
Časopis pro pěstování matematiky

Ivan Netuka
Fredholm radius of a potential theoretic operator for convex sets

Časopis pro pěstování matematiky, Vol. 100 (1975), No. 4, 374--383

Persistent URL: http://dml.cz/dmlcz/117891

Terms of use:
© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117891
http://project.dml.cz


časopis pro pěstování matematiky* roč. 100 (1975), Praha 

FREDHOLM RADIUS OF A POTENTIAL THEORETIC OPERATOR 
FOR CONVEX SETS 

IVAN NETUKA, Praha 

(Received July 1, 1974) 

Introduction. The use. of the method of integral equations for solving boundary 
value problems for the Laplace equation dates back to the end of the nineteenth 
century. In that period, however, very strong smoothness restrictions on boundaries 
of domains in question were imposed. In 1919, J. RADON [10] studied the Dirichlet 
and the Neumann problems for plane domains bounded by curves of bounded rota­
tion, not necessarily smooth. He investigated properties of the corresponding integral 
operator and evaluated its Fredholm radius (for the definition see below) in depen­
dence on the character of angular points of the curve. General results for the plane 
case were obtained by J. KRAL [2] 1965 (compare also [5] where further references 
are found). The Neumann problem with a weak characterization of the boundary 
values was investigated by J. Krai [3] 1966 and Ju. D. BURAGO, V. G. MAZJA [1] 
1967 for general domains in high-dimensional Euclidean spaces. 

In order to recall briefly some results of [3] we adopt the following notation. 
Suppose that M is an arbitrary open set with compact boundary dM =# 0 in the 
Euclidean m-space Rm (m > 1). Given x e Rm, 9 e F = {z e Rm; \z\ = 1} and 0 < 
< r S +oo, let nM(9, x) stand for the total number of all points y eHr

d (x) = 
= {x -f Q0; 0 < Q < r} such that every neighborhood of y meets both Hr

e(x) n M 
and Hr

e(x) — M in a set of positive linear measure. (Such a point y is termed a hit 
of Hr

d(x) on M.) The function 6 :—• nM(9, x) is a Baire function and one may put 

t>r
M(x)= [nr(e,x)dHm.1(e) 

where iJTO_i denotes the (m — l)-dimensional Hausdorff measure. We shall denote 

Vo* = lim sup vM(y) . 
r-+0+ yedM 
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Let us fix now an open set G with compact boundary B 4= 0 and denote by C(B) 
the Banach space of all finite signed Borel measures with support in B. With each 
\i e C(B) we associate its potential 

Ufx(x) = \ p(x - y) dn(y) 

corresponding to the kernel p(z) = |z|2-m/(m — 2) or p(z) = log(l/|z|) according 
to m > 2 or m = 2 and we form the distribution NGUju (termed the generalized 
normal derivative of Ufi) over the space 2 of all infinitely differentiable functions (p 
with compact support in Rm defining 

<</>, NGU//> = grad cp(x) . grad Ujn(x) dx . 
Jo 

It follows from the results of [3], [4] that 

(1) V0
G < oo 

is a necessary and sufficient condition for the representability of NGU/i by means 
of an element of C(B) for any \i e C(B). In connection with the applicability of the 
Riesz-Schauder theory to the operator equation 

(2) NGUix = v 

over C(B) (under the hypothesis (l)) it is useful to write (2) in the form 

[iAV + (NGU - iAI')] \i = v 

(where A = Hm.t(r) and V stands for the identity operator on C(B)) and consider 
the quantity 

(3) co(NGU - iAV) = inf ||NGU - \AV - Q\\ 
Q 

where Q varies over the space of all compact operators acting on C(B). Note that the 
reciprocal value of the quantity (3) is usually called the Fredholm radius of the 
operator NGU — iAV and that the inequality 

o)(NGU - iAV) < \A 

permits one to apply the Fredholm theorems to the equation (2). The quantity (3) 
is evaluated in [3] in terms of vG(x) and the m-dimensional density dG(x) of the set G 
at x and also the relations between analytical properties of the operator NGU — iAV 
and geometrical properties of G are studied there. If, in particular, the interior of the 
closure G of G coincides with G, then 

o>(NGU - iAV) = VG 

(see [3], Lemma 3.4, Theorem 3.6 and [8], Lemma 30, Theorems 27, 29). 
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The main objective of this note is to evaluate co(NGU — \AT) in terms of dG 

for convex G, which shows that boundary value problems for convex sets can always 
be treated by means of the Fredholm method. This follows from the following 

Theorem. Let G <= Rm be an open convex set with compact boundary B #= 0. 
Then there is y0e B such that 

(4) w(NcU - \AV) = sup A(i - dc(y)) = A(| - dc(y0)) < \A . 
ysB 

Corollary. The operator NGU — \AV is compact if and only if dG(y) = \for any 
yeB. 

