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&asopis pro p&stovini matematiky, ro&. 100 (1975), Praha

ALMOST PERIODICITY OF SOLUTIONS OF THE EQUATION
x'(f) = A(f) x(f) WITH UNBOUNDED COMMUTING OPERATORS

VLADIMIR LOVICAR, Praha

(Received September 24, 1973)

The aim of this paper is to obtain sufficient conditions for almost periodicity of all
solutions of the equation

) X(1) = @) (1), x(0) = %o.

in a Banach space B under the main assumption that (A(f); t € R) (in all paper R
is the real line and R* = (t € R; t = 0)) is a commuting system of operators in B.
Before obtaining this result (Theorem 2), general questions concerning solutions of
the equation (1) and some elementary properties of commuting (unbounded) operators
are considered.

All Banach spaces in this paper are supposed complex, semigroup (group) of
operators in a Banach space always means strongly continuous semigroup (group)
of operators. All notations are standard (see e.g. [1]), except the notions of o-
operator, S-operator and G-operator (Definitions 1 and 3), which are introduced
only in order to simplify the formulation of assertions in this paper.

Let B be a Banach space and let-A be a linear operator in B. We shall denote by
D(A) and R(A) the domain (which is supposed non empty) and the range, respectively,
of the operator A. If A is an injective operator, the operator A~! may be defined by

D(A™Y) = R(4),
A™'x =y for xeD(A™'), where yissuchthat x = Ay.

It is clear that R(4™") = D(A). Further it may be easily seen that the following
lemma holds:

Lemma 1. Let A,, A, be linear operators in a Banach space B such that

1. D(4,) > R(A4y);
2. R(4;) = D(A,);
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3. A,A;x = x for xe€ D(A,);
4. AjA,x = x  for xe D(4,).

Then A, is an injective operator and A{' = A,.

We shall denote by ¢(A) the set of regular points of the operator 4, i.e., g(4) =
= (AeC; (AE — A)™" is bounded and everywhere defined) (here C denotes the
complex plane and E the identity on B). For A€ g(4) the operator (AE — A)~' is
denoted by R(4, A). It may be easily seen that g(A) is an open subset of C.

Definition 1. Let 4 be a linear operator in a Banach space B. We shall say that 4
is a g-operator if o(A) * 0.

Lemma 2. Let A be an injective g-operator in a Banach space B. Then A™! is
also a g-operator.

Proof. Since g(A) is a nonempty open subset of C, there exists 1€ ¢(4), 4 + 0.
Let us prove that 1~ € (4™ ') and R(A™*, A7) = —AAR(4, 4A) = AE — A*R(4, A).
Indeed, let S denote the operator —AAR(4, A). Then the operator S is bounded
and everywhere defined (hence D(S) = B o R(A™'E — A™")) and R(S) < R(4) =
= D(A"E — A™!). Further, for xe D(A"'E — A7 ') we have S(A"'E — 4™ ") x =
= (AE — 2*R(A, A)) A™'x + AR(A, A) x = x. Finally, for xe D(S) it holds
(A7'E — A7) Sx = (A"1E — A7Y) (= A4) R(, A)x = (= A + IE) R(J, A) x = x.
The assertion of the Lemma follows from Lemma 1.

Definition 2. Let 4,, A, be g-operators in a Banach space B. We shall say that the
operators A, A, commute (or that A, commutes with A,) if for any 4, € ¢(4,),
4, €0(4,) it holds R(A;, A;) R(A,, A;) = R(A,, A;) R(Ay, A;). We shall say that
(A5 j € M) is a commuting system of operators if for any je M, 4 ; 1s a g-operator
and A4; commutes with 4, for j, k e M.

Note. It may be easily seen that bounded everywhere defined operators A, A,
commute in the sense of Definition 2 iff 4,4, = A4,4,.

Lemma 3. Let A;, A, be g-operators in a Banach space B. Let there exist A, € ¢(4,)
and A, € o(A,) such that R(A;, A;) commutes with R(1,, A;). Then the operators
Ay, A, commute.

