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Čmtopit pro pěstování matomâtiky, roč. 105 (1980), Praha 

GENERALIZED CONTINUITY AND GENERALIZED 
CLOSED GRAPHS 

ROBERT A. HERRMANN, Annapolis 

(Received November 17, 1977) 

1. Introduction. In [13], some sufficient conditions for a weakly-continuous 
function to be continuous are investigated. In particular, Corollary 2 [13] states that 
if y is a Hausdorff space such that every closed subset is N-closed, then a weakly-
continuous map/ : X -* Y is continuous. As we show below, a Hausdorff space 
such that every closed subset is N-closed is compact. Consequently, this corollary is 
not a particularly significant result. 

The major purpose for this present investigation is to use fH-monad theory and 
to discuss, for an arbitrary map f :X -* Y, some relations between (tH, sK)-con-
tinuity, (tH, sK)-closed graphs and, if X, Y are topological spaces, topological con­
tinuity. In the process, we are able to improve upon most of the results in [13]. For 
example, applying our results to topological spaces X and Y, it is shown that if A c X 
is compact [resp. N-closed, aAi-compact, completely-compact, SA-compact] and the 
graph, G(f), of / : X -> Y is closed [resp. has property (P), is strongly closed, is 
(Ix, w)-closed, is (Ix, S)-closed], then/ _ 1 [A ] is closed in X. If yis Hausdorff [resp. 
completely-Hausdorff] and each closed subset is 0-compact [resp. w-compact] and 
fix--* y is almost-continuous [resp. a c-map], then / is continuous. If (Y, T) is 
rim-0 [resp. a]-compact,/: (X, T) -» (Y, T) is weakly-continuous and G(f) is strongly 
closed [resp. has property (P)], then / is continuous. Finally, we show that every 
rim-0-compact, Urysohn [resp. rim-a-compact, Hausdorff; rim-S-compact, weakly-
Hausdorff, extremally disconnected] space is regular. 

2. Preliminaries. In the interest of brevity, we shall rely heavily upon the definitions 
and results which appear in the references [6], [7], [8}, [9], [12]. Recall that/ : X -> 
-> Y is (tH, s.K)-continuous at p e X if */[/*. H(pJ] c /*, K(f(p)), where //, H(p) 
and fit K(q) are the tH and sX-monads on X and Y, respectively [8]. For the monad 
of ROBINSON [16] n(p) [resp. a-monad p.J(p)9 0-monad /^(p), w-monad p,w(p)], we 
have that a map / : (X, T) ~+(Y9T) is almost-continuous [19] [resp. 0-continuous 
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[2], weakly-continuous [13], a c-map [3]] at peX iff it is (lX9 a) [resp. (0,0), 
(IX9 0), (IX9 w)]-continuous at p e X. We note that a weakly-continuous map is also 
known as a weakly-0-continuous map. *J( is a highly saturated enlargement. 

Definition 2.1. A map / : X -» Y has a (fH, sK)-closed graph G(f) if'for each 
(P, q) $ G(f)9 iin((p9 q)) n *(G(f)) = 0, where n is generated by the tH and sK-
monads (denoted by n = rH x sK). 

Let (K, T) and (y, T) denote topological spaces. 

Example 2.1. (i) For / :(X9 T) -• (Y, T), the graph G(f) is (/*,/-^-closed iff 
M(P> «)) n *(G(/)) = 0 for each (p, q) $ G(f) iff G(/) is closed in X x Y. 

(ii) For / : (X9 T) -• (Y, T), G(/) is (/x, 0)-closed iff it is strongly closed in the 
sense of HERRINGTON and LONG [5]. 

(iii) For / : (X9 T) -» (Y, T), G(f) is (/*, a)-closed iff it has property (P) discussed 
in [11] and [13]. 

(iv) A map / : X -» Y has a (tH9 sK)-closed graph iff X - G(f) is 7r-open, where 
n = tH x sK. In general, if t e PTH(X), s e PSK(Y)9 then if G(f) is (tH9 sK)-closed, 
then it is 7r-closed. 

Finally, we point out that many of the results in this paper also hold for the 
q-monad of PURITZ [15]. However, since we are particularly interested in topological 
spaces and certain closedness properties it appears more useful to concentrate upon 
the fH-monad approach due to certain special filter base properties which often 
appear unavoidable and which are exhibited by such nonstandard objects. 