The formula (4) represents an m-dimensional analog for convex sets of Radon's 
result on the Fredholm radius of the corresponding operator for sets bounded by 
curves* of bounded rotation (cf. also [11], Chap. V, No. 91). 

The relations between convexity of a set and positiveness of an operator of the 
generalized double layer potential is also studied and sets for which the equality 
v™ = AdM holds on dM are characterized (see Theorems 11 and 14). 

1. Notation. For an open set M c Rm and z e Rm we denote 

QM(z) = {OeT; H0°°(z) n M 4= 0} 

and define 

a^(z) = Hm^(Q-(z)). 

In what follows, G will be a set satisfying the hypotheses of the above theorem. It 
is clear that it suffices to prove (4) under the additional assumption that G contains 
the origin. Hence we shall suppose that 0 e G and for Q > 0 we set 

Ge = {gy; yeG}. 

2. Lemma. Let 0 < o <; i <; 1 and x e Rm. Then 

aG\x) = aG°(x), lim a°8(x) = aG(x). 
Q-*I-

Proof follows easily from the relations QGx(x) => QGa(x) and 

U QGi*) = QG(x). 
e<s(o,i) 

3. Lemma. If ge (0, 1), then the function aG" is continuous on Rm — Ge. 

Proof. Since Ge is convex, we have 

aGix) = K f ( x ) = \A , xeRm-Ge. 
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Using formula (2A6) of Lemma 2.12 in [3], we obtain 

aGix) = \[ ^ f ^ ^ xeJP-ff-
2JeGe \y~x\m 

which shows that the function aGe is continuous on jRm — GQ. (We have denoted 
by n(y) the Federer normal of GQ at j;.) 

4. Proposition. aG is a lower semicontinuous function on Rm. 

Proof. It follows from Lemmas 2, 3 that the restriction of aG to Rm — G is a lower 
semicontinuous function. Since we have for any z e G and x e Rm 

aG(x) ^A = aG(z) , 

we see that aG is lower semicontinuous on Rm. 

5. Corollary. dG is a lower semicontinuous function on B and there is y0e B 
such that 

inf dG(y) = d(y0) > 0 . 
yeB 

Proof. Proposition 2.6 and Lemma 2.7 in [3] imply the equality 

(5) aG(x) = A dG(x) , x e B . 

By Proposition 4, dG is a lower semicontinuous function on B and, consequently, 
there is y0 e B such that inf dG(y) = dG(y0). By Lemma 2, 

yeB 

dG(yo) = A-1aG°(yo)>0 

for any a e (0, 1). 

6. Lemma. For any e > 0 there is Q > 1 such that for each z e B the inequality 

(6) aG(gz) ^ A inf dG(y) - s 
yeB 

holds. 

Proof. Suppose that the assertion of the lemma is false. Then there is an e > 0 
and points yn e B such that for zn = (1 + ljn) yn we have 

aG(Z„) < AinfdG(>;) - e. 
yeB 

Since the set B is compact we may suppose yn -> y0 e B. Then zn -> y0 and 

lim inf aG(Z„) g A inf dG(y) - e ^ A dG(yo) - e > 

which contradicts the fact that aG is lower semicontinuous at y0 (see also (5)). 
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7. Proof of the theorem. We know (see Lemma 3.4, Theorem 3.6 in [3] and 
Theorems 27,29 and Lemma 30 in [8]) that 

co(NGU - |AF ) = lim sup vG(y) = 
r-*0+ yeB 

= lim sup [A | i - dc(y)\ + vG(y)] £ sup A(\ - dG(y)). 

r-»0+ yeB yeB 

Hence in order to prove (4) it is sufficient to establish only the inequality 

(7) sup A(i - dG(y)) = lim sup vG(y) 
yeB r-*0+ yeB 

because the rest follows by Corollary 5. 
Fix £ > 0 and choose Q > 1 by Lemma 6. Since dGQ and G are disjoint compact 

sets we can find r > 0 such that 

dist (y, G) = rQ 

for any y e dGQ. Consider now z e B. The set GQ being convex, there is a closed half-
space P such that QZ e dP and GQ cz P. If 9 e F is chosen in such a way that H?(QZ) r\ 
n P = 0, then H?(QZ) n GQ = 0. Further, if 0 e F and H?(QZ) n G 4= 0, then 
HQ

$
T(QZ) C: GQ. Hence for these 0's there is no hit of H%(QZ) on GQ and we conclude 

that 

( 8 ) vG
Qr<(Qz) = ±A-aG(Qz). 

Since obviously VG
T°(QZ) = vG(z), (8) and (6) yield 

vG(z) ž i A - a°(qz) ^ \A - A inf dG(y) + z , 
yeB 

Consequently, 

lim sup vG(y) ^ sup vG(y) = sup A(\ - dG(y)) -f e 
r-*0+ yeB yeB yeB 

which proves (7). 