Proof. Let u, €o(4,). Then the operator S = (iE — 4,) R(Ay, 4,) =
= (uy — 4;) R(A;, A;) + E is a bounded operator with bounded inverse S™! =
= (L,E — A)) R(uy, 4;) = (A; — py) R(u1, 4;) + E. The operator R(4,, 4,) com-
mutes with the operator S and hence R(4,, 42) commutes also with the operator S™1.
This implies immediately that the operator R(1,, 4,) commutes with R(u,, 4,) for
any p, € o(A4,). By similar calculation it may be shown that R(y,, 4,) commutes with
R(py, A,) for any py € o(A4,) and p, € o(42).
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Lemma 4. Let A, A, be g-operators in a Banach space B and let A, be injective.
Then the following conditions are equivalent:

1. A; commutes with A,.
2. A7! commutes with A,.

Proof. The assertion follows immediately from the proof of Lemma 2 and from
Lemma 3.

Lemma 5. Let A;, A, be g-operators in a Banach space B. Then the following
conditions are equivalent:

1. A; commutes with A,

2. For.any A€ o(A,) and x € D(4,) it is R(A, A;) x € D(4;) and A,R(4, A,) x =
= R(4, 4,) 4,x.

3. There exists A € g(A;) such that for any x € D(4,) it holds R(%, A,) x € D(A,)
and A,R(4, A;) x = R(4, A,) 4,x.

Proof. 1 —»2: Let ueg(A4,) and x e D(4,). Then x = R(u, A;) y for some
y€B and hence for any leg(4,) it holds R(4, 4;) x = R(A, A;) R(u, 4,) y =
= R(u, A;) R(A, A;) y. From this we obtain R(4, A;) x € D(4;) and further
AR(A, Ay) x = A,R(p, 4,) R(2, 4)) y = (uR(u, 4;) — E)R(4, A;) y = R(4, 4,) .
.(uR(u; A;)— E) y = R(4, A,) 4,x.

3> 1: Let ueg(4,) and yeB. Then for x = R(u, 4;) y e D(4,) we have
(LE — A;) R(4, Ay) x = R(J, A;) (LE — A,) x and hence (uE — 4,) R(4, 4,) .
. R(u, A;) y = R(A, A;) y. From this it follows that R(4, 4;) R(u, A;) y = R(p, 4,) .
.R(2, 4;) y and A, commutes with 4, by Lemma 3.

Lemma 6. Let A;, A, be g-operators in a Banach space B and let A, be bounded
(everywhere defined). Then the following conditions are equivalent:

1. A,commutes with A,.
2. For any x € D(A,) it is A,x € D(A;) and A;4,x = AAx.

Proof. 1 - 2: It is clear that A, commutes with AE — A4, for any 1€ C. For
sufficiently large A, the operator R(1, A4,) exists, 0 € o(R(4, 4,)) and R(0, R(4, 4,)) =
= A, — AE. By Lemma 4, the operator 4; commutes with R(4, 4,) and so by
Lemma 5 for any xe D(4,) it is (4, — AE)xe D(4,) and A,(4; — AE)x =
= (A, — AE) A;x, i.e. A;x € D(4;) and A, A,x = A,A;x.

2 — 1: This implication follows immediately from the proof of 1 — 2, because all
implications used in 1 — 2 are actually equivalences.

Lemma 7. Let A be a g-operator in a Banach space B. Further, let A; be a linear
operator in B defined on D(A) and such that for some A € o(A) the operator A;R(4, A)
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is a bounded operator and AR(A, A)x = R(4, A) A;x for x e D(A). Then the
operator A;R(u, A) is bounded for ueo(A) and AR(u, A) x = R(y, A) A;x for
1 € 0(A) and x € D(A). Moreover, for sufficiently small ¢ > O the operator A + &4,
is a g-operator which commutes with A.

