
Časopis pro pěstování matematiky

Ivan Kolář
Order of holonomy of a surface with projective connection

Časopis pro pěstování matematiky, Vol. 96 (1971), No. 1, 73--80

Persistent URL: http://dml.cz/dmlcz/117714

Terms of use:
© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117714
http://project.dml.cz


Časopis pro pěstování matematiky, rot. 96 (1971), Praha 

ORDER OF HOLONOMY OF A SURFACE WITH 
PROJECTIVE CONNECTION 

IVAN KOLAR, Brno 

(Received October 6, 1969) 

A submanifold in a space with Cartan connection, see [3], represents a natural 
generalization of a submanifold in the corresponding homogeneous space, fi. CARTAN 
himself showed in the case of a surface in a 3-dimensional space with projective con­
nection, [ l ] , that his method of specialization of frames can also be applied to the 
investigation of these submanifolds. A. SVEC pointed out, cf. [5], that such a subma­
nifold can be considered as a separate structure. From this point of view, a surface 
in a 3-space with projective connection is called a manifold of type Po,3, or, shortly, 
a surface v̂ith projective connection. Naturally, differential geometry of a surface & 
with projective connection differs from differential geometry of a surface in projective 
3-space P3. In this paper, we want to show that the difference between & and a surface 
in P3 can be also measured in individual orders. If we use the computational pro­
cedures by £. Cartan, then the difference in order k between 0* and a surface in P3 

is characterized by the difference between the formulae of the (k — l)-st prolonga­
tion for 0 and the formulae of the (k — l)-st prolongation for a surface in P3. 
Conversely, if these formulae coincide, then we say that 0> is holonomic of order k, 
or, shortly, k-holonomic. Dealing with the first prolongation, we show the invariance 
of the condition for 2-holonomy also in a formal computional way, but we do not 
repeat it for higher orders, since we present a direct invariant definition of k-holonomy 
for an arbitrary manifold with connection in [4]. 

At every order, we geometrize the corresponding conditions for holonomy by means 
of some properties of some geometric objects of 0>. In general, the geometric objects 
of & differ from the geometric objects of a surface in P3. But if & is k-holonomic and 
if we take into account how one evaluates the geometric objects of order k of ^, 
then we are led to the following proposition: & is k-holonomic if and only if all its 
geometric objects of order k are analogous to geometric objects of order k of a surface 
in P3. We present an exact formulation of this assertion for an arbitrary manifold 
with connection as well as its proof in [4]. Our considerations end at the sixth order, 
since a 6-holonomic non-special surface with projective connection has integrable 
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connection, so that it is locally isomorphic to a surface in P3 and is holonomic of any 
order. The totality of our geometric conditions gives a necessary and sufficient 
geometric condition that a surface with projective connection be locally equivalent 
to a surface in P3, which is a problem solved by B. CENKL, [2]. In contradistinction 
to this paper, our conditions are organized according to individual orders. 

1. Consider a surface & with projective connection together with the manifold ^ 1 2 

of all frames associated with ^ , which depend on 12 secondary parameters. Let the 
connection be given by 

(1) AA{ = coJAj 

where co] are differential forms on 3F^2 satisfying 

(2) o)| = 0 . 

The structure equations are 

(3) dco{ = co) A coJ
k + 2R{cox A CO2 

and it holds 

(4) Kj = 0 . 

(We write cox
Q = cox

9 col = <°2 a s usual.) 

2. The frame field ^ 1 0 of the first order is determined by the usual relation 

(5) twj> = 0 . 

The exterior differentiation of (5) yields 

(6) cox A co\ + co2 A col + 2Rlcol A co2 = 0 , 

which is equivalent to 

(7) co\ = axcox + (a2 - R%) co2 , co\ = (a2 + R%) co1 + a3co2 . 

