Irena Rachůnková
On algebraic properties of dispersions of the 3rd and 4th kind of the differential equation $y'' = q(t)y$

Časopis pro pěstování matematiky, Vol. 100 (1975), No. 1, 15--26

Persistent URL: http://dml.cz/dmlcz/117864

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ON ALGEBRAIC PROPERTIES OF DISPERSIONS OF THE 3RD AND 4TH KIND OF THE DIFFERENTIAL EQUATION $y'' = q(t) y$

IRENA RACHŮNKOVÁ, Olomouc
(Received March 27, 1973)

Academician O. BORŮVKA introduced in [1] the definitions and established properties of general dispersions, giving a characterization of dispersions of the 1st, 2nd, 3rd and 4th kind as well as of central dispersions. Further he studied the sets of dispersions of the 1st and 2nd kind.

The subject of the present paper was suggested by Professor M. LAITOCH who directed my attention to the possibility of a parallel study of the 3rd and 4th kind dispersion sets.

The opening part establishes a representation of the 3rd kind dispersions by means of unimodular matrices.

In the second part we define equivalence relations \sim and \approx in the 3rd kind dispersion set D_3:

$X_3 \sim Y_3$ if and only if there exists $\varphi \in C_1$ such that $X_3 \varphi = Y_3$, where C_1 is the group of central dispersions of the 1st kind, $X_3, Y_3 \in D_3$;

$X_3 \approx Y_3$ if and only if there exists $\xi \in C_3$ such that $X_3 \xi = Y_3$ and at the same time $Y_3 \in C_3$.

The relations turn out to be the same and hence the decompositions D_3/\sim and D_3/\approx coincide. Hence, for any coset $\mathcal{X}_3 \in D_3/\sim$ we can uniquely determine a coset $\mathcal{X}_1 \in D_1/C_1$ by $\mathcal{X}_3 = \mathcal{X}_3 C_1 = C_3 \mathcal{X}_1$. Moreover, any dispersions $X_1 \in \mathcal{X}_1$ and $X_3 \in \mathcal{X}_3$ satisfy $X_3 = X_3 C_1 = C_3 X_1$.

In the next part we show the existence of a 1–1 mapping of the set D_3/\sim onto the factor group $L/[\mathbb{E}, \mathbb{E}]$. (Any coset $\mathcal{X}_3 \in D_3/\sim$ is associated with a couple of unimodular matrices $\{C, -C\}$). Further, $\mathcal{X}_3 \mathcal{B}_1 = \mathcal{B}_3 \mathcal{X}_1 = \mathcal{B}_3$, where $\mathcal{B}_3(\mathcal{B}_1)$ is the set (the group) of the 3rd kind (the 1st kind) direct dispersions and \mathcal{X}_3 is an arbitrary element in \mathcal{B}_3, $\mathcal{X}_1 \in \mathcal{B}_1$.

The concluding part of the paper is devoted to transferring the results proved for the dispersions of the 3rd kind to the case of the dispersions of the 4th kind.
Basic concepts and relations. \((q)\) will always denote an ordinary linear differential equation of the 2nd order in the real domain \(y'' = q(t) y\), where \(q(t) \in C^2_j (j = (a, b)\) is an open definition interval) and \(q(t) < 0\) for every \(t \in j\); the differential equation \((q)\) will be always assumed oscillatory in \((a, b)\), that is, the integrals of this equation vanish infinitely many times in both directions towards the endpoints \(a, b\) of the interval \((a, b)\). \((q_1)\) will always denote the associated equation of \((q)\). (See [1].) The integral space (i.e., the space of all solutions) of the differential equation \((q)\), \((q_1)\) will be denoted by \(R, R_1\), respectively. The concepts not defined in this paper were adopted from [1].

1. DISPERSIONS OF THE 3RD KIND

Representation by means of unimodular matrices. Let \(X_3 \in D_3\) be an arbitrary dispersion of the 3rd kind, \(D_3\) the set of all dispersions of the 3rd kind. Choose a basis \((U_1, V_1)\) of the integral space \(R_1\) and denote its Wronskian by \(W_1\); let \(u(t), v(t)\) be the functions

\[
(1) \quad u(t) = \frac{U_1[X_3(t)]}{\sqrt{|X_3'(t)|}}, \quad v(t) = \frac{V_1[X_3(t)]}{\sqrt{|X_3'(t)|}}.
\]

By [1, § 20, 6.3], the functions \(u(t), v(t)\) are linearly independent integrals of \((q)\) and thus they form a basis of the integral space \(R\). Their Wronskian \(w\) satisfies

\[
(2) \quad w = W_1 \cdot \text{sgn} X_3'.
\]

By [1, § 1, 9] there exists exactly one integral \(y\) of \((q)\) for each integral \(y_1\) of differential equation \((q_1)\) such that

\[
(3) \quad y_1(t) = \frac{y(t)}{\sqrt{|q(t)|}}.
\]

