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Časopis pro pěstování matematiky, roč. 93 (1968), Praha 

A CONTRIBUTION TO RELATIONS BETWEEN GODELIAN 
AND ZERMELIAN SET THEORIES 

ZDENIK RENC, Praha 

(Received July 7, 1967) 

The main purpose of this paper is to study the set theory .T~. In a certain sense, this 
theory lies between Godel-Bernays' set theory Z and Zermelo-Fraenkel's set theory 
ZF. It contains the concept of a class but instead of the axiom C4, that stands for the 
whole infinite axiom-scheme of the theory ZF in Z9 that scheme is accepted. 

Relations between theories Z and ZF have been investigated by various authors — 
see [6], [8], [9] — who proved that both theories are Consistent or inconsistent 
simultaneously. These proofs are either nonfinitistic or (cf. [9]) finitistic but the 
latter are not carried through with the use of the concept of a syntactical model. 

In this paper properties of the theory Z"~ are studied by finitistic means and it is 
proved that Z~ is actually weaker than Z. At the same time it is shown — regardless 
of our being sure, on the basis of cited results, that no statement concerning sets only 
can be proved in Z and can not be proved in Z~ — that it is not possible to construct 
a syntactic parametric model of the theory Z in Z~. 

Concepts and notations introduced in [3] will be commonly used. The concepts 
of syntactic parametric model and strongly regular model can be found in [4] and [2], 

1. THE SETS pa 

1.1. Definition. xeKx sz x e On&(3y)(y e On&x = y + l),xeK 2 = xeOn& 
&x$Kv Any ordinal number from K2 is called a limit ordinal number. 

1.2. Definition. Define a function G over V (universal class) as follows 

D(x)eK2 -> G'x = e(9B(x)) 

X>(x) e V - K2 -+ G'x = ^(S(9B(x))). 

The existence of G follows by M6 in [3]. 
We can now define a function F over On by the following postulate F'a = Gf(F ^<x). 

The existence and uniqueness of F follow from Theorem 7.5 in [3]. We shall denote 
F'a = P a . 
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The sets pa have the following properties: 

(a) po - 0. 
(b) j>«+l - *(iy). 
(c) pa = U ^ f o r a e K 2 . 

pea 

1.3. Lemma. 
(a) (Va) (a * 0 -> Pa * 0). 
(b)(Va)0>aepa+1). 
(c) (Va,j?)(jSea^^czp a) . 

1.4. Lemma. (Va) (Comp (pa)). 

1.5. Lemma. ®(jpa) = jpa if and only if a e K2; if OLEK1 then S(pa) = pa-.t. 

1.6. Lemma. (Va) (a e pa+1). 
For proofs of these lemmas see [1]. 

1.7. Lemma. Let a1?a2 , . . . be a sequence of ordinal numbers. Then \J pan = 

~~ P U<*V 
neco 

Proof. 1) There is a maximal element aM0 among ocn (n = 1, 2,...). Then \J <xn = 
neco 

= aWo. Because the number aM0 is one of numbers an, we have pa c y pan. On the 
neon 

other hand, if x e y pan, there is an integer m such that am g awo (and then pam c 
neco 

<= j>«J and x ep„m. Then x e p U v 
«€CO 

2) There is not a maximal element among a„ (n = 1, 2,...). Then X = U a» is-
«€C0 

a limit ordinal number and pA = U Pp- Certainly U Pan = U P/j- On the other hand, 
pel nem pel 

for each ft e X there exists an integer n such that /? = an (otherwise X = \J anis not 
neco 

true); then pfi s pan and from this it follows U Pp = U IV This means that U P«n = 
pel neco neco 

= P U <*„• 
neco 

1.8. Lemma. Le* al5 a2,... fee a sequence of limit ordinal numbers. Then \J ccn is 
a limit ordinal number. nem 

The proof is easy. 

1.9. Lemma. U P* = V. 
meOn 

For the proof see [10]. 
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As a consequence of this lemma we can now define the type of a set x (we denote it 
by T(X)) as the least ordinal number a such that x e pa. 

1.10. Definition. T(X) = a = . x e pa& (Vj3) (x e pfi -> a <. P) 

f(K) = U<y ) . 
yeX 

1.11. Lemma. (Vx) (T(X) = f(x) + 1) 

<$t(X) = x(X) = On . 

