Beloslav Riečan
On the lattice group valued measures

Časopis pro pěstování matematiky, Vol. 101 (1976), No. 4, 343--349

Persistent URL: http://dml.cz/dmlcz/117930

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
ON THE LATTICE GROUP VALUED MEASURES

BELOSLAV RIEČAN, Bratislava
(Received July 7, 1975)

In the paper we study some properties of non-negative lattice group valued measures on topological spaces. Naturally enough, this group is assumed to satisfy a certain regularity condition. Therefore, the first part is devoted to this condition, a generalization of the Alexandroff theorem being proved here. The second part is concerned with the product of measures and the third one with the Kolmogoroff consistency theorem.

1

Let G be an Abelian lattice ordered group, i.e. and Abelian group which is a lattice and which satisfies the implication: $x < y \Rightarrow x + z < y + z$. A group valued submeasure μ is a mapping $\mu : \mathcal{R} \to G$, where \mathcal{R} is a ring of subsets of a space X, non-decreasing, subadditive, $\mu(\emptyset) = 0$ and upper semicontinuous in \emptyset (i.e. $A_n \searrow \emptyset \Rightarrow \mu(A_n) \searrow 0$). An additive submeasure is called measure. (Of course, every measure is σ-additive.)

Definition 1. An Abelian lattice ordered group G is weakly regular*) if it satisfies the following condition: Let $a \in G$, $a > 0$ and let $a_n \searrow O$ ($i \to \infty$), then there are such i_1, i_2, \ldots that

$$a \leq \sum_{j=1}^{n} a_{i_j}$$

for no n.

As an example of a weakly regular group let us take the additive group R of all real numbers. In this case it suffices to choose i_k such that

$$a_k < \frac{a}{2^k}.$$

*) We say "weakly" since there is a stronger notion of regularity used in [5].
Then

\[a \leq \sum_{j=1}^{i} a_j \]

for some \(n \) implies

\[a \leq \sum_{j=1}^{n} \frac{a}{2^j} < a , \]

which is impossible.

Now let us present two less trivial examples.

Example 1. Every linearly ordered group is weakly regular. First we construct the sequence \(\{i_j\}_{j=1}^{\infty} \). Since \(a_i \searrow O \) \((i \rightarrow \infty)\), it is also \(2a_i = a_i + a_i \searrow O \), hence there is \(i_1 \) such that \(2a_i < a \). Similarly there is \(i_2 \) such that \(4a_i^2 < a \) and generally there is \(i_k \) such that \(2^k a_i^k < a \). If \(a \leq \sum_{j=1}^{n} a_j^j \) then

\[
2^a a \leq 2^a a_{i_1} + 2^a a_{i_2}^2 + \ldots + 2^a a_{i_n}^n = \\
= 2^{a-1} 2^a a_{i_1} + 2^{a-2} 2^2 a_{i_2}^2 + \ldots + 1 \cdot 2^a a_{i_n}^n < \\
< 2^{a-1} a + 2^{a-2} a + \ldots + 1 \cdot a = (2^n - 1) a ,
\]

which is impossible.

Example 2. Every regular \(K \)-space is a weakly regular group. A regular \(K \)-space \((\text{see [6] Th. VI.5.2})\) is a linear semiordered space (= Riesz space = \(K \)-lineal) which is relatively complete and such that every sequence of convergent sequences has a common regulator of convergence. If \(b_n \searrow O \), then \(u > O \) is a regulator of convergence of \(\{b_n\}_{n=1}^{\infty} \) iff to any number \(\varepsilon > 0 \) there is \(n_0 \) such that \(b_n < \varepsilon u \) for every \(n \geq n_0 \). Hence \(b_n \searrow O \) is false iff to any \(u > O \) there is \(\varepsilon > 0 \) such that for any \(n_0 \) there is \(n \geq n_0 \) such that \(b_n < \varepsilon u \) is false. Now let \(a_n^i \searrow O \) \((i \rightarrow \infty, \ n = 1, 2, \ldots)\) and let \(u \) be the common regulator of convergence of all \(\{a_n^i\}_{i=1}^{\infty}, \ n = 1, 2, \ldots \). Given \(\varepsilon > 0 \) there is \(i_n \) such that

\[a_n^i < \frac{\varepsilon}{2^n} u . \]

If

\[a = \sum_{j=1}^{n_0} a_j^j < \sum_{j=1}^{n_0} \frac{\varepsilon}{2^j} u < \varepsilon u \]

then \(a < \varepsilon u \) for every \(\varepsilon < 0 \) which is a contradiction since \(a > O \).

