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Casopls pro p¥stovini matematiky, ro&. 91 (1966), Praha

PSEUDO-UNITARY SPACES

Jiki JELINEK, Praha and JURAJ VIRSIK, Bratislava
(Received August 15, 1964)

In the present paper linear spaces endowed with two or more topologies will be
discussed. In order to specify which of the topologies is being considered, this will
be indicated in brackets in front of the corresponding symbol. E.g. the relation
(To) Ho = (0) Hy = H, states that H, is closed in both the topologies T, and ¢. In
the text this will be expressed by saying that H, is T,-closed, o-closed, etc. The
symbol #{A} denotes the linear hull of the subset A of a linear space H.

1. DEFINITION AND SOME PROPERTIES

1.1 Let H be a linear space (module) over the field of real numbers. H will be called
a pseudo-unitary space if there is given a symmetric non-degenerate bilinear form
on H. This means that to any elements x € H, y € H there is assigned a"real number
{x, y> with the following properties

81) <x, y> = {y, x),
S2) (Axy + pxz, y) =P<x1, ¥> + uéxs, ¥,
S3) (x,, y> = 0for all y € H implies x, = 0.

The number {x, y) will be called the pseudo-scalar product of x, y e:H .

For arbitrary x, e H the expression {xo, ) (or, more precisely, the mapping
y = {X,, ) determines a linear form on H. Denote by H* the dual of H, i.e. the
space of (algebraic) linear forms on H. According to S3, the linear space H is
isomorphic to some linear subspace of H*. This isomorphism is given by the relation
x e (y = {x, y)). Two elements x € H, y € H are termed orthogonal if <x, y) = 0.
An element x € H is called isotropic if x + 0 and {x, x) = 0. We shall also sometimes
" write x L y instead of {x, y) = 0. The following statement is evident: if x € H is
orthogonal to all elements of E = H (i.e. x L E) then x L #{E}. Let H, = H be
a linear subspace of H. The orthogonal complement L(H,) of the subspace H, in H
is the set of all elements in H which are orthogonal to H,. Then L(H,) is clearly
a linear subspace of H.
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Definition. A linear subspace H, = H is called non-isotropic if x,€ H, and
{xg, y> = 0 for all y e H, implies x, = 0.

1.2 In the following we give some theorems concerning the algebraical structure
of pseudo-unitary spaces. The first one is evident.

Theorem 1. A linear subspace Hy = H is itself a pseudo-unitary space with the
pseudo-scalar product defined naturally if an only if H, is non-isotropic in H.

Theorem 2. A linear subspace Hy, — H is non-isotropic if and only if Hy N
n L(H,) = {0}.

Proof. Let H, be non-isotropic, x € L(Hy) N H,. Then x¢€ Ho and x L H,,
which implies x = 0. The converse is similar.

Lemma 1. Let H, be a non-trivial non-isotropic linear subspace of H. Then there
exists an element x € H, such that {x, x> % 0.

Proof. Let {x, x) = 0 for all x € H,. Then for a fixed 0 % x, € H, and arbitrary
ye Hy we have 0 = (xo + y, Xo + > = {Xg, Xo> + 2{X0, ¥> + {¥, ¥)> and thus
{xp, ¥> = 0, which is in contradiction with the assumptions.

Theorem 3. Let H, be a non-isotropic linear subspace of H, and let {x, x> = 0
for all x e Hy. Then {(x,x)» > 0 for all 0 + x € H,,.

Proof. Let an x, € H,y with {x¢, xo) = 0 be fixed and choose y € H, arbitrarily.
We then have, for each real k, {x, + ky, xo + ky) = 0,i.e. K>y, y> + 2k<{xp, > =
= 0. Hence the discriminant of this form in k, i.e. D = ({(x,, y>)?, satisfies D z 0;
as y was arbitrary we conclude hence that x, = 0.

Denote by I the set of isotropic elements of H and put S = Z{I}. Then the
following holds

Theorem 4. In a pseudo-unitary space H either I = & (l e. H is a unitary space) -
or, TS = H

Proof. Let I &+ @. First we shall show that  is non-isotropic. Indeed, assume
ief, il S, i+ 0. Then necessarily i eI, and there exists an y € H such that
<i, y> £ 0. Now if we put

0y
24, ) _
we have zel and (i, z) = (i, y) + ~0; this is in contradiction with i L J.
Next we shall prove that each x, € H can be expressed as a linear combination of

elements in I. Obviously it suffices to suppose X € H — I and, e.g., {x,, xo) > 0.
There are two cases:

=y--
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a) There exists an i, € I such that (X0 lo) # 0. Then we may write

"4 <x09 x0> X
2<xOs l0>

P Xo = X 1o »

where
Xy X .
Xy =X -_<Jl’—'°Z.zo, xpel,
2<x0’ ‘o)

and thus x, € 4.

b) Suppose now x, L I. We shall show that the form (x, x) is positive-definite
on L(#). Indeed, let 0 + y, € (#) satisfy <o, yo» < 0. Then the equation (x, +
+ kyo, xo + kyo) = O has a solution k = k,, and according to Theorem 2 we
obtain x, + koyo = 0, i.e. {Xo, Xo> = k&{¥o, yo)» Which is in contradiction with
{xg, %oy > 0.

