Commentationes Mathematicae Universitatis Carolinae

Tomáš Kepka

m-medial n-quasigroups

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 1, 9--14

Persistent URL: http://dml.cz/dmlcz/116937

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

m-medial \mathbf{n}-quasigroups

TOMÁŠ KEpKA

Abstract

For $n \geq 4$, every n-medial n-quasigroup is medial. If $1 \leq m<n$, then there exist m-medial n-quasigroups which are not ($m+1$)-medial.

Keywords: n-quasigroup, medial
Classification: 20N15

Idempotent symmetric 3-medial 2-quasigroups (also known as distributive Steiner quasigroups, idempotent Manin quasigroups, Hall triple systems, affine triple systems, planarily affine Steiner-Kirkman (2, 3)-systems, etc., etc.) possess many interesting algebraical, geometrical and combinatorial properties (see e.g. [1], [2], [5] for some of them). Similarly, idempotent symmetric 3-quasigroups corresponding to Steiner-Kirkman (3, 4)-systems, are 3-medial and, certainly, they are of some combinatorial interest. On the other hand, it is not clear whether the same applies to the general case of m-medial n-quasigroups, $1 \leq m \leq n^{2}$. In the present note, an investigation is started in this respect. It is shown that every n-medial n-quasigroup is medial for $n \geq 4$ and that for every $1 \leq m<n$ there exist m-medial n-quasigroups which are not $(m+1)$-medial.

1. Introduction.

An n-groupoid, where $n \geq 1$, is a non-empty set together with an n-ary operation (usually denoted multiplicatively). If G is an n-groupoid, $1 \leq i \leq n$ and $a=$ $\left(a_{1}, \ldots, a_{n-1}\right) \in G^{n-1}$, then we put $T_{i, a}(x)=a_{1} \ldots a_{i-1} x a_{i} \ldots a_{n-1}$ for each $x \in G$. This transformation $T_{i, a}$ of G is called the i-th translation of G by a.

An n-groupoid G is said to be

- idempotent, if $x \ldots x=x$ for each $x \in G$;
- commutative, if $x_{1} \ldots x_{n}=x_{p(1)} \ldots x_{p(n)}$ for all $x_{1}, \ldots, x_{n} \in G$ and any permutation p of $\{1,2, \ldots, n\}$;
- medial, if $\left(x_{11} \ldots x_{1 n}\right)\left(x_{21} \ldots x_{2 n}\right) \ldots\left(x_{n 1} \ldots x_{n n}\right)=\left(x_{11} \ldots x_{n 1}\right)\left(x_{12} \ldots x_{n 2}\right)$ $\ldots\left(x_{1 n} \ldots x_{n n}\right)$ for all $x_{i j} \in G, 1 \leq i, j \leq n$;
- m-medial, where $1 \leq m$, if every subgroupoid of G generated by at most m elements is medial;
- symmetric if all the translations of G are involutions;
- an n-quasigroup if all the translations of G are permutations.

The following result is well known (see e.g. [6]):
Proposition 1.1. Let $n \geq 2$. The following conditions are equivalent for an n groupoid G :
(i) G is a medial n-quasigroup.
(ii) There exist an abelian group $G(+)$, pair-wise commuting automorphisms f_{1}, \ldots, f_{n} of the group and an element $s \in G$ such that $x_{1} \ldots x_{n}=f_{1}\left(x_{1}\right)+$ $\cdots+f_{n}\left(x_{n}\right)+s$ for all $x_{1}, \ldots, x_{n} \in G$.
For $n \geq 1$, let R_{n} designate the polynomial ring $Z\left[\alpha_{1}, \ldots \alpha_{n}, \alpha_{1}^{-1}, \ldots \alpha_{n}^{-1}\right]$.
Proposition 1.2. Let $n \geq 2$. The following conditions are equivalent for an n groupoid G :
(i) G is a medial n-quasigroup.
(ii) There exist an R_{n}-module $G(+, \alpha x)$ and an element $s \in G$ such that $x_{1} \ldots x_{n}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}+s$ for all $x_{1}, \ldots, x_{n} \in G$.