3. Major results. As stated in [6] for (X9 T), a set A c X is N-closed iff it is <xA-
compact iff *A c (J{fijx) | x e A}. 

Theorem 3.1. Let (X9 T) be Hausdorff and assume that each closed set A a X is 
N-closed. Then X is compact. 

Proof. Since X is N-closed (i.e. nearly-compact [18]) then X is almost-regular 
[17] and Urysohn (i.e. Urysohn = distinct points are separated by closed neigh­
borhoods). Thus every closed subset of X is 0-compact, since for each peX9 na(p) =-
= fi9(p). Consequently, (X9 T) is C-compact in the sense of VIGLINO [22]. Thus X 
is semiregular by application of Theorem A in [22]. Therefore, X is regular and this 
completes the proof. 

We now give an important characterization for (tH, sK)-closed graphs. For 
0 =|= & c 0>(X)9 the power set of X9 we let Nuc SF = fl{*F | F e &} and if/: X -» 
-> y, then / ( > ] = {/[F] | F € &}. 

Theorem 3.2. A map f :X -* Y has a (tH9 sK)-closed graph, G(f), iff whenever 
0 4= Nuc & c iit H(p), peX, 2? c &>(X)9 and Nuc/[J^] c fisK(q) for some 
qeY,thenf(p) = q. 
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Proof. Let f c &(X\ 0 * Nuc & c ^ #(p), p € JT, and Nuc/[^r] c A K(g) 
for some qeY. Assume that x e Nuc F and y e N u c / f ^ ] . Hence *(x, y) e 
e /**((?, q))> n^tHx sK. Consequently, *(F x f[F]) n /^((p, 4)) 4. 0 for each 
F e j r Since *(F x /[F]) c *(G(f))9 we have that /^((p, q)) n *(G(/)) =j= 0. 
Assuming that G(/) is a (tH9 sK)-closed graph this yields that/(p) = q. 

Conversely, assume that whenever !F c 0>(X)9 0 # Nuc & c p,t H(p) and 
Nuc/[.F] c iisK(q)9 qeY9 then /(p) = q. Let (p,g)e(K x y) - G(/). Thus 
there does not exist a T c ^(X) such that 0 4= Nuc^" c pt H(p) and Nuc/[-^] c 
c \is K(q). Suppose that nn((p, q)) n *(G(/)) 4= 0. Then there exists some x e 
e fit H(p) and y e p,s K(q) such that *(x9 y) e *(G(/)). Now the ultramonad 
Nuc Fil {x} = NF{x} c /*, H(p) and */[NF{x}] = NF{*/(x)} = NF{y} c tisK(q). 
This contradiction implies that p.n((p, q)) r\ *(G(f)) = 0 and the proof is complete. 

Recall that a space (X91) is compact [resp. nearly-compact [18], quasi-U-closed 
[14], completely-closed [10], S-closed [21]] iff *X = \j{p(x) \xeX} [resp. *X = 
= U W*) \*GX}> *X = U W*) h ^ X } , *X = UW«) | x e X}, *K = 
« (j{juS(x)|xeX} [6, 7, 8, 9, 10]]. The w-monad at peX is /*w(p) = 
- nbrWiP))] | / e C(Jf)} and the S-monad is /i S(p) = f|{*(clx )̂ | P e A e 
e SO(X)}, where SO(Z) is a set of all semiopen subsets of X [1]. Also, W c *y is 
SJO-compact iff FF c (j{/*s K(x) | x e A}. 

Theorem 3.3. If f :X -» y has a (tH9sK)-closed graph and Y is sKY-compact 
(i.e. sK-compact)9 then f is (tH9 sK)-continuous. 

Proof. Assume that f : X -+ Y has a (tH9 sK)-closed graph and consider 
*f[fitH(p)]. By sKT-compactness, *f[f*tH(p)] c {j{[isK(y)\y e Y}. Assume that 
*/[/if H(p)] n jis K(q) 4= 0. Then there exists x e \it H(p) such that */(x) e fis K(q). 
However, NF{x} c pt H(p) and */[NF{x}] = NF{*/(x)} imply that */[NF{x}] c 
c fisK(q). Theorem 3.2 yields f(p) = g. Consequently, *f[fitH(p)] c tisK(f(p)) 
and the proof is completed. 

Corollary 3.3. Iff: (K