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časopis pro pěstování matematiky, roČ. 100 (1975), Praha 

A GENERALIZATION OF THE TORSION FORM 

IVAN KOLAR, Brno 

(Received May 5, 1974) 

The ^veil-known torsion form of a linear connection on an n-dimensional mani­
fold M is the exterior covariant derivative of the canonical Revalued form q> of the 
bundle of linear frames. As a natural generalization of q>, we have introduced the 
canonical (Rn © g)-valued form 8 of the first prolongation W1(P) of an arbitrary 
principal fibre bundle P(B, G), n = dim B, [5]. In a similar way, we define the 
torsion form of a connection on W1(P) to be the exterior covariant derivative of 0. 
This concept generalizes also the torsion form of a linear connection of higher order 
in the sense of YUEN, [11]. Using a result by SVEC, we find the structure equations 
of 6. We also deduce that the connections on W1(P) are in a one-to-one correspon­
dence with certain reductions of the second semi-holonomic prolongation W2(P) 
of P, and a connection on WX(P) is without torsion if and only if the corresponding 
reduction is holonomic. In the special case of a linear connection, these results were 
established by KOBAYASHI, [3], and LIBERMANN, [8]. In conclusion, we treat the 
prolongation p(r, A) of a connection P on P with respect to a linear connection A 
on the base manifold, [7], and we find a necessary and sufficient geometric condition 
for p(r, A) to be without torsion. — Standard terminology and notation of the theory 
of jets are used throughout the paper, see, e.g., [10]. Our investigations are carried 
out in the category C0 0. 

1. Let G and H be two Lie groups. Assume that every g e G determines an auto­
morphism g : H -> H such that the mapping g h> g is a right action of G on H. 
Consider the corresponding semi-direct product G~x H, i.e., the multiplication in 
G ~x H is given by 

(1) (9i,hl)(g2,h2) = (g1g2,g2(hl)h2), gug2eG, ht,h2eH. 

We have natural injections G -• G ~x H, g H- (g, eH) and H -+ G1* H,h H> (eG, h). 
In this sense, Lie algebras g and r) of G and H form two complementary subspaces 
of the Lie algebra of G ~< H. One verifies directly that 

(2) ad (g, eH) (eG, h) = (eG, g ~ l(h)) . 
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Consider further a principal fibre bundle P(B, G, n). Introduce a projection 
P x H -> B, (u, h) h> n(u), ueP, heH, and define a right action of G x H on 
P x Hby 

(3) (u, ht) (g, h2) = (ug, g(hx) h2) . 

Lemma 1. P x H with action (3) is a principal fibre bundle (P x H) (B, G x H). 

P r o o f is straightforward. 
Obviously, P « P x {eH} is a reduction of P x H to the subgroup G c G >T H. 

In view of (2), we can apply the result by Svec, [9], p. 572. This proves 

Lemma 2. Let co = cot © co2 be a (g © fy)-valued connection form on P x H 
and c5t or a>2 the restriction of co^ or co2 to P, respectively. Then cot is a connection 
form and a>2 is an ^-valued tensorial form of type ad G. Conversely, if co is a con­
nection form on P and cp is an l)-valued tensorial form of type ad G on P, then there 
is a unique connection form on P x H such that its restriction to P is co © cp. 

In particular, let Q be a representation of G on a finite dimensional vector space V. 

For A e g, A = I0 l(l) ai1d B e V, we set 

(4) A.B^lim-[Q(y(t))(B)-B]. 
t-+o t 

This defines a bilinear map g x V -• V, (A, B) \-> A . B. Since Vis an Abelian group 
and g i-» 0(a_1) is a right action of G on V, we can construct the semi-direct product 
G "x" V. Let © be a connection form on P and cp a V-valued tensorial 1-form of 
type Q on P. We have the situation of Lemma 2 and one verifies easily that formula 
(2.23) of [9] is equivalent to the following 

Proposition 1. It is 

(5) dcp = -co .cp + Dcp, 

where Dcp is the covariant exterior derivative of cp with respect to co and co . cp means 
the 2-form on P defined by the extension of bilinear map (4). 