Proof: If the condition (i) is satisfied, one may define a scalar multiplication on $G(+)$ (see 1.1) whose domain of operators is R_{n} by setting $\alpha_{i} \cdot x=f_{i}(x)$.
Proposition 1.3. Let $n \geq 2$. The following conditions are equivalent for an n groupoid G :
(i) G is idempotent, symmetric and medial.
(ii) There exists an abelian group $G(+)$ such that $(n+1) x=0$ and $x_{1} \ldots x_{n}=$ $-x_{1}-\cdots-x_{n}=n\left(x_{1}+\cdots+x_{n}\right)$ for all $x, x_{1}, \ldots, x_{n} \in G$.

Proof: Let (i) be satisfied. First of all, $0=0 \ldots 0=s$. Next, $0=b 0 \ldots 0(b 0 \ldots 0)$ $=\alpha_{1} b+\alpha_{n} \alpha_{1} b=a+\alpha_{n} a, b=\alpha_{1}^{-1} a, \alpha_{n} a=-a$ and $\alpha_{n}=-1$. Similarly, $\alpha_{1}=$ $\cdots=\alpha_{n-1}=-1$.

2. Auxiliary results.

In this section, let Q be an n-quasigroup, where $n \geq 2$, and let $a_{1}, \ldots, a_{n} \in Q$. Put $f=T_{1, u}, g=T_{2, v}, u=\left(a_{2}, a_{3}, \ldots, a_{n}\right), v=\left(a_{1}, a_{3}, \ldots, a_{n}\right)$ and $x * y=$ $f^{-1}(x) g^{-1}(y) a_{3} \ldots a_{n}$ for all $x, y \in Q$. It is easy to check that the 2 -groupoid $Q(*)$ is a loop and $e=a_{1} a_{2} \ldots a_{n}$ is its neutral element.

Observation 2.1. Let P be a subquasigroup of the n-quasigroup Q and suppose that $a_{1}, \ldots, a_{n} \in P$ and P is medial. By 1.2 (ii) there exist an R_{n}-module $P(+, \alpha x)$ and an element $s \in P$ such that $x_{1} \ldots x_{n}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}+s$ for all $x_{1}, \ldots, x_{n} \in$ P. Now, $f^{-1}(x)=\alpha_{1}^{-1} x-\alpha_{1}^{-1} \alpha_{2} a_{2}-\cdots-\alpha_{1}^{-1} \alpha_{n} a_{n}-\alpha_{1}^{-1} s$ and $g^{-1}(y)=$ $\alpha_{2}^{-1} y-\alpha_{2}^{-1} \alpha_{1} a_{1}-\alpha_{2}^{-1} \alpha_{3} a_{3}-\cdots-\alpha_{2}^{-1} \alpha_{n} a_{n}-\alpha_{2}^{-1} s$, and hence $x * y=x-\alpha_{2} a_{2}-$ $\cdots-\alpha_{n} a_{n}-s+y-\alpha_{1} a_{1}-\alpha_{3} a_{3}-\cdots-\alpha_{n} a_{n}-s+\alpha_{3} a_{3}+\cdots+\alpha_{n} a_{n}+s=$ $x+y-\alpha_{1} a_{1}-\alpha_{2} a_{2}-\cdots-\alpha_{n} a_{n}-s=x+y-e$ for all $x, y \in P$. We have shown that

$$
\begin{equation*}
x * y=x+y-e \tag{2.1.1}
\end{equation*}
$$

for all $x, y \in P$.
Lemma 2.2. Let $a, b, c \in Q$ be such that the subquasigroup generated by a, b, c, a_{1}, \ldots, a_{n} is medial. Then $a * b=b * a$ and $a *(b * c)=(a * b) * c$.
Proof: This follows easily from (2.1.1).

Now, put $w=e e \ldots e$ and denote by z the unique element of Q such that $w * z=$ e. For $1 \leq i \leq n$ and $x \in Q$, let $g_{i}(x)=(e e \ldots$ exe $\ldots e) * z$, where x is on the i-th position. Clearly, these transformations g_{i} are permutations.