Prolonging (7) and fixing the principal parameters, we obtain 

dat + at(el - 2e\ + e\) - 2a2e\ = 0, 

(8) 8a2 + a2(el ~ e\ - e\ + e3
3) - axe\ - a3e\ = 0 , 

<5a3 + a3(e$ - 2e\ + el) - 2a2e
x
2 = 0 , 

8Rl + Rl(e°0-e\ - 4 + ^) = 0, 

so that .Ro is a relative invariant. If it holds 

(9) R2 = 0 , 
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then & will be called 2-holonomic. Furthermore, we can deduce from (8) that the 
quantity 

(10) h = R3° 
V[(a2)2 - a1a3] 

is an absolute invariant. 

Restricting ourselves to the investigation of hyperbolic surfaces, we can specialize 
the frames by a2 = l9at = a3 = Oand we get the frame field tFn of the second order. 
When comparing with [6], we find that h is the torsion of & and we have deduced 
the following geometric assertion: & is 2-holonomic at a point if and only if the 
conjugate tangents at this point form an involution. 

3. From now on, we shall suppose & is 2-holonomic, so that we have 

3 _ M2 M3 _ ,.,1 
co (11) col = CO2 , <»2 

and the prolongation of (11) yields 

2co2
t = fcift)1 + (b2 - Rl + Rf) co2 , 

(12) -co°0 + co1 + co2 - co3 = (b2 + R2
0 - RDco1 + (b3 - Rx

0 + R3
2)co2, 

2co2 = (b3 + Rl - Rl) co1 + b^co2 . 

If it holds 

(13) Rx = R0 , R2 = R0 , 

then & will be said to be 3-holonomic. 

Now we give a geometric interpretation of (13). Consider the ruled surface ££ x 

generated by the tangent lines to the asymptotic curves co2 = 0 along an asymptotic 
curve co1 = 0 as well as the ruled surface JSf 2 generated symmetrically. It is easy to 
see that the quadrics having the first order (line) contact with both JS? t and JSf 2 form 
the pencil 

(14) 2x°x3 - 2x1x2 + (b2 - R2 + Rl) x'x3 + (b3 + R0 - R3
2) x

2x3 = a33(x3)2 

where x°, x1, x2, x3 are the local coordinates. On the other hand, consider a quadric Q 
having the second order contact with ^ , then there are exactly three directions in 
which & has the third order contact with Q. These directions are apolar with respect 
to the asymptotic directions if and only if Q belongs to the following pencil 

(15) 2x°x3 - 2x1x2 + [b2 + $(R2
0 - Rl)] x*x3 + 

+ [ f c 3 - K ^ o - ^ ) ] x V = a33(x3)2, 
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cf« [*G» p. 389. Comparing (13), (14), (15), we can conclude: A 2-holonomic surfaced 
is 3-holonomic if and only if both preceding constructions give the same pencil of 
quadrics (o/ Darboux). 

4. In what follows, & will be supposed to be 3-holonomic and non-ruled. Standard 
procedure shows that we can further specialize the frames by bt = bA = 2, b2 = 
= 6 3 = 0 and we get the frame field «^3 of the third order. Prolonging the equations 

(16) co\ = G>1 , co2 = ce>2 , co\ + col = 0, co0 + col = 0 , 

we obtain 

cog - 3o>l = ctcol + (c2 + Rl
0 - R\) ať 

(17) col - <*>? = (̂ 2 - J*J + ^ i ) ^ 1 + (̂ 3 - *{ - Rl)™1 > 

«3 - <»l = (C3 + * } + * 2) W1 + (C4 + tf2 - JRJ) 0>2 , 

to? + 3o>l = (c 4 - R2
0 + R\) col + c5co2 . 

If it holds 

(18) R\ = Rl
0 , * i = .Rj , * } + R\ = 0 , 

then <? will be called 4-holonomic. 
The osculating quadric of the ruled surface &t or J£?2 considered in item 3 has the 

equation 

(19) 2x°x3 - 2*1*2 + (c3 - R\ ~- / ^ ( x 3 ) 2 = 0 

or 

(20) 2x°x3 - 2x !x2 + (c3 + R} + i?^)(x3)2 = 0 

respectively, so that both quadrics coincide if and only if R\ + R\ = 0. In the sequel 
we suppose that this condition holds and (19) = (20) will be called the quadric of Lie. 