The proof of the theorem is complete. 

8. Notation. For x e Rm and r > 0 we denote Qr(x) = {z e Rm; \x - z\ < r}. In 
the rest of this note we shall suppose that M is a non-empty open set with compact 
boundary, 

(9) dM = d(Rm - M) 

and 

(10) V0
M < co . 
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Note that by [4], remark on p. 596, (10) implies 

sup v%(y) < oo . 
yedM 

& will stand for the Banach space of all bounded Baire functions on dM equipped 
with the usual supremum norm. Fix z e Rm and 0 e F. As in [3] we put for t > 0 

s(t;z,0) = <r( = ±1) , 

if there is 5 > 0 such that 

z + (t + ax) 0 e Rm - M , z + (t - ox) 0 e M 

for a.e. T e (0, S); otherwise we set s(t; z, 0) = 0. Of course, if s(t; z, 0) #= 0, then 
z + tO is a hit of H%(z) on M. Consequently, we can define as in Lemma 2.5 of [3] 
for any / e 08 

Wf(z) = f { I / ( Z + t0) s(t; z, 0)} dHm_t(0) , zedM. 
Jr r>o 

It turns out that the function z i—> JV/(z) is a bounded Baire function and 

W:f\-*Wf 

is a bounded linear operator acting on $ (see [3], Sec. 2 and [7], Sec. 7). It should 
be noted here that Wf is a generalized double layer potential — see Sec. 2 in [3]. 

Let us finally denote by / 0 the function identically equal to 1 on dM and recall 
that, by Lemma 2.2 in [3], 

(11) v^(z) = sup [\Wg(z)\; ge&, \g\ = 1} 

and 

(12) AdM(z)=Wf0(z) 

provided M is bounded (see Proposition 2.6 and Lemma 2.7 in [3]). 

9. Lemma. Let D c Rm be an open bounded set, z e Rm and let Ht stand for 
the linear measure. For Be F define 

g{B) = Hl{Ht{z)nD). 

Then g is a lower semicontinuous function on F. 

Proof. Fix 0 o eF and c < ^(0O). There is a finite number of disjoint closed 
segments contained in H^0(z) n D such that the sum of lengths of these segments 
exceeds c. Obviously, for any 0 e F belonging to a suitably chosen neighborhood 
of 0O we have g(0) > c. 

379 



10. Lemma. Suppose that the set M is not convex. Then there is z e dM with 
dM(z) = i, a Borel set Tz c F, Hm-i(F2) > 0, and a strictly positive real function cp 
defined on Tz such that 

M2 = {z + cp(e)6; 9eTz} 

is a Borel sub'set of dM and s((p(9); z,6) = — 1 for any 9 e F2. 

Proof. Since M is not convex, (9) holds and the set 

{xedM; dM(x) = \) 

is dense in dM (see Lemma 14 in [8]), we can find z e dM with dM(z) = \, 6t e F, 
0 < t° < t1 and r > 0 such that 

Qr(z + t%) c Rm - M , Qr(z + tlex) c M . 

According to the hypothesis v™(z) < oo so that 

(13) nl(09 z) < oo 

for Hw_i - a.e. 0 e F. Let F2 cr F be a Borel set such that Hm_1(r2) = 0 and that 
for each 0 e F - F2 the relation (13) holds. Observe that for these 0's the set H *(z) n 
n M is Hj-equivalent to a finite union of disjoint open segments. Denote 

Fx = {0eF ; ff*(z) n ;Qr(z + t1^) + 0} 

and put Fz = F! - F2. Obviously, Fz is a Borel set and Hm_1(rz) > 0. 

Let us now fix 6 e Tz and put 

cp(9) = sup {t > t°; {z + Q9; QE (t°, t)} n M = 0} . 

Of course, t° < cp(9) < tl and one easily verifies that z + <p(9) 9 is a hit of HiT(z) 
on M and there is 3 > 0 such that 

Ht({z + t9; cp(9) < t < t + 3} - M) = 0 . 

Consequently, s(<p(0); z, 9) = —1 for each 0 e Fz. 

We intend to show that (p is a Baire function on F2. The proof of this fact is pat­
terned after Mafik's proof of Lemmas 27, 28 in [6]. 

For 0 < a < b we denote Qab = Qb(z) - Qa(z) and 

Natb = {9e rz; H1(H,00(z) nM n Qa,b) = b - a] . 