Proof. For peg(A4) we have A,R(u, A) = AR(4, A) + (1 — u) 4,R(4, 4).
. R(u, A) and hence 4,R(u, A) is a bounded operator. Further we have for x € D(4)
A;R(p, A)x = A;R(2, A)x + (2 — p) A;R(%, A) R(y, A) x, R(u, A) A;x = R(, A).
. Aix + (2 — p) R(4, A) R(u, A) A;x which implies (E — (1 — u) R(Z, A)).

- (4;R(u, A) x — R(u, A) A;x) = 0; the operator E — (1 — p) R(4, A) = (UE —
~ A) R(%, A) is injective and hence A,R(u, A)x = R(u, A) A;x for x € D(A) and
w1 € o(A).

Let ¢ < (|4,R(4, A)[)™". Then the operator (E — eA,R(4, A))~! exists and is
bounded. Let us denote S = R(4, A) (E — e4,R(4, A))~'. Then we haveD(S) o
> R(AE — A — ¢4,), R(S) = D(4), (AE — A — eA,) Sx = (AE — A — £4,) R(4, 4).
(E — 84,R(A, A))™' x = x for xe D(S) and S(AE — A — ed,) x = R(4, A) .
(E — €4,R(4, A))~' (E — €4,R(4, A)) (AE — A) x = x for x € D(A). This means
by Lemma 1 that the operator 4 + g4, is a g-operator. Further we have
(AE — A — ¢A4,) (R(4, A + e4,) R(A, A) — R(A, A) R(A, A + e4,)) = R(4, 4) —
~ R(4, A + €4,) + eR(1, A) A;R(%, A + €A4,) = R(A, A) — R(4, A + eA;) + R(4, A4).
.(—E + (AE — A)R(4, A + €A;)) = 0 end hence the operator 4 + eA,; commutes
with A.

Lemma 8. Let A be a g-operator in a Banach space B. Further let A,, A, be linear
operators in B defined on D(A) such that for some A; € o(A) the operators A;R(2;, A)
are bounded and A;R(%j, A) x = R(A;, A) A;x for x € D(A) (j = 1, 2). Finally let
he operators A;R(\y, A), A2R(Z;, A) commute. Then for sufficiently small ¢ > 0,
(A +edA;, A+ ed,, A) forms a commuting system of operators.

Proof. It follows from Lemma 7 that for sufficiently small ¢ > 0 the operators
A + eA; are g-operators which commute with A. It suffices to prove that the operators
A+ eA;, A+ ¢4, commute but this follows immediately from the relations
R(4y, A + ed;) = R(Ay, A) (E — €4,R(4, 4))™", R(A,, 4 + €4,) = R(4,, A) .

.(E — e4,R(4,, 4))~N.

Definition 3. Let A be a linear operator in a Banach B. We shall say that the
operator A is an S-operator (G-operator) if A generates a strongly continuous semi-
group (group) of operators in B. '

It is clear that any S-operator is a g-operator. If A is an S-operator, we shall denote
by T(A4) = (T(A4,1); te R*) the semigroup of operators generated by 4. On' the
other hand, by A(T) the generator of the semigroup of operators T = (T(t); t € R*)
is denoted.
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Lemma 9. Let A,, A, be commuting g-operators in a Banach space B. Moreover,
let A, be an S-operator. Then the closure of the operator A, | D(A,) n D(4,)
equals A;. -

Proof. We have to prove that for any x e D(A4,) there exists a sequence
(xns neN) < D(4;) n D(4,) such that x =limx, and A;x = lim 4x,. Let
(4.s n€N) be a sequence of positive numbers such that R(4,, 4,) exists for ne N
and A, » + oo for n — 0. It is very well known that y = lim 4,R(4,, A,) y for any
y € B. Now let x € D(4,) be given. We obtain from Lemma 5 that for any ne N
it is x, = 4,R(4,, 4,) x € D(4,) N D(4,), A;x, = 4,R(4,, A;) A;x and x = lim x,,
A;x = lim A,x, by the above.

Lemma 10. Let A, be a g-operator and let A, be an S-operator in a Banach
space B. Then the following conditions are equivalent:
1. A, commutes with A,.
2. R(4, A,) commutes with T(A,, 1) for any A€ ¢(A,) and t e R*.
3. There exists )€ g(A,) such that R(A, A,;) commutes with T(A,, 1) for any
teR*.