As I + o, we conclude from Theorem 3 that there exists an x, € H satisfying
(%1, %4> < 0. According to what has been proved above x, ¢ L(.#), i.e. there exists
an isotropic i, such that {x, i;> # 0. From part a) of this proof we obtain x, € .£.
Now, since the equation {x, + kx;, x, + kx,> = 0 has a real solution, we obtain
finally that x, € S.

The case {x,, Xo> < 0 could be treated in a similar manner.

Theorem 1 shows that an n-dimensional non-isotropic linear subspace of a pseudo-
unitary space is isomorphic in a natural way with the n-dimensional pseudo-
euclidean space. Therefore the theorem below is in fact only a well-known result in
the theory of these spaces.

Theorem 5. Let H, be a non-isotropic n-dimensional linear subspace of a pseudo-
unitary space H. Then the following holds:

For arbitrary elements x4, X3, ..., X,, (1 £ m < n) such that x; € Hy, {x;, x;> =
= +4;; (i,j = 1,...,m) there exist in Hy, n — m elements X,,.,, ..., X, such that
(% x;) = +6;;, where now i,j = 1,2, ..., n. Moreover, the integer p (0 Sps<n)
denoting the number of indices i for which {x;, x;> = +1, respectively the integer q
(0 £ g £ n, p + q = n) denoting the number of indices i for which {x;, x;) = —1,
depend only upon the subspace H, = H. (The symbol &,; means here as usual the

-Kronecker delta.)

1.3 In a given pseudo-unitary space H let us choose arbitrarily a fixed element x,.
Then the function p(y)=|(xo, y)| is a pseudo-norm in H. The system of these pseudo-
-norms obtained as x, varies over H determines the topology o(H, H) on the linear
space H [1]. We shall call this topology, given by the algebraical structure of the
pseudo-unitary space, briefly the o-topology. It is the weakest topology on H in
which the addition of elements, multiplication by real numbers and also the forms
y - {x, y) on H for each fixed x € H are all continuous. The space H endowed with
this topology is a locally convex Hausdorff space [1, ch. IV § 1]. Moreover, each
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linear form f(y) on H continuous in the g-topology can be expressed as f(y) =
= (x,, y) for some x, € H (loc. cit.).

Theorem 6. Let H be a pseudo-unitary space, Hy, = H a linear subspace and
E < H an arbitrary subset. Then the following hold:

a) x1E=x1(c)%{E},

b) xLE () Z{E}=H=x=0,

¢) L(H,) is a o-closed linear subspace of H,
d) if H, is o-closed then L(L(H,)) = H,.

Proof. The first three statements are evident. For the proof of the last one see
Bourbaki [1, ch. IV § 1 n. 5].

Theorem 7. Let H,, be a non-isotropic o-closed linear subspace of a pseudo-unitary
space H. Then L(H,), which is again a o-closed linear subspace of H, is also
non-isotropic.

Proof. xe L(H,), x L L(H,) imply x € Hy, x 1 H,, and hence x = 0.

Theorem 8. Let H, be a non-isotropic o-closed linear subspace of H. Tizen the
set M = Hy, + L(H,) is an (algebraical) direct sum of its summands, and is
g-dense in the space H.

Proof. Let xe M and x = x; + x, = x| + x5}, where x, x; € Hy, and x,, x} €
€ L(H,), ie. (x; — x})+ (x, — x3) =0. Then for arbitrary ye H, we have
{xy — x1, y> =0, i.e. x; = x}. From the above equation we also conclude that
Xy = X5

The set M is clearly a linear subspace of H. Let x L M for some element x € H.
Then also x L Hy and x L L(H,), and hence, according to Theorem 6d, we have
x € Hy 0 L(H,). Theorem 2 yields x = 0, i.e. L(M) = {0}, and Theorem 6d then -
yields L({0}) = (o) M, ie. (6) M = H. !

Theorem 9. Let H,, be a linear subspace o-dense in H. Then H, is non-isotropic.

This is an immediate consequence of Theorem 6b. '

2. INTRODUCTION OF CONTINUOUS TOPOLOGY INTO
PSEUDO-UNITARY SPACE

2.1 We shall say that there is given a continuous topology T, in the pseudo-unitary
space H if H, with this topology Ty, is a linear topological space and the pseudo-
scalar product is continuous in both its arguments under this topology. In other
words, we assume that
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T1) the mapping (4;, 4,, X, x,) — A%y + A,x, is a continuous mapping from
E, x E; x H x H into H, and

T2) the mapping (Jl:, y) — {(x, y) is a continuous mapping from H x H into E,.

If there exists, in a pseudo-unitary space H, a topology T, satisfying the above
conditions, then this topology is clearly stronger than the topology o. Thus in this
case the following theorem is evident.

Theorem 10. The Theorems 6a, 6b and 9 remain valid if the o-topology is replaced
by a continuous topology.

