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ON THE RELATION OF SOLUTIONS AND COEFFICIENTS 
OF LINEAR DIFFERENTIAL EQUATION 

Jiftf JARNfK, Praha 

(Received April 8, 1971) 

0. Let be given k functions 

(1) x1(t),x2(t),...,xk(t) 

with continuous derivatives up to the n-th order in the interval I = (a, b), k < n. 
Denote 

(xt(t), ...,xk{t) 
xi(t), . . . , x'k{t) (2) H(t) = 

tøГҶO. ...,^Г1\t)) 
for t e J and assume 

(3) rank H(t) = k 

for all t e J. The following theorem is proved in [1], p. 210 and in [2] by different 
methods: There is a differential equation 

(4) yin) + Pl(t) y<-» + ... + Pn.x(t) / + pn(t) y = 0 

with coefficients px(t),..., pn(t) continuous in I such that functions (1) are its solu­
tions. It can be easily verified step by step that the method presented in [2] (i.e., 
completing the family of functions (1) to a system of n functions whose wronskian 
is different from zero for all 1e1) yields all such equations. On the other hand, Ascoli 
in [1] constructs just one equation. It is the aim of this paper to show that by an 
obvious generalization of Ascoli's method it is possible to obtain again all the equa­
tions of the required properties provided there is no t'el such that x^\i) = 0 holds 
simultaneously for i = 1, 2,.. . , k. 

1. Theorem. Let functions (1) be defined and have continuous n-th derivative in the 
interval I = (a, b). For every t el let there exist i e (1,2,... , fc) such that x(/°(0 * 
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4= 0. Let (3) hold. Then functions (1) are solutions of equation (4) if and only if 
there exists a positive definite (n x n)-matrix A(t) defined and continuous for all 
tel so that 

(5) p = -AH(H*AH)~l xw 

where p = p(t) = (Pn(t), ..., Pi(*))> *°° = ^n\t) = (x[n)(t)9 ..., *<">(*)) and the 
asterisk denotes transposition of the matrix. (All vectors occuring in the paper are 
to be considered column vectors.) 

Remark 1. Matrix H*AH is obviously regular, even positive definite: 

(H*AHu9 u) = (AHu9 Hu) = (Av9 v) > 0 , v = Hw . 

Remark 2. Let us mention the relation of Theorem to the result of Ascoli [ l ] . 
If cp is the solution of H*Hcp = — x(w) (which is unique), then putting p = Hep we 
obtain an equation (4) with solutions (1). (This is Ascoli's result.) Taking the solution 
of H*AHcp = —x{n) instead, then p is expressed by (5). 

Proof. If (5) holds, then H*p = -x(n\ i.e. 

P**j + Pn-iX'j + . . . + P1X
if-1) = - x W 

for j = 1, 2 , . . . , fc. Hence functions (1) are solutions of (4). 

To prove that (5) is a necessary condition, let us establish 

2. Lemma. If w, v are n-vectors9 (w, v) > 0, then there is a symmetrical positive 
definite matrix A such that v = Au. 

Proof. Consider first n = 2, w = (wl5 0), v = (vl9 v2). By an elementary calcula­
tion we obtain from v = Au that 

(6) A -

with an arbitrary c. Since in this case (w, v) = uxvx > 0, det A = v^cju^ — (v2/w1)2, it 
is sufficient to choose c > ^ / (w^ i ) > 0 in order that the matrix A be positive 
definite. 

If now w, v are general n-vectors, then a rotation maps them onto vectors p = 
= (pl9 0 , . . . , 0), q = (ql9 ql9 0 , . . . , 0). The matrix B of the rotation is orthonormal 
i.e. B'1 = B* and hence (p9 q) = (Bu9 Bv) = (w, B*Bv) = (w, v) > 0. 
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According to the first part of the proof there is a symmetrical positive definite 
(2 x 2)-matrix C, q = Cp where p = (pu 0), q = (qu q2)- Put 

M = 

C 

0, 0, 

0, 0, 

0, 
0, 

. . . o 

... o 

D 

where D is an arbitrary symmetrical positive definite matrix of order n — 2. Then 
obviously q = Mp. As B"1 = 2?*, the matrix A = B~1MB = B*MB is symmetrical 
positive definite and v = Au which completes the proof. 

3. Proof of Theorem (continuation). Now let p(t) = (pn(t),..., Pi(t)) be the vector 
of coefficients of equation (4) which is satisfied by functions (1). We shall show that 
there is a matrix A with the required properties such that the equation 

(?) Hę = A- > 

has a solution and hence (5) holds. 
Denote by 3tf the space of all n-vectors H(t) <p(t) where cp(i) is an arbitrary k-vector. 

Obviously H*(t) p(t) = — x(n)(f) (cf. the preceding part of the proof). Hence p(t) is 
not orthogonal to Jf since 

(p9H<p) = (H*p,<p) = (-x<*\<p) 

and x(n) = xirt)(t) 4= 0. We can write p = { + rj where rj is orthogonal to jf and 
0 4= { G «5f is the orthogonal projection of p to ->f. Consequently 

(p, {) = ({, {)-+ (,, €) = ({,«) > o 

and according to Lemma there exists a positive definite matrix A = A(t) such that 
p = A£. Hence Ai""1;? e Jf which means that (7) has a solution cp = <p(f). It holds 
H*AHcp = H*p = -xin\ p = ^Hcp = -AH(H*AH)~X x(n) and (5) is established. 

It remains to prove that the matrix A(t) (which is not uniquely determined) may 
be chosen so that it is continuous in L Since the matrix H(t) is continuous in I, there 
exists a continuous basis of the space Jf. It is evident that the continuity of p(t) then 
implies the continuity of the projection £(t). 

From the proof of Lemma it is easy to see that the matrix A(t) mapping £(t) 
onto p(t) may now be chosen as a continuous function. In fact, this is obvious for the 
matrices B (representing a rotation) and D (which need not depend on t at all). The 
continuity of the matrix C follows from (6) and from the fact that ut(t) + 0. Hence 
the proof is complete. 
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Remark 3. If X("\T) = 0 for some x el and for all i = 1,2, ...,fc, then only those 
vectors p(t) satisfying p7(t) = 0, j = 1, 2,..., n can be written in the form (5) (with 
a positive definite matrix A). Particularly, if x^\t) = 0 in I, i = 1, 2,..., fc, then the 
single equation y{n) = 0 is obtained independently of the choice of the matrix A. 
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