Proof. 1 — 2: Let A€ 0(4,) and t € R*. Further let (u,; n € N) be a sequence of
positive numbers such that R(u,, 4,) exist for ne N and lim u, = + 0. For any
x € B we have T(4,, t) x = lim exp (—tu,(E — p,R(i,, 4;))) x and since the oper-

neN

ators R(4, A4,), exp (—tu,(E — p,R(n,, A,))) commute, it holds R(4, 4;) T(A4,, t) x =
= lim exp (—tpy(E ~ tuR(sas 45))) R(2, A1) x = T(4s, 1) R(Z, Ay) x for x €B.

neN

3 = 1: Let u be a sufficiently large positive number. Then the operator R(y, 4,)
exists and R(y, 4,) x = [¢ e *T(A,, t) x dt for x € B. Hence we have for any x € B
R(A, A)) R(p, A)) x = [§ e R(4, A)) T(A, ) xdt = [§ e "' T(A4,, t)R(A, A,) xdt =
= R(u, A,) R(A, 4,) x and the operators 4,, A, commute by Lemma 3.

Definition 4. Let T, T, be semigroups of operators in a Banach space B. We shall
say that Ty, T, commute (or that T, commutes with T,) if for any t, se R*, Ty(t)
commutes with T,(s).

Lemma 11. Let A,, A, be S-operators in a Banach space B. Then the following
conditions are equivalent:

1. A, commutes with A;.
2. T(A;) commutes with T(A,).

Proof. 1 — 2: The operator R(4, 4;) commutes with T(4,, t) (A€ o(4,), te R*)
by Lemma 10. If we repeat once more the procedure from the proof of implication
1 - 2 of Lemma 10, we obtain that the operators T(4,, t), T (42, s) commute for
t,seR*,
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2 — 1: Let A be a sufficiently large positive number. Then A € g(4;) and for any
xeB it is R(4, 4;) x = [§ e"*T(A,, s) xds. This implies for te R* and x€B
R(A, A)) T(Az, 1) x = [§ e *T(4,,s) T(A,, 1) xds = [§ e"*T(A,, 1) T(A4,,s) xds =
= T(A,, t) R(4, A,) x and hence 4; commutes with 4, by Lemma 10.

Lemma 12. Let A,, A, be commuting S-operators in a Banach space B. Further
let us set T(t) = T(A;, 1) T(A,, t) (te RY). Then T = (T(t); te R") is a semigroup
of operators in B and A(T) equals the closure of the operator A; + A,.

Proof. It is clear that T is a semigroup of operators in B. Further we have A(T) x =
= lim t"(T(t) x — x) = lim (T(A,, ) (" (T(4y, ) x — x)) + t " Y(T(4,, ) x — x)) =
t—=0+

t—=>0+

= A;x + A,x for x € D(A,) n D(A,). Hence it is sufficient to show that for some
A€ o(A(T)) the set (AE — A, — A,) (D(A;) n D(A,)) is dense in B. Since T, T(A,),
T(A,) is a commuting system of semigroups of operators, we have R(4, A(T)).
R A,) R, 42) = Rz, Ay) R(s A45) RO, A(T) (€ o(A(T)), 1 € (A 0 o(4s)
by Lemma 11. This implies that for any x e B it is y = u?R(4, A(T)) R(u, 4;) .
.R(u, A;) x € D(4,) n D(4;)and (AE — A, — A,) y = p®R(y, A;) R(n, A,) x. Since
lim p?R(p, A,) R(u, A,) x = x for any x € B, the set (AE — A; — A,) (D(4,) N

n—=>+ oo

N D(A,) is dense in B.

