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časopis pro pěstování matematiky, roč. 104 (1979), Praha 

A NEW METHOD FOR OBTAINING EIGENVALUES 
OF VARIATIONAL INEQUALITIES. 

BRANCHES OF EIGENVALUES OF THE EQUATION 
WITH THE PENALTY IN A SPECIAL CASE 

MILAN KUCERA, Praha 

(Received April 8, 1977) 

INTRODUCTION 

We shall consider a real Hilbert space H with an inner product (•, •) and with the 
corresponding norm || • ||. Let K be a closed convex cone in H with its vertex at the 
origine and let A : H -> H be a linear completely continuous symmetric operator 
in H. It will be supposed that A has only simple eigenvalues. We shall seek eigenvalues 
and eigenvectors of the variational inequality 

(I) ueK, 

(II) (Xu - Au, v - u) ^ 0 for all veK 

(i.e., the couples X, u satisfying (I), (II), X real, ||u|| 4= 0). Analogously as in the papers 
[4], [5], we shall study the existence of branches XEi uE of solutions of the penalty 
equation1) 

XEuE - Aue + sfiuE = 0 

defined on <0, + oo) starting at a given eigenvalue X0 and a given eigenvector u0 of 
the operator A and converging to an eigenvalue X^ and to a new eigenvector u^ 
of (I), (II). While general global results of the bifurcation theory were used in [4], 
[5], the aim of this paper is to show that in some special case the existence of the 
above mentioned branches can be proved "elementarily" on the basic of the abstract 
implicit function theorem. In this case, a better information about the branches Ae, ue 

is obtained. A result of this type was announced in [3]. Unfortunately, only very 
special examples satisfying the assumptions of the present theory are known to the 

*) For the properties of the penalty operator 0 see Section 1. 
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author (see Examples 5.1, 5.2). Hence the present paper seems to be only a theoretical 
supplement to [4], where the assumptions are not so restrictive and the nontrivial 
examples are given (see also [5], where the case of branches starting from multiple 
eigenvalues A0 is studied). 

1. TERMINOLOGY, NOTATION 

We shall denote by dK and K° the boundary and the interior of K, respectively. 
The strong convergence and the weak convergence in H will be denoted by -> and ->, 
respectively. 

Definition 1.1. A real A is said to be an eigenvalue of the variational inequality (I), 
(II) if there exists a nontrivial ueH satisfying (I), (II). The point u is called an 
eigenvector of (I), (II) corresponding to A. We shall denote by Av and Ev the set of 
all eigenvalues and eigenvectors of (I), (II), respectively. 

The set of all eigenvalues and the set of all eigenvectors of the operator A will be 
denoted by AA and EA, respectively. 

Definition 1.2. We shall write A e AVtb
 2) if A e Av and there exists an eigenvector 

u e Ev n dK corresponding to A. We shall write A e Ab and A e At if A e AA and there 
exists an eigenvector corresponding to A and satisfying u e EA n dK and ue EAn K°, 
respectively. We shall write A e Ae if A e AA and u$K, — u £ K for the corresponding 
eigenvector ueEA

 3). 
We shall study the eigenvalues A e AVtb. The other eigenvalues of (I), (II) are not 

interesting because they are simultaneously eigenvalues of A. More precisely, we 
have Av\AVtb = At. Some basic properties, relations between the sets Av, AA, AVtb, 
Ai9 Ab, Ae and simple examples illustrating the situation are explained in [4, Section 1] 
in detail. 

Remark 1.1. The general considerations will be illustrated by the following 
example. Let a, b be functions on <0,1>. Suppose that a is continuously differ-
entiable, a ^ y for some y > 0, b is continuous, b > 0 on <0,1>. Denote by H = 
= Wlip, 1) the well-known Sobolev space of all absolutely continuous functions 
on <0,1> vanishing at 0 and 1, the derivatives of which are square integrable over 
<0,1>. Introduce an inner product on H by 

{u, V) = £ au'v' dx for all u,veH 

2) A point X e Avb and X e Ab is said to be a boundary eigenvalue of (I), (II) and a boundary 
eigenvalue of A, respectively. A point X e At and X e Ae is said to be an internal and external 
eigenvalue of A, respectively. 

3) As we have said in Introduction, throughout the whole paper we assume that A has only 
simple eigenvalues. 

296 



(instead of the usual equivalent inner product (u, v) = J^ (u'v' + uv) dx). Set K = 
= {u e H; u(x) = 0, i = 1,..., n}, where xt e (0,1), i = 1,..., n are given numbers 
(n is positive integer). Let us define an operator A by 

[Au, v) = Г buv dx foг all u,vєH. 

The problem (I), (II) is equivalent to a boundary value problem for the second 
order ordinary differential equation with some additional "transmission conditions" 
at the points xt; (see [4, Section 1]). If a, b are constants, then both the eigenvalues 
and eigenvectors of (I), (II) can be calculated elementarily in this special example 
(see [6, Section 1]). 

2. PENALTY OPERATORS 

In the sequel, we shall denote by p a penalty operator corresponding to K, i.e. 
P : H -> H will be a nonlinear continuous operator such that 

(P) Pu = 0 if and only if u e K. 

The following assumptions about the operator /? will be considered. 