The existence in H of a topology T, with the above properties is by no means
warrarited by the algebraical structure of the pseudo-unitary space, and also it
cannot be selected in a natural unique manner as in the case of unitary spaces. If such
a topology exists it must be determined a posteriori. We shall illustrate this in the
following examples.

Example 1. Here we shall show that in a pseudo-unitary space there need not exist
any locally convex topology satisfying T1) and T2).

Let H be the set of all sequences of real numbers {a,, a,, ...} such that a; = 0 for
each sufficently large even i. Let the pseudo-scalar product on H be defined by the
relation

Ha}, {b}> =tzdd(aibi+1 + a;41b).

Clearly H is a pseudo-unitary space. The non-existence of a topology with the above
properties will be proved indirectly.

Let us suppose that such a topology exists and let U be a symmetric convex
neighbourhood of the origin in H such that

6)) aeU, beU=Ka, b)|=1.

Denote e; = {0,0,...,1,0,...}, where 1 is at the i-th place. For a € H denote by |a|
the pseudo-norm defined by the neighbourhood U. Our purpose is to prove that
le;| = O for sufficently large even i.

Thus, let u = {uy, u,,...}, where u; = 0 for even i, and u; = 2(i + 1). |e;4,|
for odd i. First we have u € H, and for each even i + 1 with |e;+;| > O there is

< u ﬂi_1_> =2.

i+1 IeH. 1|

From ¢+ 1/|€i+1] € U it follows that u/(i + 1) ¢ U, [1]. But this cannot happen for
infinitely many i; this proves the above statement.
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Consequently for some i > 2 we have |e;| = 0, which means that «.e,;e U for

each real a. But now from
<<xe,-, '2‘ ei_1>= 2
o

we obtain 2e;_, [ ¢ U (cf. [1]) for each real &, which is a contradiction.

Example 2. In this example we shall show that in a pseudo-unitary space there may
exist two locally convex continuous topologies although there does not exist any
topology with these properties weaker than both (i.e. there does not exist a weakest
topology with the required properties, in distinction with the case of unitary spaces).

Let H be the space of all sequences of real numbers {a,, a,, ...} for which ¥ a? <

i

< +o0 and Yela? < +oo0, where we write e,;, = 2i, e;,-y = 1/2i (i a positive
i

integer). The pseudo-scalar product will be defined by
Hai}, {b:}> =.§d(aibi+1 + a;41b),

which may also be written as
Y (eai€ir1bisy + €141ai0 1) .
iodd ) .
Let one of the topologies be given by means of the norm |{a;}| = (Ya})?, and the
i
other by means of the norm ||{a;| = (Yela?)*. It is easily seen that the pseudo-scalar
i

product is continuous in both these topologies.

Let 4, = {0,0,...,1,1,0,...} where 1 is at the (2n — 1)-th and 2n-th places,
and let B, = {0,0,...,2n, 1/(2n),0,...,} where the non-zero elements are at the
same places as before. Now, the sequence {A,},-;,, . is bounded in the first
topology, the sequence {B,},-1,,,. . is bounded in the second one; thus the sequence
{4, + B,},=1,2,... is bounded in each locally convex topology which is weaker than
both of the topologies introduced above. Nevertheless {4, + B,, 4, + B,) >
> 4n — + oo, and thus the pseudo-scalar product is not continuous in any such
topology.

In what follows we shall suppose that there is given a pseudo-unitary space H
provided with a continuous topology Tj.

2.2 A locally convex pseudo-unitary space H will be called a pseudo-Hilbert
space if its continuous topology T, has the following property: If x — f(x) is any
To-continuous linear form on H, then there exists an element y € H such that f(x) =
= {x, y)> for each x € H.

Theorem 11. Let H = H(T;) be a pseudo-Hilbert space, f a linear form on H.
Then f is Ty-continuous if and only if it is a-continuous.
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Proof. If f is o-continuous then it is also T,-continuous because the weak
topology o is obviously weaker than T,. Conversely if f is T,-continuous, it can be
written as x —°{x, y) and thus it is also o-continuous.

Theorem 12. Each pseudo-Hilbert space is normable.

Proof. Let H(T,) be a pseudo-Hilbert space and U a symmetric convex neigh-
bourhood of the origin such that xeU, ye U = ](x, y)] < 1. This implication
asserts that the polar set of U (i.e. the set of those y € H for which [(x, y>| < 1 holds
for all x € U) contains the neighbourhood U. But as this polar set is g-compact, the
same is true about U; in particular, U is o-bounded. According to Theorem 11, the
spaces H(T,) and H(o) satisfy trivially for instance the assumptions of the theorem of
MAackey (cf. [1] ch. IV § 2 n. 4). Hence U is also T,-bounded and one can take it for
the unit ball; this concludes the proof.

Remark. The norm in pseudo-Hilbert space, where the unit ball is the set U from
the above proof, satisfies the relation

&) ISRV HE

Lemma 2. Let H be a pseudo-Hilbert space, the topology of which is defined by
a norm x - |x| satisfying (2). Then the norm x — | x|, defined in such a manner
that the set

M={x; |y S1=>Kx,p| =1}

(i.e. the set polar to the unit ball in the norm x — |x|) is the unit ball in the norm
x = ||x||, determines the same topology as the norm x — |x|.