Lemma 13. (Lumer G. - Phillips R. S.) Let A be a closed linear operator in
a Banach space B, cl (D(A)) = B. Further let J be the duality mapping on B, i.e.
Jx = (x*eB*; (x,x*) = |x|% |x| = |x*|). Then the following conditions are
equivalent:

1. The operator A is a G-operator for which |T(4, t)| < eIl for teR.

2. |Re (Ax, Jx)| £ w|x|* for x € D(A) and there exist 1y, A, € @(A) such that

Reld, < —w < +w < Re 4,.

Proof. This Lemma is an easy modification of Lumer-Phillips Theorem (see e.g.

RY)}

Lemma 14. Let A be 4n S-operator in a Banach space B and let s € R*. Then the
operator sA is an S-operator and it holds T(sA, t) = T(A, st) for te R*. If A is
a G-operator, then sA is a G-operator for s€ R and T(sA, t) = T(A4, st) for teR.

Lemma 15. Let A be a G-operator in a Banach space B for which [T(A, t), =
< e*!"! for te R. Further, let A, be a linear operator in B defined on D(A) and
such that |Re (4,x, Jx)| £ o,|x|* for x € D(A). Finally let there exist A& o(A)
such that A,R(A, A) is a bounded operator and A,R(A, A)x = R(, A) A;x for
x € D(A). Then the closure A, of the operator A, is a G-operator and T(A,) com-
mutes with T(A).
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Proof. Let Red, < —w < w < Re i,. Then we have by Lemma 7 that for
sufficiently small ¢ > 0 1,, 1, € o(4 + €4,) (j = 1,2) and hence 4 + ¢4, is a G-
operator by Lemma 13. Further, 4 + ¢4, commutes with A by Lemma 7 and the
assertion of the Lemma follows immediately from Lemma 12 and Lemma 14.

Lemma 16. Let linear operators A, A; (j = 1, 2) fulfil the same condition as the
operators A, A, in Lemma 15. Then the following conditions are equivalent:

1. T(4,) commutes with T(4,).
2. A;R(A, A) commutes with A,R(A, A) at least for one 1 € o(A).

Proof. 1 — 2: It follows easily from Lemmas 7,11 and 12 that for sufficiently
small e> 0, (A, A + €A, A + eA,) forms a commuting system of operators and

= g(4) no(A4 + eA;) N o(A + €A4,) # 0. Let 1€ M. Then by Lemma 5 for any
xe€ D(A) it holds AR(4, A + eA4,) x = R(4, A + e4,;) Ax and this easily implies
that the operators (AE — A)R(4, 4 + eA;), (AE — A)R(A, A + €4,) commute.
Hence also the operators ((AE — A)R(A, A + €A,))™! = E — ¢4,R(%, A) and
((AE — A)R(A, A + e4,))™! = E — eA,R(4, A) commute.

2 — 1: This implication follows easily from Lemma 8 and 12.

Lemma 17. Let A be a G-operator in a Banach space B for which |T(4,1)| <
S ¢!l for t € R. Further let M be a directed set and let (A(j); j € M) be a system
of linear operators in B defined on D(A) with the following properties:

. |Re (A()) x, Jx)| £ w,|x|? for x e D(4);

2. There exists A € o(A) such that A(j) R(4, A) is a bounded operator for j € M;
3. A(j) R(4, 4) x = R(A, A) A(j) x for j € M and x € D(A);

. A(j) R(A, A) commutes with A(k) R(4, A) for j, ke M;

5. For any x € D(A) there exists lim A(j) x = A,x.
jeM

Then the closure A; of the operator A, is a G-operator, (A4y, A(j) (je M), 4)
forms a commuting system of operators and T(A t)x = hm T(A(j), ) x for
xeBand teR.

(o=

H

Proof. It follows from Lemma 16 that the operator .71(1_) (j € M) is a G-operator
for which |T(A(j), )] < e**!"! for te R and (4, A(j) (j € M)) forms a commuting
system of operators.

