plenary stable
element. The order of a subquasigroup need not divide the order of the quasigroup,
but it cannot exceed half the order. Plenary stability imposes a further condition.

Proposition 9. Let Q have order 2n. The set S of plenary stable elements cannot
form a subquasigroup of order n.

Proof: Suppose the contrary and label the elements of S a1, a2, . . . , an. None of
these elements can appear in the diagonal positions in rows n + 1 to 2n, since if
e.g. a2i = aj , n + 1 ≤ i ≤ 2n, 1 ≤ j ≤ n, ai would also be plenary stable. But the
first n columns of row i must contain the elements an+1, an+2, . . . , a2n by the Latin
square property. �

A quasigroup can be realised as a geometric 3-net [3]. To obtain results on plenary
stability other than changes in terminology, we may consider special cases defined
by geometric conditions. Let N be a 5-net whose parallel classes are determined by
points U, V, W, X, Y and let l, m be two lines not passing through U, V , or W . Let
the lines through U be labelled a1, a2, . . . , an, and let λ, µ be the perspectivities
determined by l, m, mapping the line bundle through U onto those through V, W ,
respectively. Let Q be a quasigroup given by the multiplication rule aiaj = µ−1{ai∩
λ(aj)W}.
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Lemma. (i) If l = m, Q is an idempotent quasigroup. (ii) If l 6= m and l ∩ m
lies on a line through U , then Q has exactly one idempotent element. (iii) If l, m
intersect in X or Y , then Q has no idempotent elements.

Proof: In case (i), it may be seen geometrically that the lines a, λ(a) and µ(a) are
coincident on l, for every a ∈ Q. More formally, we have λ(a) = (a ∩ l)V, µ(a) =
(a∩ l)W . Then the square of a is {(a∩a)}W = {a∩ (a∩ l)V }W = (a∩ l)W = µ(a).
In case (ii) this calculation can be carried through for the point l ∩ m, but not for
any other, while in case (iii) it does not hold anywhere. �

Consider any line b through U other than a. To find b2 we determine b ∩ l, and
the join of this to W, (b ∩ l)W is µ(b2). The join of its intersection with m, and U
is b2.

Proposition 10. In the 5-net N , let b be a line through U not corresponding
to the idempotent, and let L1 = b ∩ l. Let the sequence L1, M1, L2, M2, . . . be
defined by alternating projections from l to m with vertex U , and from m to l
with vertex W . If the sequence closes to a polygon, then Q is not a plenary stable
quasigroup, and conversely.

Proof: A closed polygon corresponds to a cycle in the sequence of iterated squares.
�
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