Proof. Obviously |x| £ 1= xeM = |x| < 1, so that the topology given by the
norm x — ||x|| is weaker. On the other hand, the set M being polar to a neigh-
bourhood of the origin, it is bounded (cf. [1]), which proves the converse assertion.

Theorem 13. Each pseudo-Hilbért space is complete.

Proof. Let us choose in H a norm x — |x| satisfying (2) and let {x, x,, ...} be
a Cauchy sequence in H. The sequence {x,} is also g-Cauchy, and thus for each
y € H there exists an f(y) = lim ¢x,, y>. Then f is a linear form. The preceding

n=* o

lemma shows that {(x,, y>} is a Cauchy sequence, uniformly on the set {y; |y| < 1},
so that its limit is bounded on this set, i.e. f is 2 bounded linear form. This means that
there exists an x € H such that f(y) = <x, y) for all y e H. Furthermore, {<x,, y>}
converges to f ( y) uniformly on the set described above. In other words, the sequence
{<xw y>} converges to {x, y) uniformly on the set {y; |y| < 1}, and applying again
Lemma 2, we finally obtain that lim x, = x; this concludes the proof.
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Theorem 14. Let H be a pseudo-unitary space. Then on H there exists at the
most one (locally convex) topology such that H with this topology is a pseudo-
Hilbert space.

Proof. If there exist two such topologies T, and T, then the graph of the identical
mapping of H(T;) onto H(T,) is closed in H(T;) x H(T,), because it is obviously
closed in the same cartesian product under the weaker topology o x o (o is the weak
topology in H). From the closed graph theorem (cf. also Theorems 12 and 13) we
conclude that the identical mapping of H(T;) onto H(T3) is continuous, and for the
same reason its inverse is also continuous; hence T; = T,.

Example 3. Here we shall show that a non-isotropic subspace of a pseudo-Hilbert
space may have an isotropic closure. Thus it is not true that the complete hull of
a pseudo-unitary space is again a pseudo-unitary space as in the case at the unitary
spaces.

Take H = I? (the space of all sequences of real numbers {a,,}gwith anf {(+o0)
with the usual topology, but with the pseudo-scalar product deﬁnedn; follows:
and b = {b,},-y,2,.. let {a,b) =a;b, + a;b, +§°a,,b,,.
Let the subspace H, be the set of all a € H for which a, = 0,4, = Qforn suf'ili:;;enﬂy

For a = {a,}n=1.2

sene

+ oo
large, and Y. a, = 0 (with the notation as above).
n=1

If ae Hy, a + 0, then obviously a; + 0 for some k = 3. If we now choose b, =
= —1, b, = 0 for the remaining n, then b € H,, {a, b) % 0, and therefore H, is
non-isotropic. On the other hand H|, is clearly the set of all such a € H for which
a, = 0. Choosing b = {0, 1, 0,0, ...} we have {a, b) = O for all a € H, and thus H,
is isotropic.

Example 4. Here ‘we shall show that — in contradistinction to Hilbert spaces —
if H is a pseudo-Hilbert space and H, = H a T,-closed non-isotropic linear subspace
in H, then H = H, + L(H,)need not hold (this need not hold even set-theoretically).
The same remains true if H, even has a Hilbert-space structure, i.e. if the pseudo-
scalar product is positive-definite on H,.

First we shall prove the following auxiliary statement

Lemma 3. Let q be a real number and q€<0,1). Then for any (x,, x,) € E,,
(v1, ¥2) € E, the following inequality holds

' 1
(3) |x1)’1_ xz.)’zl = \/(xf +x} - 2gx,x,) . \/(ﬁ + ;- 29y,y,) . T
Vit - 4%
Moreover, to each point (X, X,) one can find a point (1> ¥2) * 0 such that equality
holds in (3). ‘
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Proof. Indeed, using the one-to-one substitution given by

b, + b,
Vi-aq J(1+9q)
X, = ay _ a; Vs = b, _ by
V-9 J(t+9q Ji-a J1+9

(3) transforms into
1

2 5 lashs + azby| = V[2a? + a2)] . V[2(6% + B)] . ————

Jit -4 V= 4%)

which is a consequence of the Minkowski inequality.
Returning to our example, let H be the space of all real sequences {as, a2, ---}
such that the following series converges

@ Y (af + atyy — 2(1 = 1/k) @ai4q) -
kodd

Xt 1=

EN O RV

: 1
T == o7
The norm in H is defined as the square root of (4), and the pseudo-scalar product is
defined by the relation

Ha,}, (b, =k2d:d(akbk = Qiy1bys 1) .
First we shall show that (2) holds, i.e.
K{an}; {bn}> é l{an}l * [{bn}l .

According to Lemma 3, the left-hand side can be estimated from above by the
expression

1
kng[akz + a:"‘l - 2(1 - llk) akak+1] .