1.12. Lemma, x e pa = x s pa& f(x) < a. 

f(a) = f(Pa) = a . 

For proofs of these lemmas see [1]. 

1.13. Lemma. If a is a limit ordinal number, then 

xepa&y c x ~ > yepa. 

Proof. Since a is a limit ordinal number we have pa = U pfi and consequently, 
0€<X 

there is p0 e a such that x e pPo. We have x c pfio by 1.4 and consequently y c pfio c 
c pa. It is clear that x(y) = jS0 + 1 and hence f(j;) ^ j80 < a. From 1.12 it follows 
that j ; e pa. 

1.14. Lemma. Let a be a limit ordinal number, let x, y e pa. Then 

(a) {x, y} e pa. 
(b)S(x)epa. 
(c) $(x)epa. 

Proof. As a is a limit ordinal number we have T(X) < a, x(y) < a. 

(a) {x, y} c pa, f({x, y}) = Max (T(X), T(y)) < a and hence {x, y} e pa by 1.12. 
(b) There is p < a such that x e pfi, hence x s p^. S(x) c S(p^) ^ pfi <=: pa 

(see 1.5), then T(S(X)) g jS + 1, f(S(x)) S P < <* From 1.12 it follows that S(x) 6 pa. 
(c) Similarly. 

2. THE THEORY Z~ 

Let <?>(x, y, tu..., rr) be a ppf (primitive propositional formula) containing set 
variables only. We shall often write briefly (p(x, y, t). In particular, t can be an empty 
sequence. 
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Let us denote 9l^(f) a term such that 

W b " CO (Vz) (z e 91^(0 s (3x, y) (z = <x, y} & tp(x, y, t))) . 

( I2T P denotes the fact that q> is provable in I). The formula in (l) means that, for 
every ti9..., tr, Mjf) is precisely the class of all ordered pairs <x, y> for which 
(p(x9 y91) holds. 

Now we write formulas 

(2) (w) (Un(^(t)) -> (VP) M(^(r)" j>)). 

C3': (Vx) (3y) (W) (U <^ x-+U e y). 
C3' is an (inessential) modification of the axiom C3 of the theory I. 
We shall denote X~ the theory whose language is the same as that of I and whose 

axioms are Al - A4, Bl - B8, CI, C2, C3', D, and (2) for each ppf q> with set variables 
only. Consequently, the theory I~ is obtained from the Godel-Bernays set theory X 
by replacing the axiom C4 by a given axiom-scheme (and we have C3' instead of C3). 

Further we denote Z" the theory that differs from X~ only in the following item: 
instead of the whole scheme, X~ uses only the first n instances of the scheme for its 
axioms (n is a metamathematical natural number). 

Now, let cp(x9 y9 ti9..., tr) be a ppf (r ^ 0). We shall introduce the following 
abbreviations: 

Un<p — we read „the formula q> is single-valued" — is the abbreviation for the 
formula 

(Vxl5 x2, y) (<p(xi9 y91)& <p(x2, y, t) -* xt = x2) . 

Im^ (p9 q) — we read „the set q is an image of the set p under the formula 9" — is 
the abbreviation for the formula 

(Vw) (w G q = (3v) (ve p&(p(u9 v91))). 

2.1. Lemma. Let q>(x9 y9 tl9..., tr) be a ppf9 let Vtjt) be a term introduced by the 
formula (1). Then the formula (2) is equivalent to the formula whose abbreviation is 

(3) (W) (Un, -> (Vp) (3q) (Imv(p, q))) . 

The proof is easy. 
We shall realize the following construction1) in the theory I*. Let n be a fixed meta­

mathematical natural number, let (pt(x9 y91)9..., (pn(x9 y91) be ppfs that appear in 
the axioms of the theory X~. Let us denote # a formula that is a conjunction of for-

l) During my paper had been printed I was told that the construction presented here was used 
to prove the so called Reflection Principle by Montague. 
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mulas, abbreviations of which are (3) (where we write <pl9 ...,<?., instead of q>). We 
shall bring <P to the prenex normal form, i.e. to the form 

(4) (Vx1?..., xm) (3yl9..., yt) (Vzx, ..., zp) (3tl9..., tq) . . . 