(CC) /? is completely continuous; 

(D) /? is differentiate on H \K in the sense of Frechet; 

(M) p is monotone, i.e. (Pu — Pv, u — v) ^ 0 for all u,ve H; 

(P, K°) if u e K°, v $ K, then (Pv, u) =f= 0; 

(BC) if sn > 0, une H, {e„Pun} is bounded, then there exists a strongly convergent 
subsequence of {enpun}; 

(SE) for each fixed ueH\K, e ~ 0, a linear operator P'(u) is symmetric and all 
positive eigenvalues of A — e P'(u) are simple.4) 

Moreover, we shall consider the following assumption about the connection between 
the solution of the nonlinear equation with the penalty and the corresponding 
linearized equation (R > 0, A2 > Ax are given): 

(NL) If A e (Au A2>, e e <0, R}, u e H \K, v e H, \\u\\ = ||t;|| = 1, 

(i) Xu - Au + epu = 0, 
(ii) Xv — Av + e P'(u) (v) = \iu for some real fi, then (u, v) -# 0. 

Remark 2.1. Let us consider the example from Remark 1.1. Introduce penalty 
operators Pa (a e <0,1> is a parameter) defined by the formula 

(2.1) (pau, v) = - £ \u(xtf u~(xt) v(xt) for all u,veH, 
*--i 

4) We denote by fi' the Frechet derivative of 0. 
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where u~~ denotes the negative part of м. It is easy to see that ßл fulfils the assumptions 
(P), (CC), (M), (ß, K°), (BC) for each a є <0,1> but in the case n > 1 thc con-
dition (D) is satisfied only for a > 0. Notice that for a = 0 the operator ß0 is positive 
homogeneous (i.e. ß0(tu) = t ß0(u) for t > 0, u є H) which is a very useful propeгty 
for the further considerations. Unfortunately, we can use the operator ß0 only in 
the case n = 1 when (D) is satisfied also for a = 0. In the case n > 1, we shall 
approximate ß0 by ßa with small a (see Sections 4, 5). 

Remark 2.2. Let us show that the assumption (SE) is fulfilled in the example 
from Remark 1.1 with the operator ßa defined by (2.1) (for an arbitrary a є (0,1> 
fixed and in the case n = 1 also for a = 0). First, we shall consider the case a > 0. 
We have 

(ß'x(u) (v), w) - (1 + a) t u~(XiУ v(Xi) w(Xl) 
І = l 

for all u9 v9 w є Я. The first part of the condition (SE) is obvious. Now, let X be 
a positive eigenvalue and v the corresponding eigenvector of the operator A — & ßř(u) 
(with fixed ueH and s > 0). Then 

Г 1 n 

(2.2) (Xav'w' - bvw)dx + £ cřu(xf) w(xг) = 0 for all weH 
Jo -=i 

whereCf = є(l + a)м~(xř)
a. DenotingbyxXíthecharacteristicfunctionoftheinterval 

<0, x£>, the integration by parts yields 

Xav' + \bv d í - f] cř v(xř) x*. w' dx = 0 for all w є Я 

and this impHes 

Xav' + \bv àt - J! î 4*0 X*i = c 

Jo *-i 

with some constant C. It is clear from here that v has a continuous second derivative 
on (xi9 x l+1), î = 0,..., n9 and 

(2.3) .,(*.-)_-/(,.+)_£«!& 
/ a[Xi) 

where we denote v'(xt±) = lim Í;'(X). If we have two eigenvectors vl9 v2, then we 

can choose a nontrivial combination v = t^v^ + t2v2 such that i;'(0) = 0. It follows 
from (2.2) that v is a solution of the equation X(av')' + bi; = 0 on the intervals 
(xř, x í + 1 ) . Hence in virtue of the initial conditions it is v =. 0 on (0, x^). This together 
with the continuity of v gives v(xľ) = 0, (2.3) irhplies the continuity of v' at x^ and 
v'(xľ) = 0. An analogous argument can be used for (xl9 x2) etc. Afteг a finite number 
of steps we obtain v =s 0 on <0,1>, i.e. vl9 v2 aгe Unearly dependent and X is a simple 
eigenvalue. Analogously for a = 0, n = 1 but for u(x^) ф 0 only. 
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Remark 2.3. It follows from (CC) that ß'(u) is a completely continuous linear 
mappingfor each ueH\K. 

Remark 2.4. If ß is positive homogeneous and satisfies (CC), (SE), then (NL) is 
fulfilled with Д = +00, Лt = 09 Л 2 = + c o . Indeed, we have ß\u)(u) = ß(u)9 

i.e. v = и is a solution of (ii) with џ = 0 and џ # 0 in (ii) is impossible as is seen 
from the Fredholm alternative and (SE). 

3. BRANCHES OF EIGENVALUES AND EIGENVECTORS 

Lemma 3.1. Let us suppose that the assumptions (CC), (D), (SE) and (NL) are 
fulfilled with some R > 0, zl2 > At > 0. Consider real numbers e0 e <0, R}9 

Aeo e (Al9 A2y such that there exists ueoeH satisfying the conditions ||t*8o|| = 1, 

(3.1) A£0weo - Aueo + e0pueo = 0 . 

Then there exists S > 0 and a neighbourhood U of the point [Xeo9 ueo] in the space 
R x H such that for each ee(e0 — <5, e0 + 5) there is a unique couple [Ae, u j e U 
satisfying the conditions 

(a) Ikll = * > 
(b) Xeue - Aue + epue = 0. 

Moreover, the functions ke9 ue defined in this way are differentiable on (e0 — <5, 
£o + S). 

Proof. Let us define a mapping F:RxHxR->HxR by 

F(X9 w, e) = [Xu - Au + ejSu, ||w||2 - 1] . 