Consequently, it is possible to determine exactly one basis \((U, V)\) of \(R\) for the basis \((U_1, V_1)\) of \(R_1\) such that the corresponding functions \(U, U_1\) and \(V, V_1\) satisfy (3). The bases \((u, v), (U, V)\) of the same space \(R\) are connected in the following way

\[
(4) \quad u(t) = c_{11} U(t) + c_{12} V(t), \quad v(t) = c_{21} U(t) + c_{22} V(t)
\]

and hence

\[
(5) \quad w = W \cdot \text{det } C,
\]

where \(w\) and \(W\) are the Wronskians of the bases \((u, v)\) and \((U, V)\), respectively. Further,

\[
W_1 = \begin{vmatrix} U_1 & V_1 \\ U_1' & V_1' \end{vmatrix} = (U'V - UV') \cdot \text{sgn } q = W.
\]
Now by (5),

\[(6) \quad w = W_1 \cdot \det C\]

and (2) and (6) imply

\[(7) \quad \det C = \text{sgn} X_3.\]

Therefore the matrix \(C\) is unimodular.

Theorem 1.1. For any dispersion \(X_3 \in D_3\), the unimodular matrix \(C\) is uniquely determined by (4).

The theorem results from the above consideration.

Theorem 1.2. For any unimodular matrix, there exists at least one dispersion of the 3rd kind associated with it through the relations (4) and (1).

Proof. Let \(C = \|c_{ik}\|\) be an arbitrary unimodular matrix. Let us consider the integral \(c_{21} U + c_{22} V\) and let \(t_0\) be its arbitrary zero point. Let \(T_0\) be a zero point of the integral \(V_1\), such that

\[(8) \quad \text{sgn} U_1(T_0) = \text{sgn} (c_{11} U(t_0) + c_{12} V(t_0)),\]

where \(U(t), V(t)\) is a basis of \(R\), \(U_1(t), V_1(t)\) is the basis of \(R_1\) such that

\[U_1(t) = \frac{U'(t)}{\sqrt{|q|}}, \quad V_1(t) = \frac{V'(t)}{\sqrt{|q|}}.\]

Let us consider the linear mapping \(p\)

\[p = \left[u(t) \to U_1(t), \quad v(t) \to V_1(t)\right],\]

where \(u(t) = c_{11} U(t) + c_{12} V(t), \quad v(t) = c_{21} U(t) + c_{22} V(t)\). This mapping is normalized with respect to \(t_0, T_0\) and thus uniquely determines the dispersion \(X_3 \in D_3\).

(See [1, § 20,2].) Further,

\[\chi_p = \frac{\det C \cdot W}{W_1} = \frac{\det C \cdot W}{W} = \det C = \pm 1,\]

where \(\chi_p\) is the characteristic of the linear mapping \(p\). Hence by [1, § 20, 6 (17)] we have for any \(Y_1 \in R_1,\)

\[\frac{Y_1[X_3(t)]}{\sqrt{|X_3(t)|}} = \pm y\]
where \(y \in \mathbb{R} \) and \(Y_1 = py \). The sign \(+\) or \(-\) does not depend on the choice of the integral \(Y_1 \). Therefore by (7)

\[
\frac{U_1[X_3(t)]}{\sqrt{|X_3(t)|}} = +u(t) = c_{11} U(t) + c_{12} V(t),
\]

\[
\frac{V_1[X_3(t)]}{\sqrt{|X_3(t)|}} = +v(t) = c_{21} U(t) + c_{22} V(t).
\]

The dispersion \(X_3(t) \) is associated with the matrix \(\mathbf{C} \) in the required manner.

The decomposition of the set \(D_3 \) **determined by the equivalence relation** \(\sim \) **or** \(\approx \). Now we shall introduce the relation \(\sim \) in the dispersion set \(D_3 \) as follows:

Let \(C_1 \) be the group of central dispersions of the first kind, \(X_3, Y_3 \) arbitrary dispersions of the 3rd kind of \(D_3 \).

(9) \(X_3 \sim Y_3 \) iff there exists \(\varphi_v \in C_1 \) such that \(X_3 \varphi_v = Y_3 \).

Theorem 1.3. The relation (9) is an equivalence relation on the set \(D_3 \).

Proof. Let \(X_3, Y_3, Z_3 \) be arbitrary dispersions in \(D_3 \). Since there exists a dispersion \(\varphi_0(t) = t \in C_1 \) such that \(X_3 \varphi_0 = X_3 \), it holds \(X_3 \sim X_3 \) for each \(X_3 \in D_3 \). Let \(X_3 \sim Y_3 \). Then \(X_3 \varphi_v = Y_3 \), \(X_3 \varphi_v \varphi_{-v} = Y_3 \varphi_{-v} \) and hence \(Y_3 \varphi_{-v} = X_3 \). Thus \(Y_3 \sim X_3 \). Let \(X_3 \sim Y_3 \) and \(Y_3 \sim Z_3 \). Then \(X_3 \varphi_v = Y_3 \) and \(Y_3 \varphi_{-v} = Z_3 \). Therefore \(X_3 \varphi_v \varphi_{-v} = Y_3 \varphi_{-v} = = Z_3 \). Then \(X_3 \sim Z_3 \).