It follows from Lemma 9 (applied to D = M n O^) that Nab is a Borel set. One 
easily verifies that for any c e R1, 

{9eT2; <p(9)<c} = \JNa,i> 
a,b 
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where a, b are rational, t° < a < b < c. We see that q> is a Baire function and the 
function \j/ on F2 x Rl defined by 

H[e,t]) = \<rfe)-t\ 
is consequently a Baire function on F2 x Rl. Consider now the mapping 

$ : f x ( 0 , o o ) - > r - {z} 

defined by 
#([0, *]) =- z + t0. 

Then # is a homeomorphism and $(i/f_i(0)) is thus a Borel subset of Km. Putting 
Mz = ^(i/^_i(0)), we check easily that z, F2, 9, M2 have the desired properties. 

11. Theorem. The following conditions are equivalent to each other: 

(i) M is convex. 

(ii) The operator Wis positive. 

Proof. If M is convex, then evidently s(t; z, 6) ^ 0 for any z e dM, t > 0, 6 e F. 
Consequently, Jr/ ^ 0 on 3M p r o v i d e d / e ^ / ^ O o n dM. 

Let M be non-convex and let z, M2, Fz, cp have the same meaning as in Lemma 10. 
Denote by ft the function equal to 1 on M2 and zero elsewhere on dM. Then, by 
Lemma 10, ft e J1 and since Hm_!(F2) > 0, 

(14) Wf,(z) = f / , (z + ?(0) 0) s(<p(0); z, 0) d / / ^ ! ^ ) = -Hm_,(rz) < 0 

and we conclude that Wis not a positive operator. 

The proof of the theorem is complete. 

12. Remark. Note that if M is not convex and ft has the same meaning as above, 
then Wfi is strictly negative on a set of positive Hm_i measure. Indeed, observing 
that .Q,0(z) n M2 = 0, we assert that Wfx is continuous on .Qfo(z) (cf. Lemma 2.12 
in [3]) and (14) implies that Wft is strictly negative on a ball Q with centre z. 
Hm_ i(.Q n dM) > 0 follows from the proof of Lemma 14 in [8] (see inequality (45)). 

13. Lemma. Suppose that M is bounded and non-convex. Then there is z e dM 
such that 

(15) t£( z) > A dM(z) = \A . 

Proof. Let us take z as in Lemma 10 and le t / , have the same meaning as above. 
We have dM(z) = \ and | /0 - 2 / . | = 1 (recall tha t /0 = 1 on dM). Since Wft(z) < 0 
(see (14)) we conclude 

Wf0(z) < W(f0 - 2/,) (z) = sup {| Wa(z)|; a e ®, \g\ = 1} . 

This yields (15) by (11) and (12). 
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14. Theorem. The following conditions are equivalent. 

(i) v"(z) = A dM(z) for any z e dM. 
(ii) Either M is convex or M' = Rm — M is convex and dM(z) = \ for any 

z e dM. 

Proof. Let us start with the following remark. Since both M and M' are non-void, 
we have v*£(z) > 0 for any z e dM. Consequently, if either (i) holds or dM = \ 
on dM, then the m-dimensional Lebesgue measure of dM is zero. Indeed, in the 
other case, by the well-known density theorem, there would be at least one z e dM 
with dM(z) = 0. It follows that 

(16) dM{z) = 1 - dM(z) , v"'(z) = v™(z), zedM, 

by Proposition 1.6 in [3]. 
First we shall suppose that M is convex. Then, by Theorem 11, FV is a positive 

operator. Consequently, 

^f0(z) = sup{|*Vg(z)|; ge@, \g\ = 1} 

and (i) follows by (11) and (12). 
Let M' be convex and dM(z) = i whenever z e dM = dMf. We have just proved 

that 
v*'(z) = A dM{z) , zedM', 

and (i) is a consequence of (16). This completes the proof of the implication (ii) => (i). 
Suppose now that (i) is true. If M is bounded, then M is necessarily convex, since 

otherwise (i) would be violated in virtue of Lemma 13. It remains to consider the case 
that M is unbounded. In this case M' is bounded and, if non-convex, 

i£(z) = t£'(z) > A dM{z) = iA = A dM(z) 

for a suitable z 6 dM' = dM — a contradiction. We conclude that M' is convex. 
Since we have already established (ii) => (i) we have by (16) 

t£'(z) = A dM{z) = A(l - dM(z)), zedM, 

and, by the hypothesis, 

v%(z) = AdM(z), zedM. 

Using (16) once more, we obtain 

AdM(z) = A(l-dM(z)), 

which yields dM(z) = i for any z e dM. 
The proof of the theorem is complete. 
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15. Remark. Let us note here one easy corollary of the theorem stated in the intro­
duction and Propositions 17 and 25 in [9]: Let G 4= 0 be an arbitrary open bounded 
convex set. If for z e G, \iz stands for the harmonic measure with respect to G and z, 
then \xz and the restriction of Hm-i to dG are mutually absolutely continuous 
measures. 
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