Observation 2.3. Consider the situation from 2.1. Then $e=w * z=w+z-e$, and so $w+z=2 e$. Further, ee \ldots exe $\ldots e=w-\alpha_{i} e+\alpha_{i} x$ and we have $g_{i}(x)=$ $w-\alpha_{i} e+\alpha_{i} x+z-e=\alpha_{i} x-\alpha_{i} e+e$. Thus

$$
\begin{equation*}
g_{i}(x)=\alpha_{i}(x-e)+e \tag{2.1.2}
\end{equation*}
$$

for all $1 \leq i \leq n$ and $x \in P$.
Lemma 2.4. Let $a, b \in Q$ be such that the subquasigroup generated by a, b, a_{1}, \ldots, a_{n} is medial. Then $g_{i}(a * b)=g_{i}(a) * g_{i}(b)$ for every $1 \leq i \leq n$.
Proof: This follows easily from (2.1.) and (2.1.2).
Lemma 2.5. Let $a \in Q$ be such that the subquasigroup generated by a, a_{1}, \ldots, a_{n} is medial. Then $g_{i} g_{j}(a)=g_{j} g_{i}(a)$ for all $1 \leq i, j \leq n$.
Proof: This follows easily from (2.1.2).
Lemma 2.6. Let P be a medial subquasigroup of Q such that $a_{1}, \ldots, a_{n} \in P$. Then $P(*)$ is an abelian group and $g_{i} \mid P$ are pair-wise commuting automorphisms of $P(*)$.

Proof: Use 2.2, 2.3 and 2.4.
Lemma 2.7. Let P be a medial subquasigroup of Q such that $a_{1}, \ldots, a_{n} \in P$. Then $u_{1} \ldots u_{n}=g_{1}\left(u_{1}\right) * \cdots * g_{n}\left(u_{n}\right) * w$ for all $u_{1}, \ldots, u_{n} \in P$.

Proof: By (2.1.1) and (2.1.2), $g_{1}\left(u_{1} * \cdots * g_{n}\left(u_{n}\right) * w=\left(\alpha_{1}\left(u_{1}-e\right)+e\right) * \cdots *\right.$ $\left(\alpha_{n}\left(u_{n}-e\right)+e\right) * w=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}-\alpha_{1} e-\cdots-\alpha_{n} e+n e+w-n e=$ $\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}+s=u_{1} \ldots u_{n}$, since $w=\alpha_{1} e+\cdots+\alpha_{n} e+s$.

3. Auxiliary results.

In this section, let Q be a 4 -medial n-quasigroup, where $n \geq 2$. For every $a \in Q$, let $u_{a}=(a, a, \ldots, a) \in Q^{(n-1)}, f_{a}=T_{1, u_{a}}, g_{a}=T_{2, u_{a}}, e_{a}=a a \ldots a \in Q$ and $x o_{a} y=f_{a}^{-1}(x) g_{a}^{-1}(y) a \ldots a$ for all $x, y \in Q$. By $2.2, Q\left(o_{a}\right)$ is an abelian group and e_{a} is its neutral element.

Further, let $w_{a}=e_{a} e_{a} \ldots e_{a}, w_{a} o_{a} z_{a}=e_{a}$ and let $g_{i, a}(x)=\left(e_{a} e_{a} \ldots e_{a} x e_{a} \ldots e_{a}\right)$ $o_{a} z_{a}, 1 \leq i \leq n$. By 2.4 and $2.5, g_{i, a}$ are pair-wise commuting automorphisms of $Q\left(o_{a}\right)$, and hence they induce a structure of an R_{n}-module on $Q\left(o_{a}\right)$. We denote by $(\alpha, x) \longrightarrow q_{a} x$ the corresponding scalar multiplication, so that $\alpha_{i} q_{a} x=g_{i, a}(x)$.
Lemma 3.1. $x o_{b} y=x o_{a}\left(e_{a} o_{b} e_{a}\right)$ for all $a, b, x, y \in Q$.
Proof: Denote by P the subquasigroup generated by x, y, a, b. Then P is medial and let $P(+, \alpha x, s)$ be a corresponding pointed R_{n}-module (see 1.2). By (2.1.1), $u o_{a} v=u+v-e_{a}$ and $u o_{b} v=u+v-e_{b}$ for all $u, v \in P$. Hence $x o_{a} y o_{a}\left(e_{a} o_{b} e_{a}\right)=$ $x+y+2 e_{a}-2 e_{a}-e_{b}=x+y-e_{b}=x o_{b} y$.

