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ON THE ZEROS OF GENERALIZED JACOBI'S
ORTHOGONAL POLYNOMIALS

" FRANTISEK PUCHOVsKY, Zilina

(Received December 15, 1970)

1. INTRODUCTION

1,1. We employ the following notation:
1. I is the closed interval [—1, 1].

2. ¢;(i =1,2,...) are positive constants independent of n as well as of xel
or of x in the interval in question.

3. ¢x) (i = 1,2, ...) are functions of the variable x such that
ledx)| < ey .
The numbering of ¢; a ci(x) is independent for every section.
1,2. In this paper the zeros of the orthonormal polynomials
n
(1,2a) Q,(x) =Y a"x" 7k, a® >0, n=0,1,...
k=0
associated with the function

(1,2b) 0(x) = (1 — x (1 + x)* & = J(x). "™

on the interval I are investigated. Here « > —1, B > —1 and u(x) is a real function
satisfying the following conditions:

1. u”(x) exists in the interval [ -1, 1].



2. If we put for brcvity

4.5() =" (") / O o) = au(), os) = L dtll), 0ali) = A1),

0x 0t
then fori =1,2,3
(1,20 min (s, 9) 2§ [ (1= 2 [o(0] & = (9
and
(1,2d) min (o, f) < 3 = 4,0t) = c(x).

1,3. In my paper “On a class of generalized Jacobi’s orthonormal polynomials™?)
I have established the following differential equation for the above polynomials Q,(x):

(1,3a)
07 () S [(1 - ) Q) Q) + (1 = ) b,(9) 04) + [2F + )] €, = 0.

Herein
(1,3b) Ay =J(n(n + @ + B + 1))
(We suppose n to be so large that 4, is rcal.)

Further
(1,3¢c) a,(x) = ncs(x),
(1,3d) by(x) = n71 cy(x),

b,(x) exists in the interval [ -1, 1] and
(1,3¢) ) by(x) = n"!es(x).

1,4. We denote by J,(x) the orthonormal polynomial associated with the function
J(x) on the interval [—1, 1]. J,(x) are normalized Jacobi’s polynomials.

1,5. The results of my investigations are contained in the second chapter. The

theorems on the zeros of the polynomials J,(x) are a generalization of the known
results of Szegd (See [7] p. 9 and [1] pp. 135—136).

1) See Cas. p&st. mat. 97 (1972), 361—378.



2. THEOREMS ON THE ZEROS OF THE POLYNOMIALS Q,(x)

2,1. Let {x,,}, be the increasing sequence of the zeros of Bessel function I,(x)
of the first kind and of order v.

Let {x{™}%_, be the increasing sequence of zeros of the polynomial Q,(x).
Let k = 1,2,... be independent of n. Then for n - +

2
(2,1a) X = —1 4+ 2851 4 0(n~Y)]
2n?
and
2
(2,1b) ey =1— ;_aik [1+ o h)].
n

(The constants in O depend on k.)
The proof of this theorem is contained in Chapter 5.

2,2. Let Q,(x) = J,(x) where J,(x) is defined in Section 1,4. If we put

(222) @B =i=40 + 3B+ 3+ 3B +2), jy=jBa),

then

2 —
(2,2b) x}‘")=_1+m1__'“+ﬁ+1_(a+ﬁ+1) +j1
2n2 n nZ

n

@+ B+ D2 + (= + B+ 1)’]] _ X [1 _ 2(_“iﬂ_+_1] + 0(n~9)
3 24n* n

and

. x2 a+B+1 (a+B+1)2+j
(2,26) xfu—)k+1=1—5;'§[1— i —( ﬁnz) ]__

@B D2+ BT X [1_2(“+B+1)]+0(n'5).

n3 24n*

The proof is in Chapter 6.

2,3. Theorem on the distance of the consecutive zeros Vof the function Qu(sin z).