This mapping is Frechet differentiable and for its partial derivative with respect 
to the variables \X9 u] we have 

*[A...](A, "> «) 0*> ») = Dm + A» - i4» + c j?'(M) 00> 2(w> »)] • 

Let us show that F^tU}(Xeo9 ueo9 e0) as a linear mapping ofRxH into If x B is an 
isomorphism. Let [w, £] 6 if x W be an arbitrary point. We shall show that there 
exist \il9 \i0 e R9 vl9 v0eH9v0 4= 0 such that 

Vlue0 + KV1 ~ Avl + 60 P'(ueo) (vi) = w » 

Â oWeo + - V o - -4»0 + e0 j8 ' (MJ 0>o) = 0 . 

If Afi0 is an eigenvalue of the linear completely continuous operator .A - e0 P'(ueo) 
(see Remark 2.3) corresponding to an eigenvector v9 then we set v0 = v and /z0 = 0. 
The existence of fil9 vx is a consequence of the fact that the operator AeoJ — A + 
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+ e0 fi'(ueo) maps H onto v0
 5) (which follows from the assumption (SE) and the 

Fredholm alternative) and that u£0 $ v0 (with respect to the assumption (NL)), i.e. 
vo © uB0 = H. If Xeo is not an eigenvalue of A - e0 P'(uBo), then XBoI - A + e0 p'(uBo) 
maps H onto H and the existence of/i0, jxu v0, v1 follows immediately. Further, the 
assumption (NL) implies (w£o, v0) 4= 0 and therefore there exists rj e R such that 
2(weo, vt + rjv0) = £. If we set /i = ^ + f?/i0, v = vx + iyt?0, then 

F[A,«](40> w80J «o) 0*. v) = 0> £] • 

Thus, the mapping FiXfUl(XBo, w£o, e0) maps R x H onto H x R. Further, suppose 

FixA^ we0>
 eo) (n, v) = 0 for some ^, v . 

Then . 

MWfi0 + Kov - Av + e0 P'(u*o) (v) = ° > (Mao> ^) = 0 . 

The case v + 0 is not possible with respect to (NL) and it is clear that the case v = 0, 
\i 4= 0 is impossible, too. Thus, we have \i = 0, v = 0. Hence, the mapping 
[̂A.tOv'W M«o> eo) is one-to-one, i.e. it is an isomorphism. Now, we can use the abstract 

implicit function theorem for F at the point A£0, w£o, e0 (see [2]). This implies the 
assertion of Lemma 3.1 because the equation F(A£, u£, e) = 0 is equivalent to the 
conditions (a), (b). 

Lemma 3.2. Let the assumptions (P), (P, K°) be fulfilled. Suppose A(1), A(2) 6 Ah 

0 < A(1) < A(2), Ab n <A(1), A(2)> = 0. Suppose that A£, w£ are continuous func­
tions6) on a certain interval <0, et) satisfying the conditions (a), (b) for all e e 
e <0, et) and such that A(1) < A0 < A(2), u0$K. Then the following conditions 
are valid for all e e <0, ex): 

(c) M K , 

(d) A(1) < A£ < A(2). 

Proof:7) Denote e0 = inf {e e <0, e^; A£ satisfies (d) on (0, e)}. We have A(1) < 
< A0 < A(2), A£ is continuous and therefore e0 > 0. The condition (c) for the interval 
<0, e0> (or <0, e0) in the case e0 = ex) follows from the assumption that Ab n <A(1); 
A(2)> = 0. Indeed, if (c) is not true on <0, e0>, then there exists e € <0, e0> such that 
ut € dK. The conditions (P), (b) imply that Ag is an eigenvalue of A with an eigenvector 

5) v0 denotes the orthogonal complement to v0 in H. 
6) We shall denote by Xe a real function and by ue an abstract function of the variable s with 

values in H. 
7) Lemma 3.2 is a special case of Lemma 2.3 from [4]. For the completness, we give here the 

proof corresponding to our special situation. The main ideas are the same as those in [4], but the 
procedure is simpler. 
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Mg, which is not possible. Now, let us consider £0 < et. Then we have Xeo = A(0 with 
i = 1 or i = 2. We obtain 

A(°M£0 - AM£0 + eopueo = 0 , 

A ( 0M ( 0 - AiM(0 = 0 , 

where w(0 eK° is an eigenvector corresponding to the interior eigenvalue X{i). This 
implies 

A(i,(".„, «<'>) - (Auw u<">) + e(fiuw u<'>) = 0 , 

A(i)(«(0, «J - (Au(i>, uj = 0 

and therefore (with respect to the symmetry of A) we obtain (/?M£0, M (0) = 0. 
However, this contradicts the assumption (p, K°) because we have ueo $ K (the con­
dition (c) is proved for e e <0, e0}) and M(0 G K°. 

Theorem 3.1. Suppose that X(1\ A(2) e Ai9 A(0) e AA is an eigenvalue corresponding 
to an eigenvector M(0) $K of A and 0 < A(1) < A(0) < A(2), A„ n <A(1), 2(2)> = 0. 
Assume that the assumptions (P), (CC), (D), (P, K°), (SE) and (NL) are satisfied 
with some R > 0 and Ax = 2(1), zl2 = Xi2). Then fhere exist differentiable functions 
Xe9 ue on <0, R) such that X0 = >l(0), u0 = M(0) and (a), (b), (c), (d) hold for all e e 
e <0, R). 

Proof. Let us denote 

E = {e e (0, R); there exist continuous functions Xe9 ue on <0, e> such that 

A0 = A(0), M0 = M(0), (a) - ( d ) hold on <0, e>} . 

Clearly E #= 0 because Lemma 3.1 can be used with £0 = 0, X0 = Xm
9 M0 = M(0). 