Theorem 1.4. The relation (9) forms a decomposition \(D_3/\sim \). The set \(C_3 \) of all central dispersions of the 3rd kind forms exactly one coset of \(D_3/\sim \).

Proof. a) Any central dispersion \(\chi_v \in C_3 \) \((v = \pm 1, \pm 2, ...) \) can be expressed (see [1, § 12.4 (7)]) in the following manner:

\[\chi_n = \chi_1 \varphi_{n-1}, \quad \chi_{-n} = \chi_1 \varphi_{-n}, \quad n = 1, 2, \ldots. \]

This implies that any central dispersion \(\chi_v \) \((v = \pm 1, \pm 2, ...)\) and the dispersion \(\chi_1 \) are equivalent (in equivalence \(\sim \)) and thus all dispersions \(\chi_v \) belong to the same coset of \(D_3/\sim \).

b) If a dispersion \(X_3 \) and an arbitrary central dispersion \(\chi_v \) are equivalent, then \(X_3 \) is also a central dispersion. Indeed, in this case \(X_3 \varphi_v = \chi_v \), \(X_3 \varphi_v \varphi_{-v} = \chi_v \varphi_{-v} \) and therefore \(X_3 = \chi_v \in C_3 \).

Corollary 1.1. Let \(\mathcal{X}_3 \) be an arbitrary equivalence coset of \(D_3/\sim \). Then \(\mathcal{X}_3 = X_3 C_1 \), where \(X_3 \) is a dispersion in the coset \(\mathcal{X}_3 \). Also \(X_3 C_1 = \mathcal{X}_3 C_1 \).
Let us now consider the group D_1 of the first kind dispersions and its cyclic subgroup S_1 of central dispersions with an even index. The latter one is a normal subgroup of D_1. The factor group D_1/S_1 and the group L of all unimodular matrices of the 2nd order are isomorphic. (See [1, § 21.6].) Let

$$\varphi : D_1/S_1 \to L$$

be the isomorphism considered in [1]. In this isomorphism the group S_1 (the set S_1 of the first kind central dispersions with an odd index) and the unity matrix E (the matrix $-E$) correspond to each other. $S_1 \cup \bar{S}_1 = C_1$ is the group of the first kind central dispersions and it is also a cyclic subgroup of the group D_1. (See [1, § 21.6].)

Let us now consider the induced isomorphism

$$\{S_1, \bar{S}_1\} \to \{E, -E\}$$

between two-element subgroups $\{S_1, \bar{S}_1\}$ and $\{E, -E\}$ of the groups D_1/S_1 and L, respectively. Since $\{E, -E\}$ is a normal subgroup of L, $\{S_1, \bar{S}_1\}$ is a normal subgroup of D_1/S_1 and the relative factor groups are isomorphic:

$$\varphi' : (D_1/S_1)/\{S_1, \bar{S}_1\} \to L/\{E, -E\}.$$

Furthermore, for arbitrary $\mathcal{X}_1 \in D_1/S_1$, $\mathcal{X}_1 \cdot \{S_1, \bar{S}_1\} = \{S_1, \bar{S}_1\} \cdot \mathcal{X}_1$ and hence $\mathcal{X}_1 \bar{S}_1 = S_1 \mathcal{X}_1$, where $S_1 \in \{S_1, \bar{S}_1\}$. Thus, for arbitrary $X_1 \in \mathcal{X}_1$ and $\varphi_\sigma \in S_1$, there exists $\varphi_\mu \in S_1$ and $\mathcal{X}_1' \in \mathcal{X}_1$ such that $X_1 \varphi_\sigma = \varphi_\mu \mathcal{X}_1'$. Since $X_1, \mathcal{X}_1' \in \mathcal{X}_1$, there exists $\varphi_\nu \in S_1$ such that $\mathcal{X}_1 = \mathcal{X}_1' \mathcal{X}_1$. Hence $X_1 \varphi_\sigma = \varphi_\mu \varphi_\nu X_1$ and $X_1 C_1 \subseteq C_1 X_1$. The converse relation $X_1 C_1 \supseteq C_1 X_1$ can be proved by analogy. Consequently, it holds $X_1 C_1 = C_1 X_1$. Since C_1 is a normal subgroup of D_1, we can form the factor group D_1/C_1. Any two elements $X_1, Y_1 \in D_1$ belong to the same coset of D_1/C_1 if and only if $X_1 \sim Y_1$, i.e., if there exists $\varphi_\nu \in C_1$ such that $X_1 = Y_1 \varphi_\nu$. Let

$$\alpha : D_1/S_1 \to D_1/C_1$$

be a mapping of the factor group D_1/S_1 onto the factor group D_1/C_1 such that each coset $X_1 C_1 \in D_1/C_1$ is mapped onto the coset $X_1 S_1 \in D_1/S_1$. Thus $\alpha(X_1 S_1) = X_1 C_1$.

Lemma 1.1. The mapping $\alpha : D_1/S_1 \to D_1/C_1$ is a homomorphism. The kernel of this homomorphism is the two-element subgroup $\{S_1, \bar{S}_1\}$ to which the element $C_1 \in D_1/C_1$ corresponds.