Notations.
(2,3a) ) 3 =0,=0; |of >3=>0a, = 3 J(@4?-1);
(2.3b) Bl <3=8,=0; |B] >1=p5 = -3/0@B - 1).



dy > &5, Bo < Py are arbitrary real numbers independent of n;

(2,3¢) : a,€(0g, n), b,e(—n,Po)
are arbitrary numbers which may depend on n;
(2’3d) Jn= —E’Z‘t_& ’ J:xl)= —E""l”ﬂ’ﬁ),

4 2 n 2 n 4
(2,3¢) Ay =J(n(n + o + B+ 1));

1 — 4q? 1 — 4p2

2,3f x) = A2 + , x) = A2 + —;
(230 ) = ol poe

(2,3g) =z, and z,, z; < z, are arbitrary two consecutive zeros of the function

Q,(sin z) .

Assertion.
(2,3h) [zi,22] € Jy=> 2z, — 2z, = @™ '/? <§ - zl) + &P
and
(2,3i) [2,2,] € TV =z, — z; = mo; V/? (— 7—2‘: + z,) + o .
Herein
(2.3)) 67| < en™*(na; > + 1),
(2,3k) |697] < en~?(n|b,| 2 + 1),

where c is a constant independent of n, a,, b,, z; and z,, that is, ¢ is the same num-
ber for any two consecutive zeros z,, z, located in J, and JU respectively.
For the proof see Chapter 7.
2,4. Let 6 €(0, n[4) be a constant independent of n and
(2,4a) L=(-Z+6Z%-5).
2 2

Then in terms of the notation of Section 2,3

(2,4v) [znz2] e dy=>z, — 2z, = Ty 3,
n

where

(2,4c) . [9,] < en™2,

c is a constant with the same properties as that in (2,3]) and (2,3k).
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For the proof see Chapter 7.

2,5. For the zeros of the function J,(sin z) the following inequalities hold if we
employ the notation introduced in Section 2,3

(2,52) [60"] < en™*(na, > + n""),
(2,5b) |69°] < en™*(n|b,| "3 + n7Y),

where 8", 8" are defined by (2,3h) and (2,3i) respectively.
For the proof see Chapter 7.

3. A TRANSFORMATION OF THE FUNDAMENTAL DIFFERENTIAL EQUATION

3,1. We shall employ the following notations

(3,1a) Z = arcsin x ,

(3.15) y=d =Ly

(3,1¢) w(iz)=(1+a+ p)tgz + (¢ — )secz,
(3,1d) J(x) = (1 — x)* (1 + x)P,

(19) 4(x) = +/(cos z J(sin z)) = exp [- : I :w(t) dt],
(3.16) 12) = Ho'(2) - 1))

(3.18) a4 (2) = A7 + a,(sin z) + p(z) — 4[b;(sin z) + u"(sin z)] cos® z —
— 3[b,(sin z) + w'(sin z)] {[b,(sin z) + u'(sin z)] cos® z — 2w(z) cos z — 2sin z} .

(Here b,(x) = g_l;_,,i_x) , u®(sin z) = Lgl;(f—)] (k=1, 2))
(B1h)  ax(z) = Ousin 2) a(z) exp {; J' zlz[b,,(sin ) + w(sin 1)] cos ¢ dt}.

3,2. In the above notation the function Q,(sin z) is a solution of the differential
equation

(3,2a) y" + {[u'(sin 2) + b,(sin 2)] cos z — (2)} y* + [AZ + a(z)] y = O



and the function q,(z) satisfies the differential equation

-

(3,2b) ‘ V' +a(z)y=0.
Proof follows from (1, 3a).

3,3. Remark. In the following all the assertions are derived for x € [0, 1], that is
for z € [0, 7/2]. The same assertions hold for z € [ —=/2, 0] if we replace a by .

34. For{ -0+

(3’43) . q (g _ C) = 26-0/2 Ca+1/2[1 + 0({2)] ,
(3,4p) a)(g-—-C)=(1+2a)§"—%(a+3ﬂ+2)§+0(§3),
(3.4¢) y (1—; - C) =3(1 - 4a®) "2 + j + 0(Y),

where j is defined by (2,2a).

Proof. Trivial.

3,5. For brevity, put

ORI et
(3,58) o0) = a, (2 c) Bt
Then : .
(3,5b) le [0 ’zi] = [onQ)| < eun.

The proof follows from (3,5a), (1,3¢), (1,3d), and (1,3e¢).