Y- -y
1

VI - (= 1K)

(we have chosen g = 1 — 1/k), and the rest follows from the Holder inequality in I2.
Further we shall verify that each continuous linear form on H can be written as

(5) | ‘ f (x) =k§a(akxk = O+ 1%+ 1)

where x = {X,}4x1,2,...0 {9n}n=1,2,... € H.Itis clear that there exists a sequence {a,}
such that (5) holds for all x for which x, + 0 for only a finite number n’s. As f is
continuous, there exists a number 4 > 0 such that for each such x we have

(6) | Y laxs — are1%esa| = 4fx| .
. kodd

x J[bF + biey — 2(1 — 1/k) bebysq] -
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1t suffices to prove {a,} € H only for {a,} + 0. In this case the number (cf. the defini-
tion of the norm)

1
P= a®+ a2, — 2(1 — 1k)a,a .
I e B ey
is non-zero for sufficiently large integers N.
Let x be defined as follows: For n > 2N let x, = 0. For odd k < 2N let x; and x; 44
be defined in such a manner that

() Xl — Xp+18k+1 = '
= J[a} + at.y — 201 = 1K) aarsy] . V32 + x34y — 200 = 1/R) X4,] %
1

x
VIt = (1-1/k7]
(cf. Lemma 3). Furthermore, we can always choose the pair (X, X+1) so that (on
multiplying both the components by the same factor if needed) the first factor
in the right-hand side of (7) equals the second, and thus |{x,}|* = P. According to
(7) we then have Y x,ay — X;41d4+; = P and the relation (6) now yields P <
kodd

< A /P, ie. P £ A% As N was arbitrarily large, we conclude {a}|* < 4%, ie.
{a,} € H.

Now it is easy to establish that (6) holds for all x, € H. Indeed, each x, is the limit
of a sequence of elements x for which x, + 0 holds for only finitely many n’s.
Hence H is a pseudo-Hilbert space.

Let now Hy = {{x,}; x, = O for all even n}. Clearly, L(H,) = {{x,}; x, =0
for all odd n}. Both these spaces are closed and non-isotropic, because the pseudo-
scalar product is positive or negative-definite, respectively.

The sequence {x,} defined by x, = x4 = 4/[1 — (1 — 1/k)?] for all 0dd k is an
element of H, as is easily established; but the sequence {x}} where x; = x, for n
odd and x} = 0 for n even is not an element of H,, (it is not even an element of H).
Thus x € Hy, + L(H,) does not hold.

3. COMPLETE ORTHONORMAL SYSTEMS AND /-SEPARABLE
PSEUDO-UNITARY SPACES

3.1 We shall say that a system {x,} (x € A4) of elements of a pseudo-unitary space H
is o-complete (or Ty-complete) if (6) Z{x,} = H (or (Tp) Z{x,} = H, respectively).

The only element in H which is orthogonal to a o-complete or to a T,-complete
system of elements in H is the zero element. This is an immediate consequence of
Theorem 6b. In addition we have

Theorem 15. The system of elements {x,}, (x € A) in H is a-complete if an only
ifxeH,x L x, forallae A imply x = 0.

Proof. This follows from Theorem 6 since L({0}) = H.
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A system {x,}, (x € A) of elements of a pseudo-unitary space H is called ortho-
normal if a, B € A = {X,, Xg) = J,5 OF — 0,5, Where J,4 is the Kronecker delta (with
an obvious generalisation).

Let K = {x,} be an orthonormal system of elements of the space H. The following
notations will be used: the symbols K+ and K~ will denote the set of those elements
x € K for which {(x,, x,> = +1 or {x,, x,» = —1 respectively; thus K = K* UK.
Furthermore, let X'+ = £{K*} and "~ = £{K"}. Clearly the product (x, y) -
— {x, y) is positive or negative definite on 2"+ or 2"~ respectively. The spaces "+
and "~ can therefore be treated in a natural manner as usual unitary spaces, the
induced topology in them being in general different from that induced by the topo-
logy T, in H.

3.2 It is known that a topological space T is called separable if there exists in T
a countable dense subset.

We shall call a pseudo-unitary space H separable if it is separable in its continuous
topology T.

Theorem 16. Let H be a separable pseudo-unitary space. Then there exists in H
a countable Ty-complete (and therefore also o-complete) orthonormal system.

Before proving this theorem we shall first establish the following

Lemma 4. Let H be a pseudo-unitary space and let xy, ..., X, be a system of n
orthonormal elements in H. Suppose that ze€ H is an element such that
PL{xy, X2, ..., X,, 2} is isotropic. Then there exists an element ue H such that
P{X1, ...y Xy Z, U} is non-isotropic.

Proof. First, z is independent of the elements x,, ..., x,, and thusdim H > n + 1
Now we shall prove the following statement: If y,, ..., y, are linearly independent
the subspace £{y,..., »;} is isotropic if and only if det[<{y;, y;>] =0 (i,j =

=1,..., k). Indeed, the existence of an element y satisfying (y,y;> =0, y =
k k

= Z Gy Y a? + 0, is equivalent to the existence of a non-trivial solution of the
i=1 i=1
system
_ @ Y1 Y1) + 0y, ¥2) + oo + wly, > =0

...........................................

a ¥ Y17 + 0P Y22 + oo + 4P yi> =0

and this proves the statement. In our case the following determinant s zero:

....................................