Proof. Let $X_1 S_1, Y_1 S_1$ be arbitrary elements in the group D_1/S_1. Then $\alpha(X_1 S_1, Y_1 S_1) = \alpha(X_1 Y_1 S_1, \bar{S}_1) = \alpha(X_1 Y_1 S_1) = X_1 Y_1 C_1 = X_1 Y_1 C_1 C_1 = X_1 C_1 Y_1 C_1 = \alpha(X_1 S_1) \cdot \alpha(Y_1 S_1)$. Thus α is a homomorphism. Further $\alpha(S_1) = C_1, \alpha(\bar{S}_1) = \alpha(\varphi_\sigma S_1) = \varphi_\sigma C_1 = C_1$ where σ is an odd integer. If $\alpha(\mathcal{X}_1) = C_1$ for a coset $\mathcal{X}_1 \in D_1/S_1$, then $\mathcal{X}_1 = X_1 S_1$ where $X_1 \in \mathcal{X}_1$ implies $C_1 = \alpha(\mathcal{X}_1) = \alpha(X_1 S_1) = X_1 C_1$. Thus $X_1 \in C_1$ and hence either $X_1 S_1 = S_1$ or $X_1 S_1 = \bar{S}_1$. 19
Remark 1.1. According to Lemma 1.1, there exists an isomorphism
\[\tau : D_1/C_1 \rightarrow (D_1/S_1)/(S_1, S_1). \]
If we now compose the isomorphisms \(\tau \) and \(\varphi' \) we obtain an isomorphism
\[\varphi' \tau : D_1/C_1 \rightarrow L/[E, -E]. \]
Clearly \(\varphi'(C_1) = \{E, -E\} \). Also for any element \(X_1C_1 \in D_1/C_1 \), \(\varphi'(X_1C_1) = \{C, -C\} \) where \(C \) is a matrix in \(L \) such that \(\varphi(X_1S_1) = C \). (\(\varphi \) is the above described isomorphism \(D_1/S_1 \rightarrow L \)).

Now, let us return to the set \(D_3 \) and the equivalence relation (9).

Lemma 1.2. For each dispersion of the 3rd kind \(X_3 \in D_3 \) and for each central dispersion \(\chi_\varphi \in C_3 \) there exists a dispersion of the first kind \(X_1 \in D_1 \) such that
\[X_3 = \chi_\varphi X_1. \]

Proof. For each central dispersion of the 3rd kind \(\chi_\varphi(\varphi = \pm 1, \pm 2, \ldots) \) there exists a central dispersion of the 4th kind \(\omega_{-\varphi} \in C_4 \) such that \(\omega_{-\varphi} \chi_\varphi = \chi_\varphi \omega_{-\varphi} = \varphi_0(t) = t \).

(See [1, § 12, 4 (6)].) Consider now the function \(\omega_{-\varphi}X_3 \), where \(\omega_{-\varphi} \in C_4 \) and \(X_3 \in D_3 \). Then by [1, § 21, 8] \(\omega_{-\varphi}X_3 \in D_1 \) and there exists \(X_1 \in D_1 \) such that \(X_1 = \omega_{-\varphi}X_3 \). Also \(\chi_\varphi X_1 = \chi_\varphi \omega_{-\varphi}X_3 = \varphi_0X_3 = X_3 \) and hence \(X_1 \in D_1 \) satisfies the equality (10).

Lemma 1.3. If two different central dispersions of the 3rd kind \(\chi_\alpha, \chi_\sigma \in C_3 \) fulfil \(X_3 = \chi_\varphi X_1, X_3 = \chi_\sigma Y_1 \), then \(X_1 = Y_1 \varphi_\varphi \) and thus \(X_1, Y_1 \) lie in the same coset of the factor group \(D_1/C_1 \).

Proof. It holds \(\chi_\varphi \sim \chi_\sigma \). \(\chi_\varphi = \chi_\sigma \varphi_\varphi \) where \(\varphi_\varphi \in C_1 \). From \(\chi_\sigma Y_1 = \chi_\varphi \) it follows that \(\chi_\varphi Y_1 = \chi_\sigma \varphi_\varphi X_1 \) and hence \(\omega_{-\sigma}X_1 = \omega_{-\sigma}X_1 \varphi_\varphi X_1 \). Therefore \(Y_1 = \varphi_\varphi X_1 \) and also \(X_1 = Y_1 \varphi_\varphi \).

Corollary 1.2. For each dispersion of the 3rd kind \(X_3 \in D_3 \) there exists a dispersion of the 1st kind \(X_1 \in D_1 \) such that \(X_3 \in C_3X_1 \). Thus, for each dispersion \(X_3 \) there exists exactly one coset \(\mathcal{X}_1 = X_1C_1 \) of the factor group \(D_1/C_1 \) such that \(X_3 \in C_3\mathcal{X}_1 \). Consequently, \(C_3X_1 = C_3\mathcal{X}_1 \) holds.