3,6. Let |a| > 1. Denote by o™ the greatest real zero of the function «,(2) defined
by (3,1g). Then for n - +

(3.62) o™ = g - % [1 +0 (i)]

where for brevity
(3,6b) a =1./(4e® - 1).

Remark. For almost all values of n there exists one and only one positive zero
of a,(z) (provided |o] > }).
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Proof. According to (3,5a) and (3,5b) it is

g — o™ = A {(401 - 1)/[1 + A%, <§ - a(n)>]}1/2= f‘-‘ni [1 + o(n~Y)].

3,7. Let [al > 4 and let ay > o, be a constant independent of n, where o, is defined
by (3,6b). Then for z € [0, /2 — ao[n]

(3,7a) 0<a'(z) <en™?

for almost all values of n.
If a < —13, then (3,7a) holds for every oy > 0.

Proof. Put
1 — 4o?
f(x) = .
&) 4x?
Hence f(@;) = —1. Since f(x) is an increasing function for x > 0, there exists in

virtue of (3,5a) and (3,5b) a constant ¢ > 0 independent of n such that for almost all
values of n

te (“—°, ’—2‘) ~a, (g - 4) =22 4 O + o) > 2 + n[f(ao) — ()] +

n

2 2
+n*f(a) —en =23 —n* —cn+ 22— (4a Nn?>2—7H (40: 1) n?.
4a0a1 8

3,8. For brevity, put

(3:83) i) = 4, (g - )

Then for x — 0+

(3,8b) Un(x) = 26-2253+12 9 (1) [1 + O(x?)],
where .
(3,8¢) 0,(1) > 0.

Proof. For brevity, put

(1) () = exp {— %jw [ba(sin £) + w'(sin £) cos tdt} =

n/2~x

= exp {— éJ. [ba(cos £) + u'(cos ¢)] sin tdt} =1+ 0(x*) for x—-0+.
0



Further
) * Q4cosx) = Q1) + O(x?).
Since

Ux) = Oifcos x) 4 ( - ) ),

(3.8b) follows from (1), (2) and (3,4a).
By a well known theorem

0/x)+0 for x=1

and in virtue of (1,1a) it is Q,(+0) = +co. This shows that (3,8¢) is true.

4. LEMMAS

4,1. In the following we employ the Bessel functions I,(x) of the order « and of the
first kind as well as the Bessel functions Y,(x) of the order a and the second kind.

It is well known that
X a+2v
I Y e

(4,1a) I(x) =Y,

v=o vIl(a + v + 1)
and provided « 2 0 is an integer,
at+2v
-1 (3)
@1b)  Y(x) = -[c +lg ]1 @-13 = -5,
v=0 v!(v + a)!

Herein C is the Euler constant and

oz>‘0=>a'0=zl, a=0=0,=1
k=1 k
v v+¢1
v>0=0,=) - =,
k=1 k=1 k

So(x) = 0, a>0=>s,(x)=;lr.:2:(a—v_1)!@)“- .

4,2. Put

(4.22) | ox) = J(X) L)



and if « is not an integer,

(4,2v) w(x) = /(x) I-,(x).

If a is an integer, then
(4.20) w(x) = /(%) Yo(x) -

v(x) and w(x) are linearly independent solutions of the differential equation

. 42
(4,2d) y”+(1+14‘:“>y=0.

X

(See [I] pp. 29—-30.)

It is easily seen that for any real number k the functions v(kx) and w(kx) are linearly
independent solutions of the differential equation

) 1 — 4a?
(4,2¢) Y+ [kz + i ] y=0.
(See [I] p. 31.)

4,3. The following theorem will be used:
Let p(x) and q(x) < O be real functions continuous on the interval (a, b) and let
¢(x) be a solution of the differential equation

(4,32) v+ p(x) y +q(x)y=0.

Then the function ¢(x) . ¢'(x) has at most one zero in the closed interval [a, b].
Herein a or b are also zeros of ¢(x) ¢'(x) if for i = 0,1

lim ¢(x) =0 or lim¢®(x) =0.

x—a+ x—-b—

Proof. (See [2] pp. 164—165.)

44. Let {x,,}n=, and {x,,}=, be the increasing sequences of all the positive
zeros of the functions v(x) and v'(x) respectively.