It follows from Lemmas 3.1, 3.2 that the set E is open in <0, R}. We shall show that E 
is closed as well. Let ene E (n = 1,2,...), en -> e0. With respect to the conditions 
(a), (d) holding for each en we can suppose (passing to suitable subsequences if 
necessary) that Xtn -• Xeo, uBn -*- M£O for some real Xeo e <A(1), A(2)> and M£O 6 if. 
Moreover, with respect to the complete continuity of A and to the assumption (CC) 
we can suppose that the sequences {AuEn}9 {fiuen} are strongly convergent. Now, the 
equations 

Xeuen - ^M£n + en/Suen = 0 

together with (d) imply that {M£J is strongly convergent, i.e. M£W -* M£O, and 

kQK " Aa* + fio^0 = 0. 

Further, Lemma 3.1 can be used for s0, M£0 = M£O, Xeo = I£o. This Lemma ensures 
the existence and local unicity of differentiable functions Xe9 uB satisfying (a), (b) 
on a certain interval (e0 — 59 e0 -f 5). The local unicity of such functions together 
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with w,n -+ uK0, XBn -+ Xeo imply wgn = uBn, XBn = XBn for all n > n0, n0 a suitable posi­
tive integer. Further, with respect to the continuity of XB, uB on <0, e0), it is necessarily 
Xt = Xe9 ue = Ug for all e e (e0 — 5, e0) with some <5 > 0. Hence, the functions XB, ue 

defined as Xeo = XBo, uBo = ueo at e0 are continuous on <0, s0>. Moreover, the func­
tions XB, ue defined as Xe = Xe, uB = ue for e e <£0, e0 + 6) satisfy the assumptions of 
Lemma 3.2 and we obtain in particular (c), (d) for e = e0. We have proved that the 
set E is closed and open in <0, R} and therefore E = <0, JR>. Moreover, Lemma 3.1 
can be used for an arbitrary e e <0, R) which yields the differentiability of the 
functions Xe, uB. 

Lemma 3.3. Let X(1), X(2) e At, 0 < A(1) < X{2) and let the operator p satisfy the 
assumptions (P), (M), (BC). Suppose that there exist en > 0, Xn e (A(1), X(2)) and 
un$K°*such that \un\ = 1 (n = 1, 2, . . . ) , eB-> +co and 

(3.2) Xnun - Aun + ejun = 0 . 

Then there exists a sequence {rn} of indices such that rn -> + oo, Xrn -> X^, uTn -> w^, 
w/iere X^ e AVb n (A(1), A(2)) and w^ is an eigenvector of (I), (II) corresponding 
to AQO, WOO 6 ^K. If {rn} is an arbitrary sequence of indices such that rn -> + oo, 
Kn ~* X^, urn ~-. Woo /0r some X^, u^, then X^ e Av>b n (A(1), A(2)), w^ is an eigen­
vector of (I), (II) corresponding to X^ and uTn -• u^, u^ e dK. 

Proof. See [4], Lemma 2.4. 

Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled with R = +oo and 
let the assumptions (P), (M), (BC) be satisfied. Then there exist differentiate func­
tions Xe, ue on <0, +oo) such that X0 = A(0), w0 = w(0) and (a) - ( d ) hold for each 
ee<0, +oo). Moreover, there exists a sequence {en} such that en > 0, en -> +oo, 
Kn ~+ 4°A uSn -> w(0), where A(

00
)) e AVfb n (A(1), /l(2)) and w(

0
)) 6 3K w an eigenvector 

of (I), (II) corresponding to A(
00

)). i / {en} is an arbitrary sequence such that en > 0, 
en -» +oo, A,n -» Aoo, w8n — Woo for some Xm, MW, then X^ e AK)ft n (A(1), A(2)), u a 

is an eigenvector of (I), (II) corresponding to X^ and we have uBn -> w^, MM e 3K. 

P roof follows directly from Theorem 3.1 and Lemma 3.3. 

Remark 3.1. Theorem 3.2 has no good sense for examples of the types mentioned 
in Remarks 1.1, 2.1, 2.2, because it is applicable only in the case of a positive homo­
geneous penalty operator (cf. Remark 2.1, 2.4), and we shall prove a stronger result 
for this special case (Theorem 3.3). In the cases when a positive homogeneous penalty 
operator cannot be used directly, we shall approximate it and use Theorem 3.1 with 
a finite R for its approximations (see Sections 4, 5). 

Remark 3.2. Let us consider the situation of Theorem 3.1 or 3.2. It follows from 
(a), (b) that 

Xe = (Aue, ue) - e(pue, ue). 
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Let us calculate the derivative Xe of the function Xe with respect to e. Using the sym-
metry of A, we obtain 

(3.3) Xв = 2(Aue, ùe) - (ßue, ue) - e(ß'(ue) (ùe), ue) - e(ßue, ùe). 

Let us suppose that the operator ß is positive homogeneous. Then we have ß'(u) (u) = 
= ßu for each ueH,uфK. Moreover, let us consider the symmetry condition 

(S) (ß'(u) (v), w) = (ß'(u) (w), v) for all u,v,weH, uфK. 

Then (3.3) together with (b) and (S) gives 

Xe = 2 Xe(ùE, ue) - (ßue, ue) . 
But we have 

with respect to (a), i.e. 

2(Ů£,И.) = І ( | K И = 0 
de 

kc = - (ßue, u.) = 0. 