Let CfC x and X2 be two line congruences associated with & in such a way that the 
lines of Jf \ pass through the corresponding point of & but do not lie in the tangent 
plane and the lines of Jf 2 l*

e 1n the corresponding tangent plane of 0> but do not pass 
through the point of contact. Then Jf t and Jf 2 are said to be reciprocal, if their lines 
are conjugate with respect to the quadric of Lie. If Jf t is generated by the straight 
line [>40, pAt + qA2 + AL3], then the reciprocal Jf2 *s generated by \qA0 + Ai9 

pA0 + A2~\ and the focal nets of both congruences coincide if and only if 

(21) p = -±(c 2 - R0 + R2), q= -K<4 + *o - Rl) ; 

these lines will be called the first or the second directrix of Wilczynski respectively. 
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By the principal quadrics of 0* we mean those quadrics which have contact of the 
fourth order with the asymptotic curves of 0>\ they form the following pencil 

(22) 2xlx2 - 6x°x3 + cxx
lx3 + c5x

2x3 = a33(x
3)2 . 

There exists exactly one pair of reciprocal congruences whose lines are also conjugate 
with respect to (22); these lines will be called the edges of Green. The first edge of 
Green is 

(23) [ 4 i M i + i M 2 + -4 3 ] , 

The curves of Segre are given by (co1)3 — (co2)3 = 0. The first axis of Cech is the 
common line of intersection of the osculating planes of the curves of Segre, which is 

(24) [A0, fa - c2 - R0 + R2) A, + fa - c4 + R2 - Rl
2) A2 + A3] . 

The lines (21), (23), (24) belong to the same (canonical) pencil if and only if R\ = R0, 
R\ = R*. Thus, a 3-holonomic surfaced is 4-holonomic if and only if the osculating 
quadrics of ruled surfaces $£\ and $£2 coincide and if the directrix of Wilczynski, 
the edge of Green and the axis of Cech belong to the same pencil. 

5. Suppose & is 4-holonomic. The remaining secondary parameters can be fixed 
by c2 = c3 = c4 = 0 and we get the canonical frame field IF. Then we have 

(25) co0 — 3co} = cxcol , co2 = co\ , co\ = co2 , co0 + 3co\ = c5co2 . 

Prolonging (25), we obtain 

-dCi - Ĉ COQ - co\) - 4co°x + 3co2 = c^ 1 + (e2 + R0 - 3R\ - cxR0) co2 , 

2co°2 = (e2 - R°0 + 3R\ + cxR
l
0) co1 + (e3 + R2 - R?) co2 , 

(26) 2co°3 = (e3 -R2+ R$ co1 + (e4 + Rl
3 - R°2) co2 , 

2co\ = (e4 -R\ + R°2) co1 + (e5 + R°0 + 3R\ - c5R
2
0) co2 , 

-dc 5 - c5(co0 + co\) - 4co2 + 3col = (e5 - R0 - 3R\ + c5R%) co1 + e6co2 . 

If it holds 

(27) R0 — 3RX = ctR0 , R3 = Rt , R3 = R2 , R0 + 3Rt = c5R0 , 

then & will be called 5-holonomic. 
The first normal of Fubini is the line harmonically conjugate to the canonical 

tangent with respect to the directrix of Wilczynski and the edge of Green, which is 

(28) [A0, ic5At + ictA2 + A3] . 
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The developable surfaces of this congruence intersect a conjugate net on & if and 
only if 

(29) * ClR
l
0 + c5R

2 - 2R°0 = 0. 

The second focal surface of the congruence of the tangents to a family of curves 
of Segre is without torsion if and only if 

(30) cxRl - c5Rl -f 6R\ = 0. 

Furthermore, consider the envelope of the quadrics of Lie 

(31) xxx2 - x°x3 == 0. 

It is easy to see that the characteristic points, i.e. the vertices of the tetrahedron of 
Demoulin, are determined by (31) and by 

(32) a»(x3)2-(x1)2 = 0, b°3(x
3y-(x2y = 0. 