In the paper we shall consider only regular measures.

Definition 2. Let \(\mathcal{C} \) be a family of subsets of a set \(X \). We say that \(\mathcal{C} \) is a **compact family** if \(\mathcal{C} \) is closed under finite intersections and every decreasing sequence of non-empty sets of \(\mathcal{C} \) has a non-empty intersection.
Definition 3. Let \mathcal{R} be a ring of subsets of a set X, $\mathcal{C} \subset \mathcal{R}$, \mathcal{C} a compact family. Let $\mu : \mathcal{R} \to G$ be a lattice group valued submeasure. We say that μ is inner regular if to any $E \in \mathcal{R}$ there are such sets $C_n \in \mathcal{C}$ ($n = 1, 2, \ldots$) that $C_n \subset C_{n+1} \subset E$ ($n = 1, 2, \ldots$) and
\[\mu(E - C_n) \searrow 0. \]

The following theorem is a generalization of the Alexandroff theorem. Various other generalizations in the real-valued case are found in [4].

Theorem 1. Let G be weakly regular, σ-complete,*) Abelian lattice-ordered group. Let X be a topological space, \mathcal{R} a ring of subsets of X. Let $\mu : \mathcal{R} \to G$, $\mu(\emptyset) = O$ be monotone, subadditive and inner regular. Then μ is upper semicontinuous in \emptyset.

Proof. Let $A_n \searrow \emptyset$ (i.e. $A_n \supset A_{n+1}$ ($n = 1, 2, \ldots$) and $\bigcap_{n=1}^{\infty} A_n = \emptyset$). We want to prove that $\mu(A_n) \searrow O$. Let us prove it indirectly. Since G is σ-complete, there is $a > O$ such that $\mu(A_n) \geq a$. Since μ is inner regular, to any n there are $C^l_n \in \mathcal{C}$ ($i = 1, 2, \ldots$) such that
\[C^l_n \subset C^l_n+1 \subset A_n \quad (i = 1, 2, \ldots) \]
and
\[\mu(A_n - C^l_n) \searrow O \quad (i \to \infty). \]

Put
\[a_n = \mu(A_n), \quad a^l_n = \mu(A_n - C^l_n) \]
and choose i_1, i_2, \ldots by Definition 1. Now put
\[D_1 = C^l_1, \quad D_2 = C^l_2 \cap C^l_1, \ldots, \quad D_n = C^l_n \cap C^{l_{n-1}} \cap \ldots \cap C^l_1, \ldots. \]

Then $D_n \in \mathcal{C}$, $D_n \supset D_{n+1}$ ($n = 1, 2, \ldots$). We prove that $D_n \neq \emptyset$ ($n = 1, 2, \ldots$):

If $D_n = \emptyset$, then
\[a \leq \mu(A_n) \leq \mu\left(\bigcup_{j=1}^{n} (A_j - C^l_j) \right) \cup \left(\bigcap_{j=1}^{n} C^l_j \right) \leq \]
\[\leq \sum_{j=1}^{n} \mu(A_j - C^l_j) + \mu(D_n) = \sum_{j=1}^{n} \mu(A_j - C^l_j) = \sum_{j=1}^{n} a^l_j \]
which is impossible.

Since $D_n \supset D_{n+1}$, $D_n \in \mathcal{C}$, $D_n \neq \emptyset$ ($n = 1, 2, \ldots$), we have $\bigcap_{n=1}^{\infty} D_n \neq \emptyset$. But $D_n \subset A_n$ ($n = 1, 2, \ldots$), hence also $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$, which is a contradiction.