Lemma 3.2. $\alpha_{i} q_{b} x=\left(\alpha_{i} q_{a} x\right) o_{a}\left(\alpha_{i} q_{b} e_{a}\right)$ for all $a, b, x \in Q$ and $1 \leq i \leq n$.
Proof: Let P be the subquasigroup generated by x, a, b and consider a corresponding pointed R_{n}-module $P(+, \alpha x, s)$. By (2), $\alpha_{i} q_{a} u=\alpha_{i} u-\alpha_{i} e_{a}+e_{a}$ and $\alpha_{i} q_{b} u=\alpha_{i} u-\alpha_{i} e_{b}+e_{b}$ for each $u \in P$. Consequently, $\left(\alpha_{i} q_{a} x\right) o_{a}\left(\alpha_{i} q_{b} e_{a}\right)=$ $\left.\alpha_{i} x-\alpha_{i} e_{a}+e_{a}\right) o_{a}\left(\alpha_{i} e_{a}-\alpha_{i} e_{b}+e_{b}\right)=\alpha_{i} x-\alpha_{i} e_{a}+e_{a}+\alpha_{i} e_{a}-\alpha_{i} e_{b}+e_{b}-e_{a}=$ $\alpha_{i} x-\alpha_{i} e_{b}+e_{b}=\alpha_{i} q_{b} x$.

In the remaining part of this section, suppose that Q is n-medial. Further, let $a \in Q, e=e_{a}, w=w_{a}, *=o_{a}$ and $o=q_{a}$.

Lemma 3.3. There is a transformation h of Q such that $x_{1} \ldots x_{n}=\left(\alpha_{1} o x_{1}\right) *$ $\cdots *\left(\alpha_{n} o x_{n}\right) * h\left(x_{1}\right)$ for all $x_{1}, \ldots, x_{n} \in Q$.
Proof: Put $b=x_{1}$ and denote by P the subquasigroup generated by x_{1}, \ldots, x_{n}. Then P is medial and we have $x_{1} \ldots x_{n}=\left(\alpha_{1} q_{b} x_{1}\right) o_{b} \ldots o_{b}\left(\alpha_{n} q_{b} x_{n}\right) o_{b} w_{b}$ by 2.7. However, by 3.1 and 3.2 , we can write $x_{1} \ldots x_{n}=\left(\alpha_{1} q_{b} x_{1}\right) * \cdots *\left(\alpha_{n} q_{b} x_{n}\right) * w_{b} * r$, where $r=\left(e o_{b} e\right) * \cdots *\left(e o_{b} e\right)(n$-times $)$, and $x_{1} \ldots x_{n}=\left(\alpha_{1} o x_{1}\right) * \cdots *\left(\alpha_{n} o x_{n}\right) *$ $w_{b} * r * t$, where $t=\left(\alpha_{1} q_{b} e\right) * \cdots *\left(\alpha_{n} q_{b} e\right)$. Now, it is enough to put $h\left(x_{1}\right)=$ $h(b)=w_{b} * r * t$.
Lemma 3.4. $x_{1} \ldots x_{n}=\left(\alpha_{1} o x_{1}\right) * \cdots *\left(\alpha_{n} o x_{n}\right) * w$ for all $x_{1}, \ldots, x_{n} \in Q$.
Proof: With respect to 3.3 , we have to show that $h(y)=w$ for every $y \in Q$. Denote by P the subquasigroup generated by y and a and let $P(+, \alpha x, s)$ be a corresponding pointed module. Then ye...e $=\left(\alpha_{1} o y\right) * h(y)$ by 3.3. But ye $\ldots e=\alpha_{1} y+\alpha_{2} e+$ $\cdots+\alpha_{n} e+s$ and $\left(\alpha_{1} o y\right) * h(y)=\left(\alpha_{1} o y\right)+h(y)-e=\alpha_{1} y-\alpha_{1} e+e+h(y)-e=$ $\alpha_{1} y-\alpha_{1} e+h(y)$. Thus $h(y)=\alpha_{1} e+\cdots+\alpha_{n} e+s=e e \ldots e=w$.