Let {,}ae0 and {{;}2., be the increasing sequences of all the positive zeros of
the functions V,(x) and y;(x) respectively.?)
If |o| > 4, then

(4,42) Xg > Xgq > 3 f(40* — 1) = a, %)

2) See (3,8a).
3) See (3,6b).



and

(4,4b) &, (g - c,) > a, (g - c;) >0.

Proof. Since
v(0) = ¥,(0) =0

and y = v(x) is a solution of the equation (4,2d) our assertion is a consequence of
theorem in Section 4,3.

4,5. Let v(x) and w(x) be the functions defined by (4,2a), (4,2b) and (4,2c) respec-
tively and let ,(x) be defined by (3,8b).

For brevity, put

(4,52) W(x, t) = v(x) w(t) — v(f) w(x),
(4,5b) 171 = v'(x) w(x) — v(x) w(x),
(4.50) Lo=J@+1),

where A, = \/(n(n + « + B + 1)) and

(4,5d) 1, = O(n)

is a real number depending on n.
Further, put

v(l,,x) : 2—(a+p)/21:+1/2

39 b= Jim L T Tt D)’
(4’5f) Xn(x) = 'I’n 'l’n(x)

and ‘

(4.58) Bit) = o,(t) — 7,

where w,(t) is defined by (5,5a).
Then for x € (0, 1)

(4.5h) 1(x) = v(lx) — ed(X)
where
(4,59) o) = 11! J "B.(8) W(lx, 1) (1) dt .

Proof. 1. Denote by k; (i = 1,2,...) positive constants independent of x and ¢
in the interval [0, 1]. (They may depend on n.)
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In virtue of (3,8b) and (3,5b) we may write for ¢ € (0, 1)
(1) ()] < k™12, (8] < Kz -

By applying (4,1a) and (4,1b) we deduce that for x € (0, 1) and t€ [0, 1) and x > ¢

() [W(Lx, O] < ks 8(x, £) = ka[(xt™2)* + (x~ 6] /(xt) g™

b

exl

where my = 1if « = 0, and my = 0 if & + 0.
From (1) and (2) it follows for x € (0, 1)

3) lea(x)| < k4j £HU2 §(x, £) dt < kgx**%12.
]

2. The function x,(x) defined by (4,5f) is a solution of the differential equation

T
"+a,(-—x)y=0.
y (2 )y
‘Hence

@ ) + [ 12+ 53 ) = A ).

x2

By (4) we derive the equation
(5) x(x) = Cy v(1,x) + Co w(l,x) — 04(x),

where C; and C, are constants.

Let-a be non integer. Making use of (3,8b), (4,1a), (4,5¢) and (3) we deduce by (5)
that for x - 0+

2+1/2 2+1/2 —a+1/2
(lnx) + O(x"+5/2) — Cl(lnx) + O(x’”’z) + Cz(l,,x) [1 + O(xz)] .

2°T'(a + 1) 2°I(x + 1) 27(1 — a)
Hence
(6) C + ZL@ 1) jagmagy 0(x3)] C, =1 + 0(x2).

rit — o)
From (6) it is easily seen that
(7 «>0=>C,=0(x*=C, =0, C; =1

and

x<0=>C =1+0x2)=>C, =1, C,=0(x*2)=C,=0.

11



If « is an integer, then by (3,8b), (4,1b) and (3) we deduce that for x — 0+

(Lx)*re O(x**5/?) = Cy(lyx)*+12 + O(x**512) +
2 (@ + 1) 2°I(x + 1)
1 (I x)«z+l/2 _
+ | = lgx + 2% — D) (Ix)"** 2|1 + O(x*)] C, -
ey e e 0 |+ e

Hence we deduce C, = 1, C, = 0 by a similar argument as above.

4,6. Let a > 0 be an arbitrary number independent of n and

(4.6a) | 1,= (0, 3) .

n
Further denote by v,(x) a real function defined in the interval I, such that
(4,6b) tel, = |p(0)] < 7,.