Hence, the function Afi from Theorem 3.1 or 3.2 is decreasing. Remember that if /? 
is positive homogeneous, then the assumption (NL) is fulfilled with R = +oo, 
At = 0, A2 = +oo automatically (see Remark 2.4). Moreover, it is easy to see 
from the proof of Theorems 3.1, 3.2 that with respect to the monotonicity of Xe in 
our special situation, the eigenvalue A(2) is unnecessary in the assumptions, because 
A(0) itself is an upper bound for Xe. More precisely, using this remark, we can prove 
the following assertion in the same way as Theorem 3.2. 

Theorem 3.3, Let A(0) be an eigenvalue of A corresponding to an eigenvector 
u(0)£K, let A(1)eA;, 0 < A(1) < A(0). Suppose that /? is positive homogeneous, 
the assumptions (CC), (D), (P), (P, K°), (SE), (M), (BC), (S) are fulfilled and 
Ab n <A(1), A(0)> = 0. Then there exist differentiate functions Xe, ue on <0, +oo) 
such that X0 = A(0), u0 = u{0\ Xe is decreasing and (a)-(d) with A(2) = A(0) aret 

valid. We have lim Xe = A(^), where A^ e AVtb n (A(1), A(0)). There exists a sequence 
e-+ + oo 

{ej such that en > 0, en -» + oo, uBn -* u{£\ where u(0) e dK is an eigenvector 
corresponding to A(0). If {en} is an arbitrary sequence, en > 0, e„ -> + oo, uSn -* u^ 
for some u^, then ue -» u^, ŵ  e 8K and u^ is again an eigenvector corresponding 

Remark 3.3. Theorems 3.2 and 3.3 give a "new" eigenvector u(0) of the variational 
inequality, which is not an eigenvector of A. It follows from the assumption that 
Ab n <A(1), A(2)> = 0 and Ab n <A(1), A(0)> = 0, respectively. In general, it does not 
follow from our consideration that A(

0̂
) is a new eigenvalue: It can happen that 

A(
0̂

) € Av>b n zle, i.e. A(^} is simultaneously an eigenvalue of A corresponding to the 
eigenvectors u$K, -u$K, ±u 4= t*^, which cannot be eigenvectors of (I), (II) 
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(cf. [4, Remark 1.2, Example 1.1]). Nonetheless, in the examples, Theorem 3.3 is 
applicable only if K is a halfspace (i.e. n = 1 in the examples of the type mentioned 
in Remark 1 J ) and in this case there are only interior eigenvalues of A in <A(1), A(0)> 
because u £ K, — u $ K is not possible. Thus, with respect to the simplicity of interior 
eigenvalues of (I), (II) (see [4, Remark 1.4]), Theorem 3.3 yields also a "new" eigen­
value A(^) of (I), (II) which is not an eigenvalue of A, i.e. A(

0̂
) e AVA9 A(^ $ AA. 

Remark 3.4. It is clear that if ueK°9 then —u$K. Hence, we can choose an 
arbitrary point from At for A(0) in Theorems 3.2, 3.3. Especially, if the set At contains 
infinitely many positive numbers, then the set AVfb contains infinitely many points 
converging to zero. Indeed, there are two possibilities: 1) Ab contains infinitely many 
points and these are also in Avb (see [4, Remark 1.2]); 2) Ab is a finite set and then 
Theorem 3.2 (or 3.3) can be used for infinitely many triplets A(1), A(0), A(2) (or couples 
A(1), A(0)) of eigenvalues. An arbitrary infinite sequence of eigenvalues of A converges 
to zero and therefore the resulting sequence of eigenvalues from AK6 converges to 
zero as well (because we have either A^ e (A(1), A(2)) or A£> G (A(1), A(0))). 

An analogous assertion will be discussed in detail later in a more general case 
(Theorem 4.3, Remark 4.4). 

Remark 3.5. It is easy to see that the assertion of Theorem 3.3 is true if the 
assumption (SE) is replaced by 

(SE') for each fixed ueH\K, e > 0, a linear operator p'(u) is symmetric and all 
eigenvalues of A — e fi'(u) lying in (A(1), A(0)) are simple. 

Similarly for Theorem 3.2. In this case we can suppose A(1) < A(0) < 0 instead of 
0 < A(1) < A(0) in Theorem 3.3. Similarly for Theorem 3.2 and for all the previous 
assertions. i 

4. NON-DIFFERENTIABLE PENALTY OPERATORS 

In this section we shall consider a penalty operator /? which is not differentiable 
on H \ K. We shall suppose that there exists a sequence {/?„} of differentiable operators 
in H such that each of them satisfies roughly the assumptions of the previous con­
siderations and such that the following convergence condition is fulfilled for this 
sequence: 

(SCC) if {un} is bounded, then {finun} contains a strongly convergent subsequence; 
if un -* w, then finun -* fiu. 

Theorem 4.1. Suppose that A(1), A(2) e At and that A(0) e AA is an eigenvalue 
corresponding to the eigenvector uw $K of A, 0 < A(1) < A(0) < A(2), Ab n 
n <A(1), A(2)> =- 0. Suppose that p, fl„ (« = 1, 2,...) are operators satisfying 
(SCC), P„for each fixed n fulfils the assumptions (P), (D), (CC), (p, K°), (SE) and 0 
satisfies the conditions (P) and (p, K°). Suppose that for each R > 0 there exists n0 

such that the condition (NL) is valid with R, At = A(1), A2 == A(2) and with pn 
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instead of P for each fixed n ^ n0. Then for each e^O there exists at least one 
couple kt, w£ satisfying the conditions (a) —(d). 