The transversals of the tetrahedron of Demoulin intersect the lines [-40_43] and 
[AtA2] at 

(33) />!= (Ja°3b°39 0,0,1), D3 = (09y/a°39 Jb°3,0) 

J>2 = (-y/a°3b°39 0, 0, 1) , D4 = (0, Ja°39 - V&S, 0) , 

where the pairs Di9 D3 and D2, D4 lie on the same transversal. If £A0 + qA3 or 
XAt + fiA2 are the coordinates on [-40A3] or [ A ^ ] * then the pair Di9 D2 or D3, D4 

has the equation 

(34) e - a°3blr,2 = 0 

or 

(35) b%k2 - a V = 0 

respectively. On the other hand, the focal planes of the congruence of the first 
directrices of Wilczynski intersect [-4^2] at the points 

(36) a\X2 + (b\ - a°2) X\i - b\\i2 =- 0 . 

Thus, the pairs (35), (36) and Al9 A2 belong to the same involutidn if and only if 

(37) a°a% = b2b%. 

The foci of the congruence of the first directrices of Wilczynski are determined by 

(38) e + ^(a* + b?) + ^(aX - a\b°2) = 0. 
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The tangent plane of the surface (Ax) or (Al2) intersects [-40-43] at Tx = b°A0 + -43 

or T2 = a°A0 + A3 respectively. Let T3 be the harmonically conjugate of A0 with 
respect to TX9 T2, let T4 be the harmonically conjugate of .43 with respect to A09 T3 and 
let The the harmonically conjugate of T4 with respect to A09 -43, then the pair ,40> T 
is given by 

(39) {al + bDfr + albltj^O. 

The pairs (34), (38), (39) belong to the same involution if and only if 

(40) a°b°2 = a°b° . 

(37) and (40) imply 

(41) a° = eb°29 b° = *a°X9 a = ± 1 . 

On the other hand, the relations Rl ~ R\, R3 = R2 are equivalent to b°2 = a3, 
b% = a J, cf. (26). The additional condition e = 1 for (41) is equivalent to the following 
condition concerning orientation. Let Fi9 F2 be the foci of the congruence of the 
first directrices of Wilczynski taken in such order that the orientation on [-40A3] 
determined by the ordered triple (A09 Fx, F2) coincides with the orientation (A0, Dl9 

D2). Let F i + 2 , 1 = 1, 2, be the point of intersection of the focal plane passing 
through F( with [v4AA2]. Then the orientation (Al9 F3, F4) coincides with the orienta­
tion (Al9 D3, I>4) if and only if sgn a°3 = sgn b°l9 i.e. 8 = 1. — Thus we have deduced 
necessary and sufficient geometric conditions that a 4-holonomic surface 0* be 
5-holonomic. 

6. Suppose 0> is 5-holonomic. Analogous considerations as above suggest the fol­
lowing definition. If it holds 

-cxR°0 + cxR\ - 4R? + 3Rg = ^Rj + e2R
2

0 , 

(42) 2R2 = e2R
l
0 + e3R

2, 2R°3 = e3R0 + e4R
2, 2R? = e4R

l
0 + e5R

2 , 

-c5R°0 - c5R[ - 4R°2 + 3R0 = e5R0 + e6R
2 , 

then 0> will be said to be 6-holonomic. 
It is easy to see that 

(43) 2R°3 = e3R0 + e4R
2 

holds if and only if the surface (A3) is without torsion and that 

(44) 2R2 = e2R0 + e3R
2 , 2R? = e4R0 + e5R? 

are satisfied if and only if both focal surfaces of the congruence of the first directrices 
of Wilczynski are without torsion. Now, taking (42lf5) modulo (271>4), (43), (44), 
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we obtain two linear homogeneous equations in RQ, R%. Since /?£, R% are the last 
independent components of the curvature tensor, there are many possibilities how 
to geometrize these equations; we choose the simpliest way: If the determinant D of 
this system does not vanish, then (431>5) holds if and only if RQ = R% = 0, i.e. if 
the torsion tensor of & vanishes. 

7. Summarizing the preceding considerations, we get the following result, which 
concludes our investigation in general case. / / a non-ruled surface 0* with D 4= 0 
is 6-holonomic, then its curvature tensor vanishes, so that its connection is integrable. 
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