< 0, o ..., 0 +1, {z, x> |
(2,%1), 2, %30y oves K2, %), K2,2) 1.
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Next we shall prove the following statement: In H exists an element u L x; (i =
=1,..., n)such that (u, z) # 0. Suppose the contrary, i.e. that u € L(L{x,, ..., X,})
implies {u, z) = 0. Then z is orthogonal to the subspace L(Z{x,,...,x,}), and
according to Theorem 6d, z € £{x;, ..., x,} in spite of the fact that z was chosen
linearly independent of x, ..., x,. Hence there exists an element u € H with the
above property. It remains to prove that #{x,, ..., x,, z, u} is non-isotropic. But
we have

il’ 0’ oy 09 0’ <Z9 x1>9 0
0, 0, ..., 0, +1, {z,x,>, . O0|=—<Cu,z>.
<Z, x1>s <Z’ x2>5 ceey <Z, xn)ﬁ <Z9 Z>, <u’ Z>
0, 0, ..., 0, <u,z), {u,u)
+1, 0,..0, 0, 0

..................................

0, 0,...,0, +1, 0
<Z, x1>, <Za x2>, cey <Z, xn)a <u’ Z>

+ u,u). 0= <u,z)?.(+1) 0,

and this proves the lemma.

Proof of Theorem 16. Let D = {z,, z,,...} be a Ty-dense set in H. First we
shall prove that the case <z;,z,> = 0 for all i = 1,2, ... cannot occur. Indeed, if
{z;, z;) = 0 for all i, then from the continuity of the topology T, it follows that
{x,x) = 0 for all xe H, and this contradicts Lemma 1. Assume say {z;, z,) % 0,
and put

1
T V(I<z1s 21>|)'21’ "

Now assume that to the elements z,, ..., z, we have already constructed orthonormal
elements Xy, ..., X, in such a way that z,, ..., z, € £{x,, ..., x,,}. It is required to
construct elements X, ij,..., X, ,, such that zy,..., z., € L{xy,..., X, ,} and
that x,, ..., x,, ,, are an orthonormal system. As concerns the element z;, , one has

the following possibilities:

=1.

a) z341 € L{Xy, ..., X, }. In this case choose n;,; = n,, i.e. do not add anything to
the set x4, ..., X,,.

b) Z{xy, ..., Xn, Zx+1} is a non-isotropic (n, + 1)-dimensional space. Then we
conclude from Theorem 5 that there exists an element x,, ,, € L{x;, ..., Xy Zp+1}
with the property that the elements x;, ..., X,,, X,, ,, form an orthonormal system.
Thus in this case we have n,,.; = n, + L.

Bi+1
) L{X1, ..., Xno Zy+1} is an isotropic (n, + 1)-dimensional space. Here on applying

Lemma 4 we find an element u € H such that #{x,, ..., X,,, Z;+1, 4} is again
non-isotropic. Now Theorem 5 ensures the existence of elements x, ,, and
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Xpy+2 = Xp,,, Such that the system x,, ... x,, x, +1, %, ,, iS an orthonormal
basis in the space £{x, ..., Xp,, Zx+1, u}. Thus now we have n, .1 = n, + 2.

In this manner we can construct an orthonormal sequence of elements x, ...,
vous Xy ooy = {x;} satisfying D e £{x,}; as D = H the theorem is proved.

3.3 We shall say that a pseudo-unitary space H is Il-separable if each linear
subspace of H is separable in the continuous topology T, of H. It is well-known that
if the topology T, is metrisable, then H is l-separable if and only if it is separable.
Now we can establish the following

Theorem 17. Let H be an l-separable pseudo-unitary space. Then each ortho-
normal system K = {x,} (a € A), K < H, is at most countable.

Proof. As mentioned above, the linear subspace o'* = Z{K*} is a unitary
space with the scalar product (x, y) — {x, y>. From the [-separability of H, the
set K* is at most countable. Similarly one shows that K~ is also at most countable.

Theorem 18. Let H be a pseudo-unitary space and let K = {x,} (x € A) be a T~
complete orthonormal system in H. Suppose that K* consists of exactly n elements
X1y «+.s Xp. Then there does not exist in H an orthonormal system of n + 1 elements
Zyy eees Zyyy Satisfying {z;,2) >0 fori=1,2,...,n+ 1.

Proof. Clearly #~ < L(x'*). In the linear space L(#"*) we are given the
topology induced by the topology T,; denote it by T;. We shall prove that in this
topology ¢~ is dense in L(X *). Thus suppose y € L(# "), ie. y L o *. The set
Z{K} is Ty-dense in H and hence there exists a generalized sequence u* 7 y(t€1I),
ute Z{K}. But it can be easily seen that an arbitrary element u‘e ¥{K} can be
written in a unique manner as u* = x* + y*, where xte ¥'*, yre ¥ . Put x* =
= ajx! + ayx® + ... + a'x". Thus we have a}x' + ... a;x" + y* 7 y. On “multi-
plying” this relation by x* (k = 1, ..., n), we obtain a; 7 0 (k = 1, ..., n) and hence
x+ -7 0. Finally, there follows hence the required relation (Tg) y* 7> y, y* € o ~(c€l).
Now, from the continuity of the topology, also <y, y*> 7 <y, y>. Thus for all
ye L(o") we have (y, y> £ 0.