*) I.e. every bounded countable set has the supremum.
Now we want to prove a theorem on the product of two measures. Usually the product of two measures μ, ν is defined as such a measure λ in the cartesian product that

$$\lambda(E \times F) = \mu(E) \nu(F)$$

for all E, F from the corresponding domains. However, in our general group G we need not have any product. Hence we shall assume that there are given three groups G_1, G_2, G and a mapping

$$\pi : G_1 \times G_2 \to G$$

satisfying some conditions. We shall need the following three simple conditions:

1. $\pi(a + b, c) = \pi(a, c) + \pi(b, c)$, $\pi(a', b' + c') = \pi(a', b') + \pi(a', c')$ for all $a, b, a' \in G_1$, $c, b', c' \in G_2$.

2. If $a \not\in O$, $b \not\in O$, $a \in G_1$, $b \in G_2$, then $\pi(a, b) \not\in O$.

3. If $a_n \not\in O$, $b_n \not\in O$, $a_n \in G_1$, $b_n \in G_2$ $(n = 1, 2, \ldots)$ then $\pi(a_n, b_n) \not\in O$.

Theorem 2. Let \mathcal{R}_1 or \mathcal{R}_2 be rings of subsets of X_1 or X_2 respectively. Let $\mu : \mathcal{R}_1 \to G_1$, $\nu : \mathcal{R}_2 \to G_2$ be inner regular measures. Let G be weakly regular, σ-complete, Abelian, lattice-ordered group. Then there is exactly one G-valued measure λ defined on the ring \mathcal{R} generated by the family $\mathcal{D} = \{E \times F; E \in \mathcal{R}_1$, $F \in \mathcal{R}_2\}$ and such that

$$\lambda(E \times F) = \pi(\mu(E), \nu(F))$$

for all $E \in \mathcal{R}_1$, $F \in \mathcal{R}_2$.

Proof. Define first $\lambda_0 : \mathcal{D} \to G$ by the formula $\lambda_0(E \times F) = \pi(\mu(E), \nu(F))$. Evidently λ_0 is additive, monotone, $\lambda_0(\emptyset) = O$. Hence we can extend λ_0 to a function $\lambda : \mathcal{R} \to G$ by the formula

$$\lambda(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \lambda_0(A_i)$$

where A_i are disjoint sets from $\mathcal{D} (i = 1, \ldots, n)$. The function λ is also additive, nonnegative (and therefore monotone and subadditive). It suffices to prove that λ is upper semicontinuous in \emptyset.

Let $\mathcal{C}_1, \mathcal{C}_2$ be compact families of subsets of X_1 or X_2 respectively. Let \mathcal{C} consist of all finite unions of sets of the form $C \times D$ where $C \in \mathcal{C}_1$, $D \in \mathcal{C}_2$. Then \mathcal{C} is a compact family.

Now let $A \in \mathcal{R}$. Then $A = \bigcup_{i=1}^m A_i = \bigcup_{i=1}^m (E_i \times F_i)$, where A_i are pairwise disjoint.
Since $E_i \in \mathcal{R}_1$ and μ is inner regular, there are $C^n_i \subseteq C^{n+1}_i \subseteq E_i$ $(n = 1, 2, \ldots)$ such that

$$C^n_i \subseteq C^{n+1}_i \subseteq E_i \quad (n = 1, 2, \ldots)$$

and

$$\mu(E_i - C^n_i) \searrow O \quad (n \to \infty).$$

Similarly there are $D^n_i \subseteq \mathcal{C}_2$ $(n = 1, 2, \ldots)$ such that

$$D^n_i \subseteq D^{n+1}_i \subseteq F_i \quad (n = 1, 2, \ldots)$$

and

$$\nu(F_i - D^n_i) \searrow O \quad (n \to \infty).$$

By the third property of π we have

$$\pi(A_i - C^n_i \times D^n_i) = \pi((E_i \times F_i) - (C^n_i \times D^n_i)) \leq \pi(\mu(E_i - C^n_i), \nu(F_i)) + \pi(\mu(E_i), \nu(F_i - D^n_i)) \searrow O \quad (n \to \infty).$$