2. Consider now the first prolongation W*(P) of a principal fibre bundle P(B, G), 
[5]. We recall that WX(P) = H\B) © JlP is a principal fibre bundle over B with 
structure group G1 = Ll

n~x T\(G) ( = the semi-direct product with respect to the 
action S H- SYof L\ on T\(G), Ye L\, S e Tl(G)), n = dim B. There are two canonical 
principal fibre bundle homomorphisms p : WX(P) -> P and X : W\P) -» H\B). In 
[5], we have introduced the canonical (Rw © g)-valued form 9 of W1 (P) and we have 
deduced that 9 is a pseudotensorial form of type Q, where the representation Q of G1 

on Rn © g is defined by formula (12) of [5]. If F is a connection on WX(P), then the 
covariant absolute derivative D9 of 9 will be called the torsion of F. 
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Remark 1. If we consider the trivial one-element group G = {e} and the trivial 
bundle B x {e}9 then W1 (B x {e}) = H*(B) and 0 coincides with the canonical 
Revalued form of ^(B). Hence we get really a generalization of the linear case. 

Remark 2. Using the identification ttr(B) « W^fF'^B)) of [5], we obtain the 
inclusion Er(M) a W1(Hr~1(M)). Further, the restriction of the canonical form 
of PV1(Hr-1(M)) to Hr(M) is the canonical form of Hr(M). In this interpretation, 
our results generalize the investigation of the torsion form of a higher order linear 
connection by Yuen, [11]. 

By (4), Q determines a bilinear map g1 x (Rn © g) -> R" © g, (A, B) h> A . B. 
According to [5], we have a decomposition g1 = g © (Rw ® R"*) © (g ® R"*). 
Hence we can write every A e g1 as Al = A± + A2 + A3, At eg, A2eRn ® Rn*, 
^3 e g ® R"*, and every B e Rn ® g as B = B0 + Bi9 B0 e Rn, Bt e g. The same 
notation will be used for g^-valued and (Rn © g)-valued forms. Let <, > : Rw x 
x (Rn ® Rrt*) -> R", <,>G : Rn x (g ® Rn*) -> g be tensor contractions and [,] 
the bracket of g. By direct evaluation, we obtain the formula for A . B 

(6) {A . B)0 = <A2, B0> , 

(A.B)i = [A 1 ) B 1 ] + <A3,Bo>G-

Proposition 2. (Structure equations of 9.) Let co be a connection form on W1(P). 
Then we have 

(7) d0 = -co . 9 + jr[col9 co^ + D0 , 

where the ^-valued form [coi9 co^\ is considered an (Rn © §)-valued form with zero 
component in R\ 

Proof is based on Proposition 1. However, 0 is not horizontal. That is why we 
shall first consider the tensorial form 8 = 9h9 i.e. 8(X) = 9(hX)9 where hX means the 
horizontal component of the vector X e T(W1(P)). By Proposition 1, 

(8) d0o = -<[co2980y + D0O, 

d8x = -[col9 8X] - <[co39 80}G + D0t . 

Further, let Y be a vertical vector on WJ(P), which is the value of the fundamental 
vector field determined by an element A e g1. By the definition of 0, [5], we have 
6(Y) = Av Hence 9 = 8 + coi9 where the g-valued form o)t is considered an 
(Rw © g)-valued form with zero component in Rw. Substituting it into (8), we obtain 

(9) d0 o = -<t»2,0o> + D0O, 

d0x = -[col9 0j] - <G>3, 0O>G + [col9 co^ + dcot - Dcot + D9L . 
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According to the structure equations of co, it js 

(10) dcoi = ~i[cou cOi] + Dcot. 

Comparing (9) and (10), we deduce (7), QED. 