Proof. Let e be an arbitrary fixed positive number. We can take n0 such that (NL) 
holds with R = e + 1, At = A(1), A2 = 2 (2 ) for each fin9 n = n0. Theorem 3.1 
implies that there exist Xne9 un>B such that ||wn>£|| = 1, w„>££K, Xn) < k„te < 2 (2) 

and 

x4-1) K,^n,E ~ AuntB + epnun>e = 0 

(n ^ n0). With respect to the assumption (SCC), there is a subsequence {rn} of indices 
such that the sequence {/?rnwrn.£} is strongly convergent. Moreover, we can suppose 
Kn,t -* K> urn,E-*ue ( a s n ~* + 0 0 ) f° r sorne A£ e <2(1), A(2)>, uBeH. It follows 
from here and (4.1) (in virtue of the complete continuity of A) that uTnB -> w£. This 
implies (a). Passing to limit n -» + oo in (4A) and using (SCC) we obtain (b). We have 
wfn>£ £ K, wrn£ -> w£ and therefore w£ £ K°. However, the case w£ e dK is not possible. 
Indeed, if w£ e dK, then we have jSw£ = 0 and the equation (b) implies that Xe e Ab, 
which contradicts the assumption that <A(1), 2(2)> n Ab -= 0. Hence (c) is proved. 
If (d) is not valid then we have XB = A(0 with i -= 1 or i = 2. Using the same argument 
as in the proof of Lemma 3.2, we obtain a contradiction, which proves (d). 

Theorem 4.2. Let us consider the situation of Theorem 4.L Moreover, suppose 
that the operator /? satisfies the conditions (M), (BC). Then there exists a sequence 
{en} such that en > 0, 

£ „ - > + o o , ^ , - A 2 > , u f c - a 2 > , where 4°> e ,1 K , 6 n (A<», A<2>) 

and w(^) e 3X is fhe corresponding eigenvector of (I), (II). i / {en} is an arbitrary 
sequence such that en > 0, en -• -f-oo, -4£n -» k^, uBn —- w^, then also k^ e Av$b n 
n (A(1), A(2)) and w^ is the corresponding eigenvector 0/(1), (II), w^ e dK, utn -* MM. 

P roof follows immediately from Theorem 4.1 and Lemma 3.3. 

Remark 4.L Theorem 4.2 gives a "new" eigenvector w ^ of the variational ine­
quality, i.e. w(^) cannot be an eigenvector of the operator A. It is a consequence of the 
assumption that Ab n <A(1), A(2)> = 0. Nonetheles, it does not follow from our 
considerations that A(0) is a "new" eigenvalue of (I), (II): it is possible that A™ e 
G Av>b n Ae, i.e. it is possible that there exists an eigenvector w of A corresponding 
to A(£)

9 u$K, -u$K, ±u 4= w(
cr

0), which is not simultaneously an eigenvector 
of (I), (II) (see [4, Remark 1.2, .Example 1.1]; cf. Remark 3.3). 

Remark 4.2. If we know that (A{1), A{2)) n Ae = 0 (i.e., in particular, - w(0) e K°), 
then the situation mentioned in Remark 4.1 is impossible. With respect to the 
simplicity of interior eigenvalues of the variational inequality (see [4, Remark 1.4]) 
A^ can not be an eigenvalue of A, i.e. Theorem 4.2 gives a "new" eigenvalue and 
a "new" eigenvector of (I), (II). 
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Remark 4.3. Let us suppose that the assumptions of Theorem 4.2 are satisfied. 
Moreover, suppose that A(0) e Ae and denote by u the corresponding eigenvector 
of A. Then w§ have u 4 K, — u £ K. If we set w(0) = u and w(0) = — u in Theorem 4.2, 
respectively, then we can obtain the same eigenvalue A^ and eigenvector u^K' 

Theorem 4.3. Let us assume that /?, fin (n = 1,2,...) are operators satisfying 
(SCC), pttfor each fixed n fulfils the assumptions (P), (D), (CC), (p, K°), (SE) and p 
satisfies the conditions (P), (p, K°), (M), (BC). Assume that for each R > 0, A2 > 
> Ax > 0 there exists n0 such that the condition (NL) is valid with R, Al9 A2 and 
with pn instead of P for each fixed n ^ n0. Suppose that the set Atu Abn (0, 4- oo) 
contains infinitely many points. Then there exists an infinite sequence of boundary 
eigenvalues of (I), (II) converging to zero. 

Proof. If Ab contains an infinite sequence, then the assertion is clear. Let us suppose 
that Ab is a finite point set. Under our assumptions, there is an infinite sequence 
{An} c Ai9 kn> kn+u n = 1, 2 , . . . . For each n there exists an eigenvalue Xv

n e 
G AVtb n (An+2, A„), n = 1, 2 , . . . . Indeed, if (for a given n) there exists l„e Ab n 
n {K+2> K)> then we can set kv

n = ln) in virtue of Ab c AVtb. If (for a given n) 
Ab n (AB+2, An) = 0, then also Ab n <A„+2, A„> = 0 (because A„ e Ai9 At n Ab = 0) 

(0 ) 
u П+U and we can use Theorem 4.2 with A(1) = Art+2, A

(0) = An+1, A
(2) = A„, w 

where un+1eK° is an eigenvector of A corresponding to A„+1, and set kv

n = A(^). 
With respect to the fact that each infinite sequence of eigenvalues of A converges 
to zero, the resulting sequence of boundary eigenvalues of (I), (II) converges to zero 
as well. 

