Ladislav Nebeský
On cubes and dichotomic trees

Persistent URL: http://dml.cz/dmlcz/117839

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project [DML-CZ: The Czech Digital Mathematics Library](http://project.dml.cz)
ON CUBES AND DICHOTOMIC TREES

LADISLAV NEBESKÝ, Praha
(Received December 20, 1972)

The notion of the n-cube Q_n (and other notions not defined here) can be found in BEHZAD and CHARTRAND [1] or in HARARY [2]. The complete dichotomic tree D_n can be defined as follows: if $n = 1$, then D_n is the complete bigraph $K(1, 2)$; if $n \geq 2$, then D_n is the tree obtained from two disjoint copies T and T' of D_{n-1} and from a new vertex v in such a way that v is joined by one edge to the only vertex of degree 2 of T and by another edge to the analogous vertex of T'. Thus D_n has 2^n vertices of degree 1, one vertex of degree 2, and $2^n - 2$ vertices of degree 3. The vertex of degree 2 of D_n will be referred to as its root. HAVEL and LIEBL [3] have proved that if $n \geq 2$, then D_n is a subgraph of Q_{n+2} but D_n is not a subgraph of Q_{n+1}. Obviously, D_1 is a subgraph of Q_2.

If $n \geq 1$, then we denote by \tilde{D}_n the tree obtained from two disjoint copies of D_n in such a way that their roots are joined by an edge; this edge will be referred to as the axial edge of \tilde{D}_n. Obviously, \tilde{D}_n has $2^{n+2} - 2$ vertices. Havel and Liebl [4] conjectured that \tilde{D}_n is a subgraph of Q_{n+2}, for $n \geq 1$. In the present paper, this conjecture will be verified.

We introduce the graphs Q_n^v and Q_n^r, which are certain local modifications of Q_n. Let $n \geq 2$; by Q_n^v we denote the graph $Q_n + rt - s$, where r, s, and t are such vertices of Q_n that rs and st are distinct edges of Q_n; by Q_n^r we denote the graph $Q_n - u - v$, where u and v are such vertices of Q_n that uv is an edge of Q_n. The first two theorems which will be proved in the present paper are:

Theorem 1. D_n is a spanning subgraph of Q_{n+1}^v, for $n \geq 1$.

Theorem 2. \tilde{D}_n is a spanning subgraph of Q_{n+2}^r, for $n \geq 1$.

Both theorems will be easily obtained from the following lemma. An edge of a tree T incident with an end-vertex of T will be referred to as an end-edge. Let $n \geq 1$. By \tilde{D}_n or \tilde{D}_n we denote the tree obtained from D_n by inserting two new vertices of
degree 2 into the axial edge or into one end-edge, respectively. The path of \(\tilde{D}_n \) obtained from the axial edge of \(\tilde{D}_n \) is referred to as the axial path of \(\tilde{D}_n \).

Lemma. \(\tilde{D}_n \) and \(\tilde{D}_n \) are spanning subgraphs of \(Q_{n+2} \), for \(n \geq 1 \).

Proof. Obviously, the graphs \(\tilde{D}_n, \tilde{D}_n \) and \(Q_{n+2} \) have the same number of vertices. Hence it is sufficient to prove that both \(\tilde{D}_n \) and \(\tilde{D}_n \) are subgraphs of \(Q_{n+2} \).

Let \(m \) be a positive integer. We shall say that a tree \(T \) is \(m \)-valued if each edge of \(T \) is assigned a positive integer not exceeding \(m \). As follows from the work of
\textsc{Havel} and \textsc{Morávek} [5], a tree \(T \) is a subgraph of \(Q_m \) if and only if \(T \) can be \(m \)-valued so that

(1) for each path \(P \) of \(T \), there exists \(k \) such that precisely an odd number of edges belonging to \(P \) is assigned \(k \).

(Cf. also \textsc{Hlavíčka} [6].)