We shall now introduce a binary relation \(\approx \) in the set \(D_3 \) as follows:
\[X_3 \approx Y_3 \iff \text{there exists } \mathcal{X}_1 \in D_1/C_1 \text{ such that } X_3 \in C_3\mathcal{X}_1 \text{ and at the same time } Y_3 \in C_3\mathcal{X}_1. \]

Theorem 1.5. The relation (11) is an equivalence relation in the set \(D_3 \).

Proof. By Corollary 1.2, \(X_3 \approx X_3 \) holds for each \(X_3 \in D_3 \). Now let \(X_3 \approx Y_3 \). Then there exists a coset \(\mathcal{X}_1 \in D_1/C_1 \) such that \(X_3 \in C_3\mathcal{X}_1 \) and \(Y_3 \in C_3\mathcal{X}_1 \). Therefore
For each coset $\mathcal{X}_3 \in D_3/\sim$ there exists exactly one coset $\mathcal{X}_1 \in D_1/C_1$ such that

$$\mathcal{X}_3 = \mathcal{X}_1 C_1 = C_3\mathcal{X}_1.$$

Proof. By Corollaries 1.1 and 1.2 it holds $X_3 C_1 = \mathcal{X}_3 C_1$ and $C_3 X_1 = C_3\mathcal{X}_1$. Herefrom and by (12) we have (13). Let us now consider a coset $\mathcal{X}_3 \in D_3/\sim$. Let $\mathcal{X}_3 = C_3 Y_3$, where $Y_3 \in D_1$. Then $Y_3 \sim X_1$ and therefore $Y_3 \in \mathcal{X}_1$ and for a coset \mathcal{X}_3, the coset \mathcal{X}_1 is uniquely determined. The converse is evident.

The properties of the factor set \mathcal{D}_3 and the factor groups \mathcal{G} and \mathcal{D}_1. Let us denote the factor set D_3/\sim by \mathcal{D}_3, the group D_1/C_1 by \mathcal{D}_1 and the group $L/\{E, -E\}$ by \mathcal{G}. On the basis of the results contained in the preceding part we can express the following

Theorem 1.6. Two arbitrary dispersions of the 3rd kind $X_3, Y_3 \in D_3$ fulfill $X_3 \sim Y_3$ if and only if $X_3 \approx Y_3$.

Proof. a) Let $X_3 \approx Y_3$. Then there exists $\mathcal{X}_1 \in D_1/C_1$ such that $X_3 \in C_3\mathcal{X}_1$ and $Y_3 \in C_3\mathcal{X}_1$. Let also $Y_3 \approx Z_3$. Then there exists $\mathcal{Y}_1 \in D_1/C_1$ such that $Y_3 \in C_3\mathcal{Y}_1$ and $Z_3 \in C_3\mathcal{Y}_1$. From $Y_3 \in C_3\mathcal{X}_1$ and $Y_3 \in C_3\mathcal{Y}_1$ it follows (by Lemma 1.3) that there exists $\varphi_v \in C_1$ such that $X_1 = Y_1 \varphi_v$ and hence $\mathcal{X}_1 = \mathcal{Y}_1$. Herefrom $X_3 \approx Z_3$.

b) Let $X_3 \sim Y_3$. Then there exists φ_v such that $X_3 \varphi_v = Y_3$. By Corollary 1.2 there exists a coset $\mathcal{X}_1 \in D_1/C_1$ such that $X_3 \in C_3\mathcal{X}_1$. So $X_3 = \chi X_1$ where $\chi \in C_3$ and $X_1 \in \mathcal{X}_1$. Then $Y_3 = X_3 \varphi_v = \chi \varphi_v X_1$. Thus $Y_3 \in C_3\mathcal{X}_1$ and therefore $X_3 \approx Y_3$.

Hence the decompositions D_3/\sim and D_3/\approx coincide.

Let us recall that if we consider an arbitrary dispersion $X_3 \in D_3$ and compose it with all central dispersions of the 1^st kind (i.e., with dispersions from C_1) we obtain exactly one coset $\mathcal{X}_3 \in D_3/\sim$. Thus $\mathcal{X}_3 \equiv X_3 C_1$, where $X_3 \in \mathcal{X}_3$. (See Corollary 1.1.)

Theorem 1.7. Let X_3 be an arbitrary dispersion in D_3 and let $\mathcal{X}_3 = X_3 C_1$ be a coset of D_3/\sim. If we compose a dispersion $X_1 \in D_1$ associated with X_3 by (10) with all central dispersions of the 3rd kind (i.e., with dispersions in C_3) we obtain exactly one coset $\mathcal{X}_3 \in D_3/\sim$. Thus $\mathcal{X}_3 \equiv C_3 X_1$ and

$$C_3 X_1 = X_3 C_1 = \mathcal{X}_3.$$

Proof. This theorem is an immediate consequence of those above.