Let now z; (i = 1,...,n + 1) be orthonormal elements in H and let us try to
find an element z, = a,z; + ... + &,,2,4, which is orthogonal to o *. But the
system of n equations

C01€Z1, X1) + oo+ 0 4{Zp4, %) = 0

al<zl’ xn) + ...+ an+1<zn+b xu) =0

cc;tainly has a non-trivial solution (a, ..., #,+,), and this means that there exists an
element z, € £{2;, ..., Zy41} N L(X*). But this is not possible as the pseudo-scalar

product is positive definite on #{z,,..., z,,,}; this contradiction completes the
proof. ' '
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The following Theorem 19 is actually a corollary of Theorems 16, 17 and 18. It
may be interpreted as a generalisation of the well-known rule of inertia for quadratic
forms in elementary algebra to the case of I-separable pseudo-unitary spaces.

Theorem 19. Let H be an l-separable pseudo-unitary space and let K be an
arbitrary Ty-complete orthonormal system of elements in H. Then the numbers
p =card(K*) £ +o0 and g = card (K™) £ + o0 do not depend on the choice of
the system K.

The pair of these numbers (p, q) will be called the index of the pseudo-unitary
space H. According to Theorem 1 one may also speak about the index of a non-
isotropic linear subspace of a pseudo-unitary space. If the index of the space H is of
the form (p, 0), then H is a unitary space, is scalar product being given by (x, y).
The topology connected in the natural way with this unitary space is in general
weaker than the topology T, given a posteriori in H. On the other hand, it is not
difficult to see that one can construct from each (infinite dimensional) Hilbert space
a pseudo-unitary (I-separable) space H with arbitrary index (p, g) (p + g = + ).

Indeed, let H' be some Hilbert space. The scalar product of its elements x, y will be
denoted by x . y. Let K be a complete orthonormal system of elements in this space.

Let K consist of elements x,, ..., X;, ... Let there be given an arbitrary but fixed
sequence ¢; (i = 1,2, ...) of numbers +1 or —1. Let K* be the set of those elements
x; € K for which g; = +1, and K~ the set of those x; € K for which ¢; = —1. We

define the pseudo-scalar product in H’ as {u, v) = Y eu'v' foru = Yu'x, v = Yv'x,
It is easily seen that H’, with the pseudo-scalar product thus defined, is a pseudo-
unitary space and its continuous topology T, is given by the a priori unitary space
structure in H'. In this pseudo-unitary space, K is a Ty-complete orthonormal system
and the index of H' is the pair (p, ) where p = card (K*) and g = card (K~). This
space is clearly l-separable.

Theorem 20. Let H be an l-separable pseudo-unitary space with index (+ 00, q)
where q is a (finite) non-negative integer. Let K = H be an arbitrary Ty-complete
orthonormal system. Then the following holds:

a) The space H under the topology T, is a topological direct sum of its subspaces

(To) X ¥ and '~ provided with the topologies induced by T, i.e.

H=(T)X* + 4.

b) One can define a scalar product in H in such a manner that H becomes a unitary
space with the natural topology < in general weaker than the a priori continuous
topology T,. The system K is simultaneously a t-complete orthonormal system
in this unitary space (in other words, (1) £{K} = H).

Proof. It is easily established that £{K} = A" 4 o ~. There exists, to each
element x € H, a generalized sequence {z'} (¢ €I) such that (T,) z* 7 x and z* €
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€X't 4 A ,ie., one may write in a unique way z* = ut + v, u'e X, vreX .

q
Put v+ =) ajx;, where K™ = {x,, ..., X,}. If we now “multiply” the relation z: =

=ut + vif{)y x; (i =1,...,q), we obtain <z¢, x;,> = a!. From the convergence of
the left-hand side in this relation we conclude aj 7 a;. Hence there exists an element
v = zq: ax;€ A~ such that (Tp) v* 7 v. But then there also exists an element u € H
sucli tlhat u* 7 u, and it is clear that u € (Ty) # *. Therefore an arbitrary element
x € H can be written in a unique way in the form x = u + v; u e (TO)?T, vedX .
As we have seen in the proof of Theorem 18, there is {x, x) = 0 for all x e L(" ™).
Now Theorem 7 states that (2 ~) is non-isotropic, and from Theorem 3 we con-
clude that {x, x) > 0 holds for all 0 & x e L(# ") and thus also for all 0 % x e
e(To) X'*. Hence (T,) # " is a unitary space with the scalar product given by
(x, y) - {x, y>. It is also not difficult to see that H is even a topological sum of the
spaces (To) ' * and & . If

x=u+vue(T) X ,vex”, X =u+v;ue(T)A", vex,
we define
(8) x.x = u,u’y — {v,v').

Hence the space H may be considered as a unitary space with the scalar product
given by (8). The remaining parts of the theorem are now evident.