Let us prove that the operators A4, A, fulfil the conditions of Lemma 15. For any
x € D(A) and x* e Jx it is [Re (Alx, x*)| = hm [Re (A(j) x, x*)| £ w,|x|*. Further

it holds 4,R(1, 4) x = hm A(J) R(4, A) x for any x € B and hence the operator

A,R(4, A) is bounded. Smce A(j) R(A, A) x = R(A, A) A(j) x for any je M and x €
€ D(A), we have 4,R(4, A) x = R(A, A) A,x for x e D(A). Hence, by Lemma 15,
the closure 4, of the operator A is a G-operator and 4; commutes with A.
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Since A(j) R(4, A) commutes with A(k) R(4, A) for j, k € M, we easily obtain that
A;R(4, A) commutes with A(j) R(4, A) for j € M and hence, by Lemma 16, 4, com-
mutes with 74(-13 for je M. '

We have further for x € D(4) |T(4,, t) x — T(A(j), t) x| = |T(4(), 1) .

A(T(4; — A(), tyx — x)| < 1[G T(4, — A(j), 5) (4 — A(j)) x ds| < k(e 1).
.|4;x — A(j) x| and hen¢e T(4,,1)x = ljler;} T(A(j), ) x for x e D(A). Since the

operators T(A(j), t) are bounded uniformly with respect to j € M, we obtain that
T(4,, t) x = lim T(A(j), t) x for x € B.
jeM

Theorem 1. Let A, A(t) (t € R) be a commuting system of G-operators in a Banach
space B for which |T(4,1)| < el | T(A(s), 1 £ e“!!"l for t,seR. Further let
D(A(t))  D(A) for t € R and let the function t — A(t) x be continuous for x € D(A).
Let us define for t, s € R the operator C(t, s) by: C(t, s) x = [; A(r) x dr (x € D(A)).
Then the closure [% A(r) dr of the operator C(t,s) is a G-operator for t, s € R. Let
us denote further

yaﬁ)=1(f1@ynJ) (tseR)

s

Then it holds:

I (t,s) (1, s € R) is a commuting system of operators.

|7(t,5)| < eV for t,seR.

The function (t, s) > J(t, s) x is continuous on R x R for any x € B.
T(t,t)=E,T(t,s5)T(s,r)=T(t,r) fort,s,reR.

The function t — J(t, s) x is continuously differentiable for x € D(A) and

P .

%y@9x=40f@gx(mky

Proof. First, let us prove that A(f) R(4, A) is a bounded operator for t € R and
4 € o(A). Since the operator A(t) R(4, A) is everywhere defined, it suffices to prove
that it is closed. Let x, — x, A(f) R(4, A) x, = y. Then y, = R(4, 4) x, € D(A(t)),
¥» = R(4, A) x and A(t) y, — y and hence A(t) R(1, A) x = y since the operator A(t)
is closed.

The set (A(t) R(4, A) x; t e <a, b)) is bounded for any compact set {a, b) = R
and hence there exists a constant k(a, b) < + oo such that |A(t) R(4, 4)| < k(a, b)
for te<a, b). This easily implies that C(t, s) R(4, 4) is a bounded operator for
t,seR. It is also clear that C(t,s) R(4, A) x = R(4, A) C(t, s) x for x € D(A). It
follows from Lemma 15 that the closure [; A(r) dr of the operator C(t,s) is a G-
operator for ¢, s € R.

It is easy to see that by Lemma 16 A4, A(f) (t € R), {3 A(r) dr (2, s € R) form a com-
muting system of operators which implies the assertion 1 of the Lemma. Lemma 13

43



implies the assertion 2 of the Theorem. The assertion 3 follows from Lemma 17.
The assertion 4 follows easily from the relation C(t, s) + C(s, r) = C(t, r) (t, s, r € R).
Hence it suffices 40 prove the validity of the assertion 5.
First let us notice that if 4,, A, are commuting G-operators then for t € R.and
x € D(A,) it is T(A,, t) x € D(A,) and A4,T(A,, ) x = T(A,, t) A,;x (Lemma 10).
Let x € D(A). Then we have lim h™Y7(t + h, s) x — T(t, 5) x) =
h—0
= lim k=Y (T([i** A(r) dr, 1) x — T([{ A(r) dr, 1) x) = F(t, s) lim k=Y (T([}** A(r) .
h—0 h=0
Ldr, 1) x — x) =7(t,s)limh™* (5 T([1*" A(r) dr, u) ([** A(r) x dr) du = T(1,5) .
h=0
CA() x = A(t) 7(1, s) x since | T([i™" A(r) dr, u) (h™* [(*" A(r) x dr) du —

— A(t) x| < |fo (T(fi*™" A(r) dr, u) — E) A(f) x du| + |f§ T([i*" A(r) dr, u).
(Rt i A(r) x dr — A(?) x) du| > 0 for h — 0.