Remark 4.4. Suppose that At contains infinitely many positive numbers and Ab 

is a finite point set. Then Theorem 4.3 ensures the existence of infinitely many 
"new" eigenvectors of (I), (II), which are not eigenvectors of A. This follows from the 
proof of Theorem 4.3 and Remark 4.1. If, moreover, Ae is a finite point set, then 
Theorem 4.3 ensures also the existence of an infinite sequence of "new" boundary 
eigenvalues of (I), (II), which are not eigenvalues of A. This sequence converges 
to zero. This follows from the proof of Theorem 4.3 and Remark 4.2. It is easy to 
see that the assumptions can be modified for the investigation of negative eigenvalues 
(cf. Remark 3.5). 

5. VERIFICATION OF THE CONDITION (NL). EXAMPLES 

First, we shall consider the general operators j?„, /? from the previous section. 
Moreover, we shall assume that the following conditions are fulfilled: 

(5.1) if {un} is bounded, then there exists a sequence {rn} of indices such that 
rn -• -f- oo, firjun) -*/ in the strong operator topology, where / : H ~» H is 
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a linear completely continuous symmetric operator such that all positive 
eigenvalues of A — ef are simple for each fixed e > 0. 

(5.2) if {un}, {vn} are bounded, then there exists a strongly convergent subsequence 

of {^(«.) (»-)}• 

Remark 5.L If we consider the situation from Remark 1.1, then we can choose 
an arbitrary sequence {a„}, awe(0, 1), a„ -> 0 and take the operators Pan from 
Remark 2A as pn (n = 1, 2, . . . ) , p = p0. It is easy to see that (5.1), (5.2) are fulfilled. 

n 

(The operator f is of the type (f(u), v) = £ ct u(x() v(x() and the proof of the simplic-

ity of eigenvalues of A — ef is the same as that in Remark 2.2.) 

Remark 5.2. Let p be a positive a-homogeneous (a > 0) operator, i.e. p(tu) = 
= f fiu for all t > 0, u e H. If P is differentiable in the sense of Frechet at a point 
u e H, then a/?w = P'(u) (u). This follows from the definition of the derivative. 

Lemma 5.1. Let the operators P, P„ (n = 1, 2, ...) satisfy the assumptions (SCC), 
(5.1), (5.2). Suppose that the operator fin is positie (l + ain)-homogeneous wit)\ 
(xn > 0, (n = 1, 2, . . .) , a„ -> 0. Then for each Au A2, R, A2 > At > 0, R > 0 
there exists n0 such that (NL) is satisfied with Al9 A2, R and with Pn instead of p 
for an arbitrary fixed n _ n0. 

Proof. Let us suppose the contrary. Then there exist A2 > Ai > 0 R > 0, 
Xn e <A1? A2}, en e <0, K>, une H\K, vne H, ixne R, rn > 0(n = 1,2,...) such that 
||ttB|| = ||v„|| = 1, (un, vn) = 0, rn -» +oo and 

(5.3) ^ Xnun - Aun + enprun = 0 , 

(5.4) knvn - Avn + enprn(un) (vn) = \inun . 

We can suppose Xn -• A, e„ -> e. With respect to the assumption (SCC) and the com­
plete continuity of A we can suppose that the sequences {j8rnwn}, {Aun} are strongly 
convergent and therefore (5.3) implies un -> u for some we H. Using the assumption 
(5.2) we can suppose that {P'rn(un) (vn)} is strongly convergent. The equation (5.4) 
implies that fin is bounded and that we can suppose vn-+ v for some ve H. The 
operator pn is supposed to be positive (1 + a„)-homogeneous and therefore (5.3) 
can be written as 

(5.3') knun - ^tu„ + en(l + a j " 1 pf
rn(un) (un) = 0 

(see Remark 5.2). With respekt to (5.1) we can suppose P'rn(un) - » / and passing to 

the limit n -» + oo in (5.30, (^-*) w e 0 D t a i n 

(5.5) ku - Au + ef(u) = 0 , 

(5.6) Xv — Av + e/(t;) = i"" -
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However, the linear symmetric completely continuous operator A — sf has only 
simple eigenvalues (see (5.1)) and therefore XI - A + sf maps H onto w1 by the 
Fredholm alternative. Hence (5.6) can be satisfied only with \i = 0, v = tu. But we 
have (w, v) ="0, ||w|| = ||v|] = 1 and this is a contradiction. 

Example 5.1. Let us consider the example described in Remark 1.1. First let us 
consider the case n = 1, i.e., K is a halfspace. The assumptions of Theorem 3.3 
are fulfilled for the operator /? = fi0 defined in Remark 2.L The assumption (SE) 
was discussed in Remark 2.2, (NL) follows from Remark 2.4, the other assumptions 
are obvious. The following assertion follows from here and from Remark 3.3: 
If A(1), X(0) (0 < X(1) < X(0)) are eigenvalues of A corresponding to eigenvectors 
w(1), w(0), uw(xt) > 0, w(0)(x1) < 0 and if u(xx) 4= 0 for all eigenvectors correspon­
ding to the eigenvalues X e <A(1), X(0)} of A, then we obtain a "new" eigenvalue 
X(0) e (X(1), X(0)) and the corresponding "new" eigenvector w(0) of (I), (II) such that 
w(0)(x1) = 0, which are not an eigenvalue and an eigenvector of A. Further, Remark 
3.4 implies that there exists a sequence converging to zero of eigenvalues of (I), (II) 
such that the corresponding eigenvectors satisfy the condition u(xx) = 0. 