3. We have remarked in [4] that a connection on a principal fibre bundle P(B9 G) 
can be defined as a G-invariant cross section P -> J1 P. Consider a connection F 
on W\P) in such a form, i.e. F : Wl(P) -> J1 W\P). We have J1 JV^P) = 
= J\H\B) © JAP) = J1 H\B) © J2P. There is a standard identification x : 
: J1 #*(£) « H2(P) sending an element Z = j*<p e J1 H^P), (?(*) = j j ^(y) into 
x(Z) = j0[(p(\ls(y)) t'1] e H2(P), where fy: R" -> R" is the translation z *+ z + y. 
On the other hand, the second semi-holonomic prolongation W2(P) of P is equal 
to H2(B) © J2P, [5], so that the jet inclusion J2P c j2P induces the inclusion 
W2(P) c J1 PV^P). We define the reduction P(F) c JV2(P) determined by a con­
nection F : Wl(P) -> J1 JV^P) to be the intersection 

(11) R(r) = r(W\P))nW2(P). 

Consider the induced connection F0 = J3*F : P -+ J1P. We recall, [6], that 
P(F0) := H\B) © F0(P) is a reduction of W\P) to the subgroup L1 x it(G) c G1, 
where ij : G -> T,!(G) is the canonical injection g h> I0£, # being tlje constant map­
ping x h* g, x eRn. 

Lemma 3. We have F(u) e P(F) if and only if u e K(F0) c JV^P). 

Proof. Let F(u) = j 1 ^ , where <p = (<pi9 <p2) is a local cross section of 
Hl(B) © J1 P. The condition for jl

xq>2 to be semi-holonomic is (p2(*) = JxOWz) = 
= (̂j3</>) = F0(I», where I? .J^-^P is the jet projection. This is equivalent 
to w e P(F0), QED. 

Consider further the canonical injections i2 : G -*> T„(G)9 g H* j0§ and i : Ln -> 
-> L2. The last mapping can be geometrically described as follows. If Ye Ln9 Y = 

= jo Hy)>then 

(12) KY)=Jo[t*(y)Yt;1]. 

Our next assertion generalizes a result by LIBERMANN, [8]. 

Proposition 3. R(r) is a reduction of W2(P) to the subgroup i(L^) x i2(G) <= 
c L21<T2(G) - G2

n. Conversely, every reduction Q of W2(P) to i(L\) x i2(G) 
determines a unique connection f(Q) on W*(P) such that Q = R(r(Q)). 

Proof. Put r(v, r0(u)) = (Z, T)eJl Hl(B) 0 J2r . « e P, t> e if'(B), and Z = 
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= Jx<P> T = jla. Starting from the fact that F is G*-invariant and using the formula 
for the action of Gl

n on W1 (P), [5], we find 

(13) \vY, r0(ug)) = jl[<p(y) Y, o(y) . (it(g) Y~* 9''(y))] , 

Ye Ll, g e G. On the other hand, the formula for the action of G2 on W2(P) yields 

(*(Z), T)(.(Y), i2(g)) = WZ) i(n T. (i2(g) -(Y)"1 x(Z)-)) , 

see [5]. The relation x(Z) i(Y) = jl[q>(y) Y~\ is known from the linear case, [8]. 
Further, the injection i2 : G -• Tn(G) can be also expressed as g i-> I0[*i(g) -71]-
Then we find easily i2(g) i (y) - 1 ^(-^)~1 = IxOi(^) ^~* ^"^(y))- Comparing with 
(13), we conclude that R(r) is a reduction to the subgroup /(L1) x f2(G). The converse 
assertion can be proved quite similarly, QED. 

We shall also need another geometric characterization of P(F). We recall that 
a semi-holonomic connection of the second order on P is a G-invariant cross section 
P -• J2P, [4]. For every (v, u) e H\B) © P, define /x(F) (v, u) = p2(F(v, r0(u))), 
where p2 : J1 JV*(P) -• J2P is the product projection. According to Lemma 3, the 
values of //(F) lie in J2P. 

Lemma 4. For every Ye h\, it is //(F) (v, u) = //(F) (vY, u). 