Definition 5. Let the operators A, A(t), 7(t,s) (¢, se R) in a Banach space B be
the same as in Theorem 1. Then the function t — J7(t, s) x is said to be a solution of
the equation

@) () = A@) x(1), x(s) = x.

Lemma 18. Let the operators A, A(t) (t € R) in a Banach space B fulfil the as-
sumptions of Theorem 1 and let moreover the function t — A(t) x be almost periodic
for any x € D(A). Let A, be a linear operator in B defined on D(A) by

T
Aox = lim t_lf A(s)xds, xeD(A).

t— o0 0

Then the closure A, of the operator A, is a G-operator and (A, A(Y) (t € R),
[YA(r) dr (t, s € R), A,) form a commuting system of operators.

Proof. This Lemma is another easy application of Lemmas 16 and 17.

Theorem 2. Let A, A(t) (t € R) be a commuting system of G-operators in a Banach
space B for which |T(4,1)| < eV, |T(A(s), t)| < el for t,seR. Further let
D(A(t)) = D(A) for t € R and let the function t — A(t) x be almost periodic for any
x € D(A). Let us define the operators A,, C(t) (t € R) on D(A) by

CApx = lim t"lkjﬁA(s) xds, C(t)x = j'tA(s) xds — tdyx .
Ui 0 0

Finally let us suppose that the following assumptions are fulfilled:

1. The function t — T(A,, t) x is almost periodic for any x € B;

2. |Re (C(t) x, Jx)| S w,|x|* for some w, > 0 and for t e R, x € D(4);

3. the function t > C(t) x is almost periodic for any x € D(A).

Then all solutions of the equation (2) are almost periodic.
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Proof. It is clear that it suffices to prove that the function t - (¢, 0) x is almost
periodic for x € B. For any te R the operator J(t,0) has the form (¢, 0) =
= T(A,, t) T(C(t), 1). The function t — T(A,, f) x is almost periodic for x € B
which implies that there exists a constant k; < co such that |T(4,, f)| < k, for
te R. If we prove that the function t — T(—C(—t), 1) x is almost periodic for x € B,
then the almost periodicity of the function ¢t —» 77, 0) x for x € B will follow from
the well known theorem about the almost periodicity of composed function. Since
the operators T(C(r), 1) are uniformly bounded (|T(_C(_t), 1)| < e for teR), it
suffices to prove that the function ¢ — T(C_(t), 1) x is almost periodic for x € D(A).

Let x € D(A). Then we have for t, s € R T(C(t), 1) x — T(C_(s_), 1)x = T(Cﬂ, 1).
(T(C(t) = Cls), 1) x = x) = T(C(s), 1) (fo T(C(t) = C(s), 7) (C(t) x — C(s) x) dr).
This implies that there exists a constant k, = kj(w,) such that |T(C(t), 1) x —
— T(C(s), 1) x| < k,|C(f) x — C(s) x|. The almost periodicity of the function t —
— T(C(#), 1) x follows from the assumption 3 of the Theorem.

Note. Let 4, be such a G-operator in a weakly complete Banach space B that
T(A,) is a bounded group of operators, i.c. |T(A,, 1)| £ k < oo for t € R. Moreover,
let 6(A4,) = C\g(4,) be at most countable. Then it follows from Theorem 1 of [3]
and from Theorem 3 of [4] that the assumption 3 of Theorem 2 is fulfilled, i.e., the
function t — T(A,, t) x is almost periodic for any x € B.
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