Put

(4,6¢) ou(x) = J "0l WL, 1g) ,(6) it

(0]
where x,(x) is defined by (4,5f).
Then

(4.6d) xel, = |o,(x)] < e;n”ly,.
From (4,51) and (4,6d) we deduce that
(4,6¢) xel, = |o(x)] < cn™t.
Proof. 1. For brevity, put '
(1) ) =T (), S, = sup ).
Making use of (4,6b) and (2) in Section 4,5, we obtain from (4,6c)
)] x€l, = |o,(x)] < e3pxS,x* 12 < ey IS X2

2. Put y,(t) = B,(t), where B,(t) is defined by (4,5g). In this case we may put y, =
= csn so that we obtain from (4,5i) and (2) :

) xel, = |o(x)| < cn™'nn " x**12S, < c;nixat 128, .
Since ,
“ xel, = [o(lx)| < cs(lx)* 12

12 -



and by (4,5h)
() L(x) = [o(lx) — eax)] x™7 "
we deduce by (2) and (5)
S, < con**tl2 4 ¢ on7IS, = S, < ¢ n*tV2,

Applying this result we obtain (4,6d) from (2) and (4,6¢) from (3).

4,7. Let v(x) be defined by (4,2a) and let x,; (k = 1,2,...) be the zeros of v(x)
introduced in Section 4,4. Let A, > 0 satisfy the condition

(4,72) A, =0(1) for n— +o.
If
(4,7b) X, =0,%,4 + € (Xgpoy + €1y Xpp+y — €;1) and lv(x,,,‘ + nn)] < A,,
then
(4,7¢) ln] <c,n"4,.

Proof. For brevity, put x, ; = x, and x, + nng = b.
Let I, be the interval (b, x;) if 7 < 0 or (x,, b) if n > 0. By (4, 7a) and (4,7b) we
deduce

(1) - x ed, = |v(x)| < 4, .
Further

(2 u(b) = nnv'(x) + 4n*n? v"(¢),
where-

(3 ¢el,.

From the equation (4,2d) we obtain

0 Q) = [““’ L 1] o).

4¢*

Making use of (4), and (1) we deduce
(5) " (©)] < esfo(9)] < esdn-
Since v'(x;) * 0 it follows from (2), (5) and (4,7a) that
Ay > [o(B)] > nln] [o'Gee)] = es]o"(@)] > nlo'(x)] — cod

for almost all values of n.

13



4,8. Following the notation of Section 4,6 we put

(4.82) ) = o) + ),
where 1, is defined by (4,5¢)

(4,8b) xel, = |n,(x)| < 4,.
Here A, satisfies (4,7a).

Let {5,, N_, be the increasing sequence of all the zeros of the function ha(x)
contained in the interval I,. Then the following assertions are true:

a) For every positive integer k there exists an integer r > 0 such that for
n— 4o
(4,80) ék =

Xa,r

1

[1 + 0(4,)].

n
b) For every integer m > 0 there exists an integer s such that for n - + o

(4,84) g = "l—'" [1+ 0(4,)] -

n

Proof. 1. Let {x,,} = be the increasing sequence of all the positive zeros of the
function v'(x).

From (4,8b) and (4,7a) we deduce the following assertion A: For every. integer
v > 0 there is at least one zero of the function h,(x) in the interval (x; ,/lp, X4y +1/l)-

2. Put
Xa,r ~1
(1) €h=_-'_+ln nn,
L
where x,, is the zero of the function v(1,x) nearest to the number &,;. From the above
proposition

) & < ———x"';‘“ < -—x“'l“l el,.

From (2) it is obvious that r < k + 2.
If a > X, 44 it follows from (4,8b) that

By (4,8a) and (1) we deduce that :
4 0 = h(&) = v(x, + nn) + (&) -
Hence we obtain as a consequence of (3) and (4,8b) that

) lo(x, + nn)| < 4,.

14



The proposition of Section 4,7 yields
[n] < A,n~t.
This inequality shows that (4,8c) is true.
3. Let

(6) Tom — & — nll Yy,

where £, is a zero of the function h,(x) nearest to the number x, ,,/l,. From the above
assertion A we see that

'
xa.m+2

el,.
Ly

(7) a> x;,m+2 = 63 <

Making use of (4,8a) we obtain

0= h,.(é, = v(xa,m + ml') + ﬂ"(fs) .
Hence, in virtue of (7) and (4,8b)

(8) [o(xm + n0)| < 4,
Hence by the statement of Section 4,7
) |n'| < n~'4,.