Theorem 1.8. For each coset $\mathcal{X}_3 \in D_3/\sim$ there exists exactly one coset $\mathcal{X}_1 \in D_1/C_1$ such that

$$\mathcal{X}_3 = \mathcal{X}_1 C_1 = C_3\mathcal{X}_1.$$

Proof. By Corollaries 1.1 and 1.2 it holds $X_3 C_1 = \mathcal{X}_3 C_1$ and $C_3 X_1 = C_3\mathcal{X}_1$. Herefrom and by (12) we have (13). Let us now consider a coset $\mathcal{X}_3 \in D_3/\sim$. Let $\mathcal{X}_3 = C_3 Y_3$, where $Y_3 \in D_1$. Then $Y_3 \sim X_1$ and therefore $Y_3 \in \mathcal{X}_1$ and for a coset \mathcal{X}_3, the coset \mathcal{X}_1 is uniquely determined. The converse is evident.

Theorem 1.9. Let $\mathcal{X}_3 \in D_3/\sim$. Then there exists $\mathcal{X}_1 \in D_1/C_1$ such that $X_3 \in C_3\mathcal{X}_1$ and $Y_3 \in C_3\mathcal{X}_1$. Hence the decompositions D_3/\sim and D_3/\approx coincide.
Theorem 1.9. There exists a 1-1 mapping

\[\beta : \mathcal{D}_3 \to \mathcal{L} \]

given in the following way: For each \(X_3 \in \mathcal{D}_3 \), \(\beta(X_3) = \{ C, -C \} \) where \(\{ C, -C \} = \phi'(X_1) \) for \(C_3X_1 = X_3 \).

Lemma 1.4. If we compose an arbitrary dispersion \(X_3 \in \mathcal{X}_3 \) and another one \(X_1 \in \mathcal{X}_1 \) we always obtain a dispersion from the same coset \(\mathcal{Y}_3 \in \mathcal{D}_3 \).

Proof. Let \(X_3 \) and \(X_1 \) be arbitrary dispersions in \(\mathcal{X}_3 \) and \(\mathcal{X}_1 \), respectively. Then \(X_3X_1 \in \mathcal{Y}_3 \). Now let \(X_3 \sim \bar{X}_3, X_1 \sim \bar{X}_1 \), that is \(X_3 = \phi_3\bar{X}_3, X_1 = \phi_1\bar{X}_1 \). Then \(\bar{X}_3\bar{X}_1 = X_3\phi_3X_1\phi_1 = X_3X_1\phi_1\phi_3 = X_3X_1\phi_3 \) and therefore \(\bar{X}_3\bar{X}_1 \sim X_3X_1 \). Consequently \(\bar{X}_3\bar{X}_1 \in \mathcal{Y}_3 \).

Now we can introduce a multiplication of cosets from \(\mathcal{D}_3 \) and \(\mathcal{D}_1 \) by means of Lemma 1.4 as follows:

\[\mathcal{X}_3\mathcal{X}_1 = \mathcal{Y}_3 \]

where \(\mathcal{Y}_3 \) is the coset from \(\mathcal{D}_3 \) containing the product \(X_3X_1 \), where \(X_3, X_1 \) are arbitrary elements of \(\mathcal{X}_3 \) and \(\mathcal{X}_1 \), respectively.

Lemma 1.5. Let \(\beta \) be the mapping from Theorem 1.9 and \(\phi' \) the isomorphism from Remark 1.1. If \(\beta(X_3) = \{ C, -C \} \) and \(\phi'(\mathcal{Y}_1) = \{ G, -G \} \), where \(X_3 \in \mathcal{D}_3 \), \(\mathcal{Y}_1 \in \mathcal{D}_1 \) and \(\{ C, -C \}, \{ G, -G \} \in \mathcal{L} \), then \(\beta(X_3\mathcal{Y}_1) = \{ CG, -CG \}, \{ CG, -CG \} \in \mathcal{L} \).

The proof is evident.

\(\mathcal{L} \) is decomposed into two equivalent subsets:

the subset of unimodular matrix cosets whose determinant is equal to +1 and that one whose matrices have determinant equal to -1. A consequence of this is that \(\mathcal{D}_3 \) (and also \(\mathcal{D}_1 \), see [1, § 21]) decomposes into equivalent subsets as well:

the set \(\mathcal{B}_3(\mathcal{B}_1) \) of direct, i.e., increasing dispersion cosets the corresponding matrices of which have determinant equal to +1 (compare with (7) in the first part of this paper);

the set of indirect (decreasing) dispersion cosets the corresponding matrices of which have determinant -1.

Theorem 1.10. Choosing an arbitrary coset \(\mathcal{X}_3 \in \mathcal{B}_3 \) and composing it with all \(\mathcal{X}_1 \in \mathcal{B}_1 \), we obtain again the whole set \(\mathcal{B}_3 \). That is, \(\mathcal{X}_3\mathcal{B}_1 = \mathcal{B}_3 \) for any \(\mathcal{X}_3 \in \mathcal{B}_3 \).