Put $K_n = \bigcup (C^n_i \times D^n_i) (n = 1, 2, \ldots)$. Then $K_n \subseteq \mathcal{C}_2$, $K_n \subseteq K_{n+1} \subseteq A$ $(n = 1, 2, \ldots)$ and

$$\lambda(A - K_n) = \lambda(\bigcup_{i=1}^{m} A_i - \bigcup_{i=1}^{m} (C^n_i \times D^n_i)) =$$

$$= \lambda(\bigcup_{i=1}^{m} (A_i - C^n_i \times D^n_i)) = \sum_{i=1}^{m} \lambda(A_i - C^n_i \times D^n_i) \searrow O,$$

if $n \to \infty$. Hence λ is regular and the proof is complete.

Remark. A special case of Theorem 2 is Theorem 2 in [3].

3

Let $\{X_t\}_{t \in T}$ be a family of topological spaces. Denote by Γ the set of all finite subsets of T. For any $\alpha \in \Gamma$ put $X_\alpha = \prod_{t \in \alpha} X_t$. If $\alpha, \beta \in \Gamma$, $\alpha \supseteq \beta$ then $\pi_{\alpha \beta}$ denotes the projection $\pi_{\alpha \beta} : X_\alpha \to X_\beta$. Every X_α is a topological space with the product topology and every $\pi_{\alpha \beta}$ is a continuous mapping. Let G be a weakly regular Abelian l-group.

Now we shall assume that we are given a consistent family of inner regular G-valued measures $\{\mu_t\}_{t \in T}$. Of course, regularity is taken with respect to the compact family of compact subsets of the corresponding space. Hence for every $\alpha \supseteq \beta$ and every $E \in \mathcal{R}_\beta$ (\mathcal{R}_β is the domain of μ_β) we have

$$\pi^{-1}_{\alpha \beta}(E) \in \mathcal{R}_\alpha, \quad \mu_\alpha(\pi^{-1}_{\alpha \beta}(E)) = \mu_\beta(E).$$
In this case the projective limit of the projective system \((X_\alpha, \mathcal{R}_\alpha, \mu_\alpha, \pi_\alpha)\) is
\((X, \mathcal{R}, \mu, \pi_\alpha)\), where \(X = X_\alpha, \pi_\alpha\) is the projection \(\pi_\alpha : X \to X_\alpha, \mathcal{R} = \{\pi_\alpha^{-1}(E); E \in \mathcal{R}_\alpha, \alpha \in \Gamma\}\).
\(\mu_\alpha(E) = \mu(\pi_\alpha^{-1}(E)) = \mu_\alpha(E)\). It is not difficult to prove that the definition of \(\mu\) is correct (\(\mu\) does not depend on the choice of \(\alpha\)), \(\mathcal{R}\) is a ring and that \(\mu\) is additive, monotone, \(\mu(\emptyset) = 0\). The only problem is whether \(\mu\) is \(\sigma\)-additive, i.e.

whether

\((X, \mathcal{R}, \mu, \pi_\alpha)\)

is the projective limit of the system in the category of measure spaces (see [1], [2]).

Theorem 3. Let \(G\) be a weakly regular, \(\sigma\)-complete, Abelian l-group. The function \(\mu\) defined above is a measure and \((X, \mathcal{R}, \mu, \pi_\alpha)\) is the projective limit in the category of measure spaces.

Proof. To prove that \(\mu\) is \(\sigma\)-additive it suffices to prove that \(\mu\) is upper semicontinuous in \(\emptyset\). Let \(\mathcal{C}_\alpha\) denote the family of all compact sets in \(X_\alpha\). Put

\[\mathcal{C} = \{\pi_\alpha^{-1}(E); E \in \mathcal{C}_\alpha, \alpha \in \Gamma\}.
\]

Evidently \(\mu\) is inner regular with respect to \(\mathcal{C}\). We prove that \(\mathcal{C}\) is a compact family.