(7) and (9) establish (4,8d).

5. PROOF OF (2,1a) AND (2,1b)

5,1. In the notation introduced in Section 4,4, for k = 1,2, ... independent of n
it is

(S,Ia) C,‘ =

xa,k

[t +0(m")] for n> +o0.
n

Proof. 1. The zeros of the function y,(x) coincide with the zeros of the function
Xa(x) defined by (4,5f). Let I, be defined by (4,6a) and choose a sufficiently large.

In virtue of (4,5h) and (4,6e) the theorem of Section 4,8 yields for k = 1,2, ...
and m = 1,2, ... provided that {, €1, and x, ,/n €I,

g =221+ 0(n )]
and
©) l = 1'1—'-" [1+ 0o(n~Y)].

15



Herein x,,/[l, is the zero of v(l,x) nearest to the number {, and {; is the zero of x,(x)
nearest to the number x, /I,

2. Putin (1) k = 1 and in (2) m = 1. Then

) ngy Z Xg1 + O(n™")
and
4) nly £ x4 + 0(n™1).

From (3) and (4) we see that

(5) ' ¢ =211 + o(n~Y)].

n

Hereby (5,1a) is established for k = 1.
3. Let w,(x) be defined by (3,5a) and put

(6) Sp = sup |w,(x)|.
xef0,n/2]

In virtue of (3,5b) we may choose k, > 1 independent of n and o, such that
(7) kin >0, >s,.

Put
(®) A= ~ o).

(5) enables us to choose o, so that

X

) 1’1 > {y .

Since the functions v(Ax) and g,(x) are solutions of the differential equations

s 1 - 4“2
(10) y +[}.2+—4x2 ]y::o
and
1 — 4da?
(11 y' + [ﬂf + 4x2d + a),,(x)] y=0

respectively it follows by the well-known Sturm’s comparison theorem in virtue
of (9) that in the interval [0, {;] there are at most (k — 1) zeros of the function v(x).
Hence we obtain for the number k and r in (1)

(12) rsk.

16



3. Further, put

(13) kan > p, > s, p=J(A + ),
where k, does not depend on n and s, is defined by (6). Choose y, so that
(14) 6y > Tet

. u

Then there are at least (k — 1) zeros of v(ux) in the interval [0, {,]. Hence by (1)

(15) G =221+ 0o(n Y],
n

where

(16) t2k.

From (1) and (15) we deduce that

0=x,,—x,,+ 0(n71).
Hence

(17) Xoo = Xge=>Tr=1.

(12), (16) and (17) show that r = k.

5,2. The proof of (2,1b). By (5,1a) we deduce

™ _sin (T - =1 — Xak+1 -1
x™, = sin (2 C,,“) =1 o [t + o(r~1)]
forn - + 0.

5,3. For the proof of (2,1a) see Remark 3,3.

6. PROOF OF (2,2b) AND (2,2c)

6,1. 1. Put Q,(x) = J,(x). Then by (3,5a)

1 — 4a?
(1) o) = () L 42
Put in (4,5¢) and (4,5g) '
(2) o= + )",
(3) Bi1) = w(t) = J .

where j is defined by (2,1a).

17



Let I, be defined by (4,6a) and a sufficiently large. It is easly to see from (3,4c)
and (1) that -

C) tel, = |B(1) < e;n™?.
Then by (4,5i) and (4,6d)

) xel, = |g(x)| < c;n™*

for in this case y, = c3n~2.

Denote by {{3}z=, the increasing sequence of all the zeros of J,(sin z).

By the theorem of Section 4,8 and by (5) we deduce that for every k = 1,2, ...
there exists an integer r > 0 such that

(6) ¢ = ’f—l— + 0(n~%).
By (5,1a) we have
() b= 2%+ 0(n"?).
n

From (6) and (7) it follows that

0 =x,, — X + O(n™").