Proof. Let \(\beta(X_3) = \{ C, -C \} \). Clearly \(\text{det } C = \text{det } (-C) = +1 \). Let \(\phi'(\mathcal{X}_1) = \{ G, -G \} \). Clearly \(\text{det } G = \text{det } (-G) = +1 \). By Lemma 1.5 \(\beta(X_3\mathcal{X}_1) = \{ CG, -CG \} \).
= \{\text{CG}, -\text{CG}\} and since \(\det \text{CG} = +1\), for each \(X_1 \in \mathcal{B}_3\). Let now \(X_3\) be an arbitrary element of \(\mathcal{B}_3\). Then for \(X_3\) there always exists \(\mathcal{Y}_1 \in \mathcal{D}_1\) such that \(X_3 = X_3\mathcal{Y}_1\). We now prove the relation \(\mathcal{Y}_1 \in \mathcal{B}_1\) by means of the matrix representation:

Let \(\beta(X_3) = \{A, -A\}\) and \(\varphi(\mathcal{Y}_1) = \{B, -B\}\). From \(X_3 = X_3\mathcal{Y}_1\) we obtain by Lemma 1.5 for the corresponding cosets of matrices \(\{A, -A\} = \{CB, -CB\}\).

Suppose first that \(A = CB\). Hence the elements of the matrices satisfy
\[
\begin{align*}
c_{11}b_{11} + c_{12}b_{21} &= a_{11}, \\
c_{11}b_{12} + c_{12}b_{22} &= a_{12}, \\
c_{21}b_{11} + c_{22}b_{21} &= a_{21}, \\
c_{21}b_{12} + c_{22}b_{22} &= a_{22}
\end{align*}
\]
and hence \(\det B = \det A \cdot \det C = +1\).

Similarly, if \(-A = CB\) then \(\det B = \det A \cdot \det C = +1\). Evidently also \(\det (-B) = +1\). Matrices corresponding to the coset \(\mathcal{Y}_1\) have the determinant equal to \(+1\), that is, \(\mathcal{Y}_1 \in \mathcal{B}_1\).

Completely analogously we could prove the following

Theorem 1.11. Choosing an arbitrary coset \(X_1 \in \mathcal{B}_1\) and composing it with all \(X_3 \in \mathcal{B}_3\) we obtain again the whole set \(\mathcal{B}_3\). Further it holds
\[X_3\mathcal{B}_1 = \mathcal{B}_3X_1 = \mathcal{B}_3,
\]
where \(X_3\) is an arbitrary element of \(\mathcal{B}_3\) and \(X_1\) is an arbitrary element of \(\mathcal{B}_1\).

2. DISPERSIONS OF THE 4TH KIND

Representation by means of unimodular matrices. The representation will be realized analogously to that of the dispersions of the 3rd kind. Let \(X_4 \in \mathcal{D}_4\) be an arbitrary dispersion of the 4th kind and \(\mathcal{D}_4\) the set of all dispersions of the 4th kind. Now choose a basis \((U, V)\) of the integral space \(\mathbb{R}\) and denote its Wronskian by \(W\); let \(u_1(t), v_1(t)\) be the functions
\[
\begin{align*}
u_1(t) &= \frac{U[X_4(t)]}{\sqrt{|X_4(t)|}}, \\
v_1(t) &= \frac{V[X_4(t)]}{\sqrt{|X_4(t)|}}.
\end{align*}
\]
The functions \(u_1(t), v_1(t)\) form a basis of the integral space \(\mathbb{R}_1\). Their Wronskian \(w_1\) fulfils
\[
w_1 = W \cdot \text{sgn} X_4.
\]
Following (3) we can uniquely determine a basis \((u, v)\) of \(R\) for the basis \((u_1, v_1)\) of \(R_1\). Two bases \((u, v)\) and \((U, V)\) are connected by (4). Thus the Wronskians satisfy (5).

Since \(w_1 = w\) holds, we get

\[
(16) \quad w_1 = \det C \cdot W
\]

and therefore \(\det C = \text{sgn} \, X_4\).

We now present a number of theorems concerning the properties of the 4th kind dispersions without giving their proofs since they are analogous to those of the theorems for the 3rd kind dispersions.

Theorem 2.1. For any dispersion \(X_4 \in D_4\), the unimodular matrix \(C\) is uniquely determined by (4).

Theorem 2.2. For any unimodular matrix there exists at least one 4th kind dispersion associated with it through the relations (4) and (14).

The decomposition of the set \(D_4\) determined by the equivalence relation \(\sim\) or \(\cong\).

We now introduce a relation \(\sim\) in the dispersion set \(D_4\) as follows:

Let \(C_1\) be the group of central dispersions of the 1st kind and let \(X_4, Y_4\) be arbitrary dispersions from \(D_4\).

\[
(17) \quad X_4 \sim Y_4 \text{ iff there exists } \varphi \in C_1 \text{ such that } \varphi \cdot X_4 = Y_4.
\]

Theorem 2.3. The relation (17) is an equivalence relation on the set \(D_4\).

Theorem 2.5. The relation (17) forms a decomposition \(D_4/\sim\). The set \(C_4\) of all central dispersions of the 4th kind forms exactly one coset of \(D_4/\sim\).