Let us consider the case n > 1. Choose art e (.0, 1) (n = 1,2,...) such that an -> 0. 
If we take the operators Pan defined by (2.1) as /?„ and /? = /?0, then these operators 
satisfy the assumptions of Theorems 4.2, 4.3. The assumption (SE) was verified in 
Remark 2.2, the assumption concerning the condition (NL) follows from Lemma 5.1 
and the other assumptions are obviously fulfilled. It follows from here and from 
Remarks 4.1, 4.2 that the following assertion is true: 

If X(1), X(0)
9 X(2) (0 < X(1) < X(0) < X(2)) are eigenvalues of A corresponding to 

eigenvectors w(1), w(0), w(2) such that 

w(1)(*;) > 0 , w(2)(xf.) > 0 for all i = 1, ..., n , 

u(0)(xj) < 0 at least for one j 

and if there is no eigenvector w corresponding to the eigenvalue X e <A(1), A(2)> of A 
and satisfying the conditions 

w(xf) = 0 for all i = 1,..., n , w(xy) = 0 at least for one j , 

then there exists an eigenvalue X(0) e (X(1), X(2)) of (I), (II) and a "new" eigenvector 
u™ of (I), (II) corresponding to X(0) such that 

u<£Xxj) = 0 at least for one I . 

This eigenvector is not an eigenvector of .A. If, moreover, there is no eigenvector of A 
corresponding to the eigenvalues X e <A(1), X(2)} satisfying the condition u(x() < 0 
at least for one i; u(xj) > 0 at least for one I (i.e. there are only interior eigenvalues 
in <A(1), A(2)>), then X(0) is a "new" eigenvalue, i.e. it is not an eigenvalue of A. 
Further, if there is an infinite sequence of eigenvectors of A satisfying the condition 

w(Xf) > 0 for all i = 1,..., n , 
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then Theorem 4.3 ensures the existence of a sequence of eigenvalues of (I), (1)1 
converging to zero, such that the corresponding eigenvectors satisfy the condition 

u(x^ = 0 at least for one i. 

Notice that our theory has only a theoretical significance for the example just 
discussed. If we can calculate the eigenvalues and eigenvectors of A (for example 
if a, b are constants) then we can calculate also the eigenvalues and eigenvectors of 
(I), (II), because they can be obtained from the eigenvalues and eigenvectors of the 
same boundary value problem on the intervals (xi9 xi+i) (see [6, Section 1]). 

Example 5.2. Let a, b be real functions on <0, 1>. Suppose that a is two-times 
continuously differentiable, a _ y > 0 on <0, 1>, b is continuously differentiable, 
b = 0 on <0, 1>. Set 

H = {*V2
2(0, 1); ii(0) = ti(l) = 0} 

and introduce the inner product 
i 

au"v" dx for all w, v e H , (u, v) = \ a 
J o 

which is equivalent with the usual inner product on H. Let us define the operator A 
by the formula 

(Au, v) = ľ I bu'v' dx for all u,veH. 
' o 

Set 
K = {ueH; u(x0) = 0} , 

where x0 e (0, 1) is a given point. The variational inequality (I), (II) is equivalent 
with a boundary value problem for an ordinary differential equation of the fourth 
order with certain "transmission conditions" at x0. This problem describes a beam 
which is simply fixed on its ends and compressed by a force proportional to the value 
ljX (cf. [4, Section 4]). We shall use the operator po defined by (2.1) and Theorem 3.3 
together with Remark 3.5. It is easy to see that all the assumptions are fulfilled (ana­
logously as in Example 5.1) with the exception of the assumption (SE). Let us assume 
that a real X is an eigenvalue of A — e fi'(u) for some e>09ueH\K and that X is 
not simple. Then there exist linearly independent vectors wl9 w2 such that 

X I aw'[v" dx — bw\v' dx + e u(x0) wt(x0) v(x0) = 0 for all v e H , 
Jo Jo 

i = 1, 2 (cf. Remark 2.2). We can choose a nontrivial combination w = c1w1 + 
+ c2w2 such that w(x0) = 0 and thus 

X J a w V d x - J bw'v'dx = 0 for all v£H9 
Jo * Jo 
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i.e. X e AA. Hence the condition (SE') is fulfilled for an arbitrary couple Xw = /l-,+i> 
Xw = Xm where {Xn} (Xn+i < Xn) denotes the sequence of all eigenvalues of -4-
Moreover, it is well-known that A has only simple eigenvalues. If Xn+U Xn e A\ f°r 

some n (i.e. wn+i(x0) 4= 0, wn(x0) =f= 0 for the corresponding eigenvectors u„, u„+i) 
then we can use Theorem 3.3 and Remark 3.5. We obtain a "new" eigenvalue 
Xn e (Xn+i, Xn) n (AVtb \ AA) and a "new" eigenvector un e (Ev \ EA) n 6K for the 
couples Xn9 Xn+i e At. Let us remark that the eigenvalues of (I), (II) in this special 
case can be calculated on the basis of a method explained in [l]. The existence of an 
infinite sequence of eigenvalues of (I), (II) in the case of a general halfspace follows 
from [6, Section 3]. The case of the cone K = {u e H; u(xt) ̂  0, i = 1,..., n} is 
nontrivial for n > 1 for the variational inequality of the fourth order, but the special 
results discussed in this paper cannot be used for it. It is possible to use more general 
theorems based on the bifurcation theory (see [4, Section 4]). 

Added in proof. It is possible to show that the assumption Abn </L(1),A(2)> = 0 
can be omited in all assertions in the case of penalty operators of the type (2.1) 
because the branch ue can not meet points ue 5K n EA. Particularly, Theorem 4.3 
ensures the existence of infinitely many points ueEV\EA if At contains infinitely 
many points. Analogously in Examples 5.1, 5.2. It wil be explained in more general 
situation in [5]. 
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