4. Main results.

Construction 4.1. Let $2 \leq m \leq n$, let p be a prime dividing n and let $Q(+, F)$ be an m-ary ring satisfying the following identities: $p x=0 ; F\left(x_{1}, \ldots x_{m}\right)=0$ whenever $x_{i}=x_{j}$ for some $i<j ; F\left(F\left(x_{1}, \ldots, x_{m}\right), y_{2}, \ldots, y_{m}\right)=F\left(y_{1}, F\left(x_{1}, \ldots, x_{m}\right), y_{3}, \ldots\right.$, $\left.y_{m}\right)=\cdots=F\left(y_{1}, \ldots, y_{m-1}, F\left(x_{1}, \ldots, x_{m}\right)\right)=0$. Now define an n-ary operation on Q by $x_{1} \ldots x_{n}=x_{1}+\cdots+x_{n}+F\left(x_{1}, \ldots, x_{m}\right)$. In this way, we get an n groupoid Q.

Lemma 4.1.1. The n-groupoid Q is an ($m-1$)-medial n-quasigroup and $x x \ldots x$ $=0$ for every $x \in Q$.
Proof: Let $1 \leq i \leq n, a_{1}, \ldots, a_{n} \in Q, a=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right) \in Q^{(n-1)}$ and $T=T_{i, a}$. Further, let $b=a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}$ and $x \in Q$. If $i \leq m$, then $T(x)=x+b+F\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{m}\right)=x+b+f(x), T^{2}(x)=$ $x+2 b+2 f(x)+c$, where $c=F\left(a_{1}, \ldots, a_{i-1}, a_{m+1}+\cdots+a_{n}, a_{i+1}, \ldots, a_{m}\right)$, and $T^{k}(x)=x+k b+k f(x)+(k(k-1) / 2) c$ for $k \geq 3$. Consequently, $T^{2 p}=i d_{Q}$ ($T^{p}=i d_{Q}$ provided that p is odd). If $m<i$, then $T(x)=x+b+F\left(a_{1}, \ldots, a_{m}\right)$ and $T^{p}=i d_{Q}$. We have proved that every translation of Q is a permutation, i.e. Q is an n-quasigroup.

Now, let $a_{1}, \ldots, a_{m-1} \in Q$ and let P be the subgroup generated by these elements in the additive group $Q(+)$ of the m-ary ring. Then $F \mid P^{(m)}=0$, so that P is a subring as well. However, then P is a subquasigroup which is clearly medial.

Lemma 4.1.2. Suppose that $3 \leq n$ and $F \neq 0$. Then the n-quasigroup Q is not m-medial.

Proof: Let $a_{1}, \ldots, a_{m} \in Q$ be such that $F\left(a_{1}, \ldots, a_{m}\right) \neq 0$. Denote by P the subquasigroup generated by these elements and suppose that P is medial. Since $a_{1} a_{1} \ldots a_{1}=0$, we have also $0 \in P$. By 1.2 , there exists a pointed R_{n}-module $P(*, \alpha x, s)$ such that $x_{1} \ldots x_{n}=\alpha_{1} x_{1} * \cdots * \alpha_{n} x_{n} * s$ for all $x_{1}, \ldots, x_{n} \in P$. Let $e \in P$ be the neutral element of the abelian group $P(*)$. We have $x_{1}+\cdots+$ $x_{n}+F\left(x_{1}, \ldots, x_{m}\right)=\alpha_{1} x_{1} * \cdots * \alpha_{n} x_{n} * s$ for all $x_{1}, \ldots, x_{n} \in P$. In particular, $x_{1}=\alpha_{1} x_{1} * \alpha_{2} 0 * \cdots * \alpha_{n} 0 * s, e=e * \alpha_{2} 0 * \cdots * \alpha_{n} 0 * s, e=\alpha_{2} 0 * \cdots * \alpha_{n} 0 * s$ and $x_{1}=\alpha_{1} x_{1} * e=\alpha_{1} x_{1}$. Similarly, $x_{2}=\alpha_{2} x_{2}$, etc., and we have proved that $x_{1}+\cdots+x_{n}+F\left(x_{1}, \ldots, x_{m}\right)=x_{1} * \cdots * x_{n} * s$. Consequently, $x+y=x * y * 2 e$ for all $x, y \in P$, and therefore $x_{1}+\cdots+x_{n}+F\left(x_{1}, \ldots, x_{m}\right)=x_{1} * \cdots * x_{n} *$ $F\left(x_{1}, \ldots, x_{m}\right) \div u$, where $u=2 e * \cdots * 2 e$ (n-times). Now, we conclude that $x_{1} * \cdots * x_{n} * s=x_{1} * \cdots * x_{n} * F\left(x_{1}, \ldots, x_{m}\right) * u, s=F\left(x_{1}, \ldots, x_{m}\right) * u$ and $F \mid P^{(m)}$ is constant. Since $0 \in P, F \mid P^{(m)}=0$, a contradiction.