. . . T(X19 ..., xm, yl9..., yl9 zl9..., zp9 tl9 ...9tq9...) 

where W has no quantifiers. 

We shall form a formula equivalent to (4) and containing no existential quantifier 
in the following way. (cf. [5]). We rewrite (4) to the form 

(5) (Vx1 , . . . ,xm)(3>;1)!F1 . 

Vt is the formula 
(3y29...9yi)(Vzl9...9zp)(3tl9...9tq)...V. 

In the set theory we can describe the set of members of the smallest type from 
every yx for which (5) holds and from this set we shall select one member (with the 
aid of the axiom of choice) which we denote by yt. Consequently, we can introduce 
a logical function 6^(A), depending on one variable for a chosen class, such that 

\^ (Vxl9 ...9 xm)(Vy1)(<yl9 xl9 ...9 xm} e ®l(A) = yt =yt). 

Then we have in the set theory: 

(6) (Vx l5..., xm) ( 3 ^ ) Vt -=- (Vx l f . . . , xm) Wt , 

where ^ is the formula 

(3y2,...,yl)(^zl,...,zp)(3t1,...,tq)... 

... T{X1, ..., xm, SW(A) \Xl9..., xm>, yl9..., yl9 zl9..., zp9 tl9 ...9tq9...J. 
Since only a finite number of existential quantifiers occurs in (4), we get after a finite 
number of steps k logical functions such that the formula (4) is equivalent to the 
formula (we briefly write S^ instead of S^(A), i = 1, . . . , k) 

(7) (Vx l5 . . . , xm) (Vz l s . . . , zp) . . . W(xl9..., xm, S£<x x , . . . , xM>,... 

..., Sily<x1,..., xm>, zl9..., zp9 <ZV <x t , . . . , xm, zl9..., zp>,. . . 

..., Slv+9Xxl9..., xm, zl9 ...9 zp>,...) . 

Let us realize the following construction (the number n and also the formula # 
are kept fixed). First, we denote pVn0 = pm + x. Second, we define the set pant by 
the following induction for each l = 1, 2, ...: aj; is the least limit ordinal number 
such that the set pant contains (as its members) all values of functions S^, ..., ®£, 
(i.e. all ®£<X!, ..., xm>, ..., S^<x l9 , . . : Xw>,̂  <5l^1\xl9 ..., xm, zl9 ..., zp>, . . . 
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,.., S^ €<x1?..., xw, zi9..., zp>,...) for each xl9 ...9xm9zi9..., zp,... from Pan*-i. 
Finally we put pan = (J panU an is a limit ordinal number from 1.7 and 1.8. 

2.2. Metatheorem. There exists a strongly regular model of the theory I~ in the 
theory I* for Sach metamathematical natural number n. 

Proof. Let n be any metamathematical natural number and let pan be a constant 
denoting the set constructed in the way just described. (We realized our construction 
in the theory I* so that pan is really a set from the point of view of this theory). We 
define fundamental predicates Cls*, M*, e* as follows: 

Cls*(X*) = X* s pan, M*(X*) =X*e pan, X* e* Y* = X*eY*. 

We shall denote classes of the model (i.e. subsets of pan) by X*, Y*, Z*,..., sets of 
the model (i.e. members of pan) by x*, y*9... 

We define X* =* Y* = X* = Y*. 
Next, two statements hold: 

<8) M*(K*) = (3Y*) (X* 6* Y*). 

(9) X* =* Y* = (Vz*) (z* G* X* = z* e* Y*) . 

We are to prove that all axioms of the theory Z~ for predicates Cls*, M*, e* 
hold (i.e. that if we sign all axioms of I~ w-ti- a n asterisk * we obtain formulas, 
provable in I*. In q> is any formula of the theory X~ we obtain cp* — the formula of 
the theory I* belonging to q> — by relativizing quantifiers on the set pan). 

Al* follows from 1.4. 
A2* follows from (8). 
A3* follows from (9). 
A4* follows from (a) in 1.14. 
Bl*: we put A* = A n pan. 
B2*~B8* are easily provable. 
CI*: coe pm+1 from 1.6 and p^+i cz pan from (c) in 1.3 (from the construction 
of pan it follows that co + 1 e an). Then co € pan. 
C2* follows from (b) in 1.14. 
C3* follows from 1.13 and from (c) in 1.14. 