Let \(C_n \in \mathcal{C}, C_n \supset C_{n+1}, C_n \neq \emptyset\) (\(n = 1, 2, \ldots\)). Then \(C_n = \pi_n^{-1}(D_n), D_n \in \mathcal{C}_{\alpha_n}\)

\((n = 1, 2, \ldots)\). The set \(\bigcup \alpha_n\) is countable. Put

\[\bigcup_{n=1}^{\infty} \alpha_n = \{t_1, t_2, t_3, \ldots\}.
\]

Consider the sequence

\[\{\pi(t_1)(C_n)\}_{n=1}^{\infty}.
\]

If \(t_1 \notin \alpha_n\), then \(\pi(t_1)(C_n) = X_{t_1}\). If \(t_1 \in \alpha_n\), then \(\{t_1\} \subset \alpha_n\), hence

\[\pi(t_1)(C_n) = \pi(t_1)\pi_n^{-1}(D_n) = \pi_{\alpha_n(t_1)}(D_n)
\]

and this is a compact subset of \(X_{t_1}\). Moreover, the sequence \(\{\pi(t_1)(C_n)\}_{n=1}^{\infty}\) is decreasing, therefore

\[\bigcap_{n=1}^{\infty} \pi(t_1)(C_n) \neq \emptyset.
\]

Denote by \(x_0^{t_1}\) an element of \(\bigcap_{n=1}^{\infty} \pi(t_1)(C_n)\) and repeat the procedure with the second coordinate \(t_2:\)

\[E_n = \pi(t_2)(C_n \cap \pi(t_1)^{-1}(\{x_0^{t_1}\}))\).
\]

Then \(E_n \supset E_{n+1}, E_n\) is closed \((n = 1, 2, \ldots)\) and \(E_n\) is compact if \(t_2 \in \alpha_n\). Hence

\[\bigcap_{n=1}^{\infty} E_n \neq \emptyset.
\]
Denote by \(x_1^0 \) an element of \(\bigcap_{n=1}^{\infty} E_n \). Repeating this procedure we obtain a sequence
\[
x_1^0, x_2^0, \ldots, x_k^0, \ldots
\]
such that
\[
x_k^0 \in \bigcap_{n=1}^{\infty} \pi_{(tn)}(C_n \cap \bigcap_{i=1}^{k-1} \pi_{(t(i))}^{-1}(\{x_i^0\})) \quad k = 1, 2, \ldots,
\]
hence to any \(n \) there is \(x \in C_n \) such that
\[
x_{t_1} = x_{t_1}^0, x_{t_2} = x_{t_2}^0, \ldots, x_{t_k} = x_{t_k}^0.
\]
Define \(x^0 \) by the following formula:
\[
(x^0)_t = x_t^0 \quad \text{if} \quad t \in \bigcup \alpha_n,
\]
\[
(x^0)_t = \text{an arbitrary element of } X_n \quad \text{if} \quad t \notin \bigcup \alpha_n.
\]
Now we assert that \(x^0 \in \bigcap_{n=1}^{\infty} C_n \).

Take arbitrary \(n \) and \(k \) such that \(\alpha_n \subset \{t_1, \ldots, t_k\} \). We know that there is \(x \in C_n \) such that
\[
x_{t_1} = x_{t_1}^0, x_{t_2} = x_{t_2}^0, \ldots, x_{t_k} = x_{t_k}^0.
\]
Put \(\alpha_n = \{t_{j_1}, \ldots, t_{j_m}\} \). Since \(x \in C_n \), \(\pi_{\alpha_n}(x) \in D_n \) hence
\[
(x_{t_{j_1}}^0, \ldots, x_{t_{j_m}}^0) = (x_{t_{j_1}}, \ldots, x_{t_{j_m}}) \in D_n.
\]
But it follows that \(\pi_{\alpha_n}(x^0) \in D_n \), i.e. \(x^0 \in \pi_{\alpha_n}^{-1}(D_n) = C_n \).

We have proved that \(\mathcal{C} \) is a compact system. By Theorem 1 \(\mu \) is upper continuous in \(\emptyset \), i.e. \(\mu \) is a measure.

References

Author's address: 816 31 Bratislava, Mlynská dolina (Prírodovedecká fakulta UK).