Corollary 2.1. Let \(\mathcal{X}_4\) be an arbitrary coset of \(D_4/\sim\). Then \(\mathcal{X}_4 = C_1X_4\) where \(X_4\) is an arbitrary dispersion in the coset \(\mathcal{X}_4\). Consequently \(C_1X_4 = C_1\mathcal{X}_4\).

Lemma 2.1. For each dispersion of the 4th kind \(X_4 \in D_4\) and for each central dispersion of the 4th kind \(\omega_\varphi \in C_4\) there exists a dispersion of the 1st kind \(X_1 \in D_1\) such that

\[
(18) \quad X_4 = X_1\omega_\varphi.
\]

Lemma 2.2. If two different central dispersions of the 4th kind \(\omega_\varphi, \omega_\psi \in C_4\) satisfy \(X_4 = X_1\omega_\varphi, X_4 = Y_1\omega_\psi\), then \(X_1 = Y_1\varphi\), and thus \(X_1, Y_1\) belong to the same coset of the factor group \(D_1/C_1\).

Corollary 2.2. For each dispersion of the 4th kind \(X_4 \in D_4\) there exists a dispersion \(X_1 \in D_1\) such that \(X_4 \in X_1C_4\). Thus, for each dispersion \(X_4\) there exists exactly
one coset $X_1 = X_1 C_1$ of the factor group D_1/C_1 such that $X_4 \in X_1 C_4$. Hence $X_1 C_4 = X_1 C_4$ holds.

We now introduce a relation \approx in the set D_4 as follows:

(19) $X_4 \approx Y_4$ iff there exists $X_1 \in D_1/C_1$ such that $X_4 \in X_1 C_4$ and at the same time $Y_4 \in X_1 C_4$.

Theorem 2.5. The relation (19) is an equivalence relation in the set D_4.

Theorem 2.6. Two arbitrary dispersions of the 4th kind fulfil $X_4 \sim Y_4$ if and only if $X_4 \approx Y_4$.

Theorem 2.7. Let X_4 be an arbitrary dispersion from D_4 and let $X_4 = C_1 X_4$ be a coset of D_4/\sim. Composing the dispersion $X_4 \in D_1$ associated with the dispersion X_4 through (18) with all central dispersions of the 4th kind we obtain exactly one coset $X_4 \in D_4/\sim$. Thus $X_4 = X_1 C_4$ and

(20) $X_1 C_4 = C_1 X_4 = X_4$.

Theorem 2.8. For each coset $X_4 \in D_4/\sim$ there exists exactly one coset $X_1 \in D_1/C_1$ such that

(21) $X_4 = C_1 X_4 = X_1 C_4$.

The properties of the factor set D_4. Let us denote the factor set D_4/\sim by D_4.

Theorem 2.9. Between the elements of the set D_4 and those of the group \mathcal{L} there exists a 1–1 correspondence

$\gamma : D_4 \rightarrow \mathcal{L}$

determined as follows: For each $X_4 \in D_4$, $\gamma(X_4) = \{C, -C\}$ where $\{C, -C\} = \varphi'(X_1)$ for $X_1 C_4 = X_4$.

Lemma 2.3. If we compose an arbitrary dispersion $X_4 \in \mathcal{X}_4$ with an arbitrary dispersion $X_1 \in \mathcal{X}_1$ we always obtain a dispersion from the same coset $\mathcal{Y}_4 \in D_4$.

By means of Lemma 2.3 we can now introduce a multiplication of cosets from D_1 and D_4 as follows:

$\mathcal{X}_1 \mathcal{X}_4 = \mathcal{Y}_4$,

where \mathcal{Y}_4 is the coset from D_4 containing the product $X_1 X_4$, where X_1 is an element of \mathcal{X}_1 and X_4 is an element of \mathcal{X}_4.

Lemma 2.4. If $\gamma(X_4) = \{C, -C\}$ and $\varphi'(\mathcal{Y}_1) = \{G, -G\}$, where $X_4 \in D_4$.

25
Let us denote the set of all direct dispersions of the 4th kind by \mathcal{B}_4.

Theorem 2.10. Choosing an arbitrary coset $\mathcal{X}_4 \in \mathcal{B}_4$ and composing it with all $\hat{\gamma}_1 \in \mathcal{B}_4$ we obtain again the whole set \mathcal{B}_4. That is, $\mathcal{B}_1 \mathcal{X}_4 = \mathcal{B}_4$ for any $\mathcal{X}_4 \in \mathcal{B}_4$.

Theorem 2.11. Choosing an arbitrary coset $\mathcal{X}_1 \in \mathcal{B}_1$ and composing it with all $\mathcal{X}_4 \in \mathcal{B}_4$ we obtain again the whole set \mathcal{B}_4. Further it holds $\mathcal{X}_1 \mathcal{B}_4 = \mathcal{B}_1 \mathcal{X}_4 = \mathcal{B}_4$, where \mathcal{X}_4 and \mathcal{X}_1 are elements of \mathcal{B}_4 and \mathcal{B}_1, respectively.

References

Author's address: 771 46 Olomouc, Gottwaldova 15 (Přírodovědecká fakulta University Palackého).

26