Example 4.2. Let $2 \leq m \leq n, 3 \leq n$, let p be the least prime dividing n and let $q=Z_{p}^{(m+1)}$. For $x_{i}=\left(x_{i j}\right) \in Q, 1 \leq i \leq m, 1 \leq j \leq m+1$, put $F\left(x_{1}, \ldots, x_{m}\right)=$ $(0, \ldots, 0 \operatorname{det} X) \in Q, X=\left(x_{r s), 1 \leq r, s \leq m}\right.$. Then $Q(+, F)$ is an m-ary ring satisfying the identities from 4.1 and $F \neq 0$. Now, the corresponding n-quasigroup (see 4.1) is $(m-1)$-medial but not m-medial.

Theorem 4.3. Let $n \geq 4$.
(i) If $m \geq n$, then every m-medial n-quasigroup is medial.
(ii) If $1 \leq m<n$, then there exists an m-medial n-quasigroup which is not $(m+1)$-medial.

Proof: (i) This follows from 3.4 and 1.2.
(ii) See 4.2.

Example 4.4. Let $n \geq 3$ and $Q=Z_{2}^{(n+1)}$. Define an n-ary ring $Q(+, F)$ in the same way as in 4.2 and consider the corresponding n-quasigroup Q. Then Q is ($n-1$)-medial. For $n \geq 4, Q$ is not n-medial and for $n=3, Q$ is 3 -medial and not 4 -medial. For n odd, Q is idempotent and symmetric.

Remark 4.5. By 3.4, every m-medial 3 -quasigroup is medial for $m \geq 4$. On the other hand, by 4.2 and 4.4 , for every $1 \leq m \leq 3$ there exists an m-medial 3 -quasigroup which is not $(m+1)$-medial.
Remark 4.6. Obviously, for $m \geq 4$, every m-medial 2-quasigroup is medial and it is easy to show that, for $m=1,2$, there exists an m-medial 2 -quasigroup which is not $(m+1)$-medial. As concerns the 3 -medial 2 -quasigroups, the following example is well known (see [4]): Let $Q=Z_{3}^{(4)}$ and $x * y=-x-y+\left(0,0,0, x_{1} x_{3} y_{2}-x_{2} x_{3} y_{1}-\right.$
$\left.x_{1} y_{2} y_{3}+x_{2} y_{1} y_{3}\right)$ for all $x, y \in 0$. Then $Q(*)$ is an idempotent symmetric 3 -medial 2 -quasigroup and it is not medial. By [7], every non-medial 3-medial 2-quasigroup contains at least 81 elements and, by [3], there exist up to isomorphism just 35 non-medial 3 -medial 2 -quasigroups of order 81 .

Remark 4.7. Every 1-groupoid, and hence every 1-quasigroup, is medial.

References

[1] Bénéteau L., Free commutative Moufang loops and anticommutative graded rings, J. Algebra 67 (1980), 1-35.
[2] Bénéteau L., Une classe particulière de matroïdes parfaits, Annals of Discr. Math. 8 (1980), 229-232.
[3] Bénéteau L., Kepka t., Lacaze J., Small finite trimedial quasigroups, Commun. Algebra 14 (1986), 1067-1090.
[4] Bol G., Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431.
[5] Deza M., Hamada N., The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme, Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.
[6] Evans T., Abstract mean values, Duke Math. J. 30 (1963), 331-347.
[7] Kepka T., Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229-240.

Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Received September 24, 1990)

