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ON CUBES AND DICHOTOMIC TREES 

LADISLAV NEBESKÝ, Praha 

(Received December 20, 1972) 

The notion of the n-cube Qn (and other notions not defined here) can be found 
in BEHZAD and CHARTRAND [1] or in HARARY [2]. The complete dichotomic tree Dn 

can be defined as follows: if n = 1, then Dn is the complete bigraph K(l, 2); if n ^ 2, 
then Dn is the tree obtained from two disjoint copies Tand T of Dn^l and from 
a new vertex v in such a way that i1 is joined by one edge to the only vertex of degree 2 
of T and by another edge to the analogous vertex of T. Thus Dn has 2" vertices 
of degree 1, one vertex of degree 2, and 2n — 2 vertices of degree 3. The vertex of 
degree 2 of Dn will be referred to as its root. HAVEL and LIEBL [3] have proved that 
if n ^ 2, then Dn is a subgraph of Qn + 2 but Dn is not a subgraph of Qn+l. Obviously, 
Dt is a subgraph of Q2. 

If n ^ 1, then we denote by Dn the tree obtained from two disjoint copies of Dn 

in such a way that their roots are joined by an edge; this edge will be referred to as 

the axial edge of Dn. Obviously, Dn has 2"+2 — 2 vertices. Havel and Liebl [4] 

conjectured that Dn is a subgraph of Qn+2, for n ̂  1. In the present paper, this 
conjecture will be verified. 

We introduce the graphs Qj and Qn which are certain local modifications of Qn. 
Let n ^ 2; by QJ we denote the graph Qn + rt — s, where r, 5 and f are such vertices 
of QH that rs and st are distinct edges of Qn\ by Q^ we denote the graph Q„ — u — v9 

where u and t; are such vertices of Qn that uv is an edge of Qn. The first two theorems 
which will be proved in the present paper are: 

Theorem 1. Dn is a spanning subgraph of Qj+ 1, for n ^ 1. 

Theorem 2. Dn is a spanning subgraph of Qn+2, for n *> 1. 

Both theorems will be easily obtained from the following lemma. An edge of 
a tree Tincident with an end-vertex of Twill be referred to as an end-edge. Let n ^ 1. 
By 3n or Dn we denote the tree obtained from Dn by inserting two new vertices of 
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degree 2 into the axial edge or into one end-edge, respectively. The path of f)n obtained 

from the axial edge of Dn is referred to as the axial path of Dn. 

Lemma. Dn and Dn are spanning subgraphs of Qn+2,for n ^ 1. 

Proof. Obviously, the graphs DB, Dn and Qn+2 have the same number of vertices. 
Hence it is sufficient to prove that both Dn and Dn are subgraphs of Q„+2. 

Let m be a positive integer. We shall say that a tree T is m-valued if each edge 
of T is assigned a positive integer not exceeding m. As follows from the work of 
HAVEL and MORAVEK [5], a tree T is a subgraph of Qm if and only if T can be 
m-valued so that 

(1) for each path P of T9 there exists k such that precisely an odd number of edges 
belonging to P is assigned k. 

(Cf. also HLAVI£KA [6].) 

(A) We shall prove that f)n can be (n + 2)-valued so that (1) holds and that the 
edges of the axial path are assigned the integers 1, n + 1, and n -f 2 (in some order). 
The case n = 1 is obvious. The case n — 2 is given in Fig. 1. 

n-1 ^ 1 B n - 1 < > ! l = Л _ o — - — R, R 3 -^-O-^—O-^— R 3 

R 2 —O— O R2 " 4 O O H4 

Fig. 2. 

Let n = m ^ 3. Assume that for n = m — 2, the statement is proved. Consider 
four disjoint copies of f>n-2 which are n-valued so that (1) holds and that they can 
be expressed as in Fig. 2, where Rt and R't are n-valued copies of Dn_2. If we identify 
the root of each of the n-valued trees Rt and R[ with the vertex rt and rj, respectively, 
in Fig. 3, we obtain an (n + 2)-valued tree Dn. Obviously, the edges of the axial 
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path are assigned 1, n + 1, and n + 2. It is routine to prove that this valuation 
fulfils (1). 

(B) Let n <£ 1; by D* we denote the tree obtained from Dn by inserting two new 
vertices of degree 2 into one end-edge of Dn9 the vertex of D* obtained from the 
root of Dn will be referred td as the root of D*. We shall prove that Dn can be (n + 2)-
valued so that (1) holds. The case n = 1 is obvious. Let n = m ^ 2. Assume that 

for n = m — 1, the statement is proved. Consider disjoint f)n-1 and £)„_! which 
are (n + l)-valued so that (1) holds and that they can be expressed as in Fig. 4, 
where Tl9 T[ and T2 are (n + 1)-valued copies of Dn„l9 and T2 is an (n + l)-valued 
copy of D*-x. Join the root of T2 by an edge assigned n + 2 to the vertex f2 and the 
root of JTJ by an edge assigned n + 2 to the vertex fi (see Fig. 5). Thus we obtain Dn 

which is (n + 2)-valued such that (1) holds. Hence the lemma follows. 

n 

г 2 — - — т 2 

Fig. 4. 

2Î-HЭ—L-<vJ-ŁX. 

П+2 П+2 

T 2 T 2 

Fig. 5. 

Proof of Theorem 1. The case n = 1 is obvious. Let n ^ 2 and let f, w, t; and w 
be such vertices of Dn_t that fM, uv and vw are the edges of the axial path. Then 
Dn = /)„_! + ww — v. Thus the lemma implies the theorem. 

Proof of Theorem 2 directly follows from the lemma. 

Corollary. Dn is a subgraph of Qn+29for n ^ 1. 

Let n —• 2. By 5,, we denote the tree obtained from disjoint Dn-1 and Dn by joining 

their roots by an edge. As Dn is a subgraph of Dn9 it is also a subgraph of Q„+2-
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It has been pointed out by Havel and Liebl [4] that the trees Dn and Dn are useful 
for a study of trees with the maximum degree 3. 

Theorem 3. Let T be a tree with the diameter d ^ 2 and with the maximum 
degree 3. Then Tis a subgraph of 2w/2]+2-

Proof. The case d = 2 is obvious. Let d = 2n, n _ 2; it is easily seen that T 
is a subgraph of Dn and thus Tis a subgraph of Qn+2. Let d = 2n + 1, n = 1; then T 

is a subgraph of D„ and thus Tis a subgraph of Qn+2. Hence the theorem follows. 
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