Remark. Let a pseudo-unitary space H have the following properties: 1) it is the
algebraic direct sum of two subspaces, H = H, @ H,; 2) the dimension of H, is
finite; 3) the pseudo-scalar product is positive-definite on H; and negative-definite
on H,. Then on H there is an a priori given canonical structure of a linear topological
space, in which the pseudo-scalar product is continuous. According to Theorem 20,
each l-separable pseudo-unitary space with index (p, + ) (p finite) has the three
properties mentioned above, and the corresponding canonical structure is given by
the topology 7. An another example of such a pseudo-unitary space is the space IT,
investigated by Yokhvidoff and Krein. Here there are also required completeness
of IT, in the canonical topology and linearity over the field of complex numbers.
For the precise definitions see [2].

References

[1] N. Bourbaki: Les espaces vectorielles topologiques, Paris.
[2] H. C. Hoxsudos, M. I'. Kpeiin: CnexrpaibHasi TEOPHSA ONEPATOPOB B IPOCTPAHCTBAX ¢ HHAeGH-
HETHOM MeTpukoit 1, Tpyas Mock. Mat. o6m, ToM 5 (1956 r.) cTp. 367—432.

Author’s addresses: Jifi Jelinek, Praha 8 - Karlin, Sokolovskd 83 (Matematicko-fyzikalni
fakulta KU). Juraj Virsik, Bratislava, Obrancov mieru 41 (Kabinet matematiky SAV).

32



Vytah
PSEUDOUNITARNI PROSTORY
Jikf JELINEK, Praha, JURAJ VIRsIK, Bratislava

Linedrni prostor H (nad télesem redlnych &isel) na n&m¥ je definovdna nedegene-
rovand bilinedrni forma nazveme pseudounitdrnim prostorem. Hodnotu této formy
pro dva prvky z H pak nazveme pseudoskaldrnim soudinem téchto prvki.

V prédci jsou vySetfovdny né&které ,,geometrické* vlastnosti pseudounitdrnich
prostort a je diskutovdna moZnost zavedeni topologie na H, kterd je v souladu
s linedrni strukturou i pseudoskaldrnim souc¢inem. Je-li tato topologie I-separabilni —
tj. existuje-li ke kazdé linedrni podmnoZiné v H jeji spoetnd hustd ¢dst — pak lze
definovat ipIné ortonormované systémy prvkl z H o nichZ plati zdkon jenZ je obdo-
bou zdkona setrvaénosti kvadratickych forem u linedrnich prostort s konecnou
dimensi. Je zaveden pojem indexu I-separabilniho pseudounitirniho prostoru a je
naznacena souvislost mezi zde definovanymi pseudounitdrnimi prostory a prostory
studovanymi v (2).

Pesome
IICEBAOVHUTAPHBIE ITPOCTPAHCTBA
WIPXU EJIMHEK (Jifi Jelinek), Praha, FOPAY BUPCHIK (Juraj Virsik), Bratislava

JIuneiinoe npocTparcTBo H (Haz MoJIeM BeIECTBEHHBIX tmcen) C ONpeNeSICHHOM Ha
HEM HeBBIPOXICHHOM OrMHeiHoM (GopMOi Ha30BeM ICEBIOYHHTAPHBIM IPOCTPaH-
cTBOM. 3HaYeHHe 3Toi POPMBI I ABYX 3IeMEHTOB U3 H Ha30BeM IICEBIOCKAISPHBIM
NPOU3BENECHUEM 3THX 3JIEMEHTOB.

B paboTe HCenemyroTcs HEKOTOPBIE ,,JeOMETPHYECKHE* CBOMCTBA TICEBIOYHHTAP-
HBIX IIPOCTPAaHCTB M 00CYXJaeTcsi BO3BMOXXHOCTh BBeeHHUA B H TOMOJIOTHM, COrJa-
COBaHHOM C JIMHEHHOM CTPYKTYpOH M ICEBIOCKAJIAPHBIM Npou3BeneHueM. Ecmu 3Ta
TomoJiorus l-cemapabesibHa, T.. €CIM CYLIECTBYET B KaXIOM JIHHEHHOM IOIMHO-
xecTBe Hy n3 H mOIMHOXECTBO, CY4ETHOE M ILUIOTHOE B H, TO MOXHO ONpeNeIUTh
IIOJIHBIE OPTOHOPMHPOBAHHBIE CUCTEMBI JIEMEHTOB M3 H, I KOTOPHIX BBHIIOJIHS-
€TCA 3aKOH, aHAJIOTHYHBIA 3aKOHY MHEPIMH KBaJpaTHIECKHX (GOpM I JIMHEHHBIX
NPOCTPAaHCTB C KOHEYHOU pa3MepHOCThbI0. BBoauTcs mOHATHE MHAEKca I-cemapa-
6eJIbHOTO INCEeBAOYHHTAPHOIO IPOCTPAHCTBAa, M HAa3HAYEHA CBiA3b ONPENEIICHHBIX
3/leCh IICEBIOYHHTAPHBIX IPOCTPAHCTB C IPOCTPAHCTBAMH, HCCIIEAOBaHHLIMA B [2].
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