Finally, it remains to prove that if we supply the formulas (2) (where we write 
<pl9 ...9q>n instead of cp) with an asterisk then the formula that is a conjunction of 
these is provable in I*. According to 2.1 it is sufficient to prove the formula #*. As 
we have shown # is equivalent to (7) and clearly a consequence of (7) is the formula 

(Vx*, • • -, xt) (Vz?,..., zp*) ... !P(x?,..., x*m, <5J, <*?,..., x:>,... 

..., Sy^Xj,..., xm/9 zl9..., zp, <3«p \xi9..., xOT, zA,..., zp>,... 

• ••> ®«F V*l> •••> xnv Zl> • ••» Zp / > • • • ) • 
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As it follows from the construction of pXn, we have 

(V*T, • • -, *I) (Vz?,..., zj) . . . (®i-'<x?, • •., x£> e pa„ & ... 

...& Sj,<xT,..., x:> 6 pa„& Sj,+ 1<x?,..., xl, z*,..., z*}epXn&... 

...&<Z?\x*,..., xl z*,..., z*}epan&...) 
and then 

(V*?, ...,xt) (3rf,..., rf ) (VZ?, • •., z*) (3.T, • • -, t*)... 

... T\xi9..., xm, j ^ l 5 . . . , yl9 zp9..., zp, i j , . . . , tq,...). 

The last formula is equivalent to #*. The theorem follows. 

2.3. Corollary. As there is a syntactic model of the theory Z* in the theory E 
[see the A-model in [3]) we can put the metatheorem 3.2 in the following way: 

There is a strongly regular model of the theory Z~ in the theory Z for every 
metamathematical natural number n. 

3. THE RELATIONS BETWEEN Z~ AND Z 

3.1. Metatheorem. There is no strongly regular model of the theory Z in the 
theory Z. 

For the proof see [11]. 

3.2. Metatheorem. The axiom C4 of the theory Z is not provable in the theory I"~. 

Proof. Suppose there is a proof of C4 in Z~. This proof is a finite sequence of 
formulas (pu...,(pk and these are either axioms of predicate calculus or axioms 
of Z~ or follow from the preceding ones by the rule of modus ponens. Let cpu ..., q>m 

(0 g m < k) be those formulas among (pi9..., cpk which are axioms from the scheme, 
i.e. formulas of the form (2). Let n0 be the least metamathematical natural number 
such that the theory Z~0 has all the formulas q>l9..., cpm as its axioms. Then our proof 
is the proof of C4 in Z~0 and hence Z and I~ are equivalent. By 2.3, there is a strongly 
regular model Z~ in Z for each metamathematical natural number, for n0 in particular. 
By this we have proved that a strongly regular model of Z in Z exists but this is 
a contradiction with 3.L 

MOSTOWSKI proved in [6] that each formula of the theory Z expressible in the 
theory ZF (i.e. each formula with set variables only) and provable in Z is proavable 
in ZF, too. (For the same result see [8] and [9]). Clearly each formula provable in ZF 
is provable in r~, too, thus in this connection we can speak about r~ instead of ZF. 
The proof of the given statement by Mostowski is based on [7] where the relative 
consistency of Z with respect to ZF is not proved in a finitistic way (the same holds 
for [8]). A finitistic proof of this result is given in [9]. We prove a theorem concerning 
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the possibility of a finitary finding of a proof in ZF (or in Z~) from a given proof in I*, 
which is negative is a certain sense. We show that it is impossible to transfer proofs 
by the method of parametric models (generalized interpretations). 

3.3. MetatKeorem. There is no parametric syntactic model of the theory Z in the 
theory Z". 

Proof. Let SP̂  be a model of Z in Z~. Consequently, if we denote # the conjunction 
of axioms of the theory Z9 the formula #* (that is a formula of the language of Z~ 
obtained by the translation of 0 through Wftt) is proavble in Z~. Similarly as in the 
proof of 3.2, since the proof of the formula <P* consists of a finite number of steps, 
it is the proof in some Z~0 and thus 5011 is clearly a model of Z in Z~0. By 2.3 there is 
a strongly regular model 2Jl2 of Z~0 in Z. The composition W = 90l2 * 2Ri 1s a strongly 
regular model of Z in Z which is a contradiction with 3.L 
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