Hence
Xgp =Xgp=>r=k
so that by (6)
®) G = iLk + 0(n~%).
2. Let Q,(x) = J,(x). Then
(9) x<’2k+1 = COS Ck = 1 - g + "g‘:' + 0("‘6)
’ 2 24
From (2) it is obvious that
(10) .
: . ;12 3
N RTNLEY L3 VAU N L2 L O N N CE Y 3\ SN
n . n? n n*] n?
-1 _a+ﬂ+1_(a+ﬂ+1)2+j_(cz+ﬂ+1)[2j+(a+ﬂ+1)2]+
n n? n®
+ 0(n™%).
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Further
(11) ntlyt=1-— Azt p+ 1) + 0(n~?).
n

From (8)—(11) we may deduce (2,2c).
As for (2,2b), see Remark 3,3.

7. PROOF OF THE INEQUALITIES IN SECTIONS 2,3; 2,4 AND 2,5

7,1. In the notations introduced in Section 2,3
(7.1a) zeJ, = c;n* < a,(z) < c,n®.
Proof. (7,1a) is a consequence of (3,5a), (3,5b). See also (3,7a).
7,2. Let z, and z, be defined by (2,3g). Then
1

(7,2a) (z,z2) e Jy=z; — 2y < et

Proof. Employing Sturm’s comparison theorem we obtain from the differential
euqgation y” + a,(z) y =0

6] z, — zy < msup a, Y3(z).

zeJn

Now, (7,2a) is a consequence of (1) and (7,1a).

7,3. In the notation of Section 2,3

o(®=2)=o(" -2
> 1 92 2

Here ¢, does not depend on z;, z; (i = 1, 2).

(132) [z, 23] < [z1, 22] = < c¢yn?a;®.

Proof. For brevity, put

&i=Z-—1z; (i=1,2).

T
2
From (2,3d) it follows

Now, (7,2a) yields

o) — o@s)] = o2 — 3] G+ ) orpos o n2ars
1 52
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7,4 According to the notation introduced in the preceding chapter
(7,4a) 8, = |y 13(z1) — ay Y3(z3)| < eyn”*(na,? + 1).
Proof. Making use of (7,3a), (3,5a) and (3,5b), we obtain .
loa(z1) — a(z2)] = |0(¢2) — e(¢h) + @i(82) — @ (&1)] < con(na,® + 1).
Further, it follows from (7,1a) and (7,2a) that

8n = |aal€1) — oa(€5)] [o(€1) o(€2)] ™2 [Voul€) + Voul(€2)] ™" <

< cyn Hna,? +1).

7,5. The proof of (2,3i).

Put .
s; = sup o, *(2), s, = inf o '3(2).

ze(z1,22) ze(z1,22)

Making use of Sturm’s comparison theorem, we deduce by the differential equation
(3,2b)
mS, < 2z, — zy < WSy .
Hence

1) z, — z; = sy + sy — 53)
where 9 € (0, 1). Put

(7,52) sy =, 3Hz) + 97, sy =0, %(zy) + 997, s — s = 9.
From (7,4a) it follows for i = 1,2,3
(2 |9 < esn~H(na, > + 1).

By (7,5a), (7,1a), (3,5a), (3,5b), (1) and (2) we deduce that
(7,56)  z, — z; = ma; P(z,) + 9 = mo™? (g - k1> + 0(n~?%) + 99
where 9 satisfies (2) for i = 4.

7.6 The proof of (2.5a). It follows from (3,5a) for the polynomials J,(x) that

2 o =13 ) 40

4¢?

Hence

) . 7—; —lel,=> Ia),,(C)I <cy.
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From (2) we deduce by a similar argument as in Section 7,4 that in this case

(3) 5, <cn a2+ nY),

where 6, is defined by (7,4a).
By (2) we deduce

(@) |90] < e;ntar® (i =1,2,3,4),
where 9{" is defined by equations (7,5a) and (7,5b). (2,5a) is a consequence of (7,5b)
and (2).

7,7. The proof of (2,4b).

(2,4b) is a consequence of (2,3h) and (2,3i) for

(zl, zz) c (— g, g - 6) = a;l/Z(zl) = i + O(n—Z)
and

a - P
d="=a,=06n=a,>=83%n"3.

n
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