(A) We shall prove that \(\tilde{D}_n \) can be \((n + 2) \)-valued so that (1) holds and that the edges of the axial path are assigned the integers 1, \(n + 1 \), and \(n + 2 \) (in some order).

The case \(n = 1 \) is obvious. The case \(n = 2 \) is given in Fig. 1.

![Fig. 1.](image)

Let \(n = m \geq 3 \). Assume that for \(n = m - 2 \), the statement is proved. Consider four disjoint copies of \(\tilde{D}_{n-2} \) which are \(n \)-valued so that (1) holds and that they can be expressed as in Fig. 2, where \(R_i \) and \(R'_i \) are \(n \)-valued copies of \(D_{n-2} \). If we identify the root of each of the \(n \)-valued trees \(R_i \) and \(R'_i \) with the vertex \(r_i \) and \(r'_i \), respectively, in Fig. 3, we obtain an \((n + 2) \)-valued tree \(\tilde{D}_n \). Obviously, the edges of the axial

![Fig. 2.](image)
path are assigned 1, \(n + 1 \), and \(n + 2 \). It is routine to prove that this valuation fulfils (1).

(B) Let \(n \geq 1 \); by \(D^*_n \) we denote the tree obtained from \(D_n \) by inserting two new vertices of degree 2 into one end-edge of \(D_n \); the vertex of \(D^*_n \) obtained from the root of \(D_n \) will be referred to as the root of \(D^*_n \). We shall prove that \(D_n \) can be \((n + 2)\)-valued so that (1) holds. The case \(n = 1 \) is obvious. Let \(n = m \geq 2 \). Assume that for \(n = m - 1 \), the statement is proved. Consider disjoint \(D_{n-1} \) and \(D_{n-1} \) which are \((n + 1)\)-valued so that (1) holds and that they can be expressed as in Fig. 4, where \(T_1 \) and \(T_2 \) are \((n + 1)\)-valued copies of \(D_{n-1} \), and \(T'_2 \) is an \((n + 1)\)-valued copy of \(D^*_{n-1} \). Join the root of \(T_2 \) by an edge assigned \(n + 2 \) to the vertex \(t_2 \) and the root of \(T'_2 \) by an edge assigned \(n + 2 \) to the vertex \(t'_2 \) (see Fig. 5). Thus we obtain \(D_n \) which is \((n + 2)\)-valued such that (1) holds. Hence the lemma follows.

Proof of Theorem 1. The case \(n = 1 \) is obvious. Let \(n \geq 2 \) and let \(t, u, v \) and \(w \) be such vertices of \(D_{n-1} \) that \(tu, uv \) and \(vw \) are the edges of the axial path. Then \(D_n = D_{n-1} + uw - v \). Thus the lemma implies the theorem.

Proof of Theorem 2 directly follows from the lemma.

Corollary. \(D_n \) is a subgraph of \(Q_{n+2} \), for \(n \geq 1 \).

Let \(n \geq 2 \). By \(D_n \) we denote the tree obtained from disjoint \(D_{n-1} \) and \(D_n \) by joining their roots by an edge. As \(D_n \) is a subgraph of \(D_n \), it is also a subgraph of \(Q_{n+2} \).
It has been pointed out by Havel and Liebl [4] that the trees D_n and \tilde{D}_n are useful for a study of trees with the maximum degree 3.

Theorem 3. Let T be a tree with the diameter $d \geq 2$ and with the maximum degree 3. Then T is a subgraph of $Q_{\lfloor d/2 \rfloor + 2}$.

Proof. The case $d = 2$ is obvious. Let $d = 2n$, $n \geq 2$; it is easily seen that T is a subgraph of D_n and thus T is a subgraph of Q_{n+2}. Let $d = 2n + 1$, $n \geq 1$; then T is a subgraph of \tilde{D}_n and thus T is a subgraph of Q_{n+2}. Hence the theorem follows.

References

Author's address: 116 38 Praha 1, nám. Krasnoarmějců 2 (Filosofická fakulta Karlovy university).