Proof. Let r(v,r0(u)) = jl((Pi(y), <Pi(y))> Since F is invariant, we have r(vY, 
J » ) = JlMy) Y, q>i(y)\ QED. 

Thus, we may consider //(F) to be a cross section P -> J2P. 

Proposition 4. //(F) : P -> J2P is a semi-holonomic connection of the second order 
on P. 

Proof. We have to prove that //(F) is G-invariant. But this is a simple consequence 
of Proposition 3, QED. 

Denote by A = X+r the induced connection on H3(B) and by R(A) the cor­
responding reduction ofII2(B). Our previous consideration implies 

(14) P(F) = K(A)©//(F)(P). 

4. The following assertion generalizes a result by Kobayashi, [3]. 

Proposition 5. It is P(F) c W2(P) if and only if D0 = 0. 

Proof. We first deduce a lemma. Since W2(P) c W\Wl(P)), every UeW2(P) 
determines a mapping (/"" * : T^JV^P)) -» R" © &j, where w e Tfj(P) is the underlying 
jet of 17, [5]. Denote by q : W*(P) -> B the bundle projection. 

Lemma 5. Let M be a submanifold of IV^P) such that q\ M is a submersion. 
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Let a : M -+ W2(P) be a cross section and 9 the (Rn © Qn)-valued form on M con-

structed by means of a, i.e. fl| TU(M) = a(u)~* \ TU(M), ueM. Then a(M) c 
c JV2(P) if and only if 

(15) dfl0 = -<fl2, fl0> , dflx = - i [e l f flj - <fl3, fl0>G . 

Proof of Lemma 5. For M = WX(P), the assertion was deduced by direct 
evaluation by DEKR£T, [ l ] . Using the coordinates of [5] or [1], we have local co­
ordinates a\j on fibred manifold W2(P) -* W\P), i,j,... = 1,..., n, X = 1,..., n + 
+ dim G. The subspace JV2(P) c W2(P) is characterized by ax

tj = a){. Consider 
(locally) a cross section at : W1(P) -> W2(P) extending a. Let at be given by some 
functions ffj9 so that a is given by f\} = / y | M. Denote by B the (Rn © g^-valued 
form on Wl(P) constructed by means of ax. The evaluations by Dekret imply (in 
coordinates) 

(16) dBl = PABtj+fiflAP, 

dB* = - i c ; ^ A B? + Bl A B* + f]kV A Bk, 

a = n + 1, ..., n + dim G. Restricting (16) to M, we find that (15) holds if and 
only if ffj = ffj, thus proving Lemma 5. 

We are now in position to prove Proposition 5. Denote by c5 = d^ © a>2 © co3 

or B = #0 © &i the restriction of the connection form or the canonical form fl 
to P(F), respectively. By the definition of P(F) and by Lemma 3, it is &i = #x and 
$o © $i © ^2 © ^3 is the (Rw © g^-valued form constructed by means of the cross 
section F | P(F0). According to (7), we have 

d#0 = -<&2,0O> + D90, 

dB, = -±[0!, Bt] - <d>3, 0O}G + DB± . 

Then Proposition 5 follows from Lemma 5, QED. 

5. In particular, if F is a connection on P and AL is a linear connection on B, then 
the prolongation P(F, A) of F with respect to A is an interesting special connection 
on Wl(P), [7]. 

Proposition 6. Connection p(T, A) is without torsion if and only if F is integrable 
and A is without torsion. 

Proof. As a direct consequence of the definition, we have fi(p(T,A)) = F', 
where F' means the prolongation of F in the sense of Ehresmann, [2]. According 
to (14), it is R(p(T, A)) = R(A) © F'(P). By a result by Kobayashi, [3] (or as a spe­
cial case of Proposition 5), R(A) CZ H2(B) if and only if A is without torsion. On the 
other hand, according to Ehresmann, [2], F;(P) cz J2P if and only if F is integrable. 
By Proposition 5 we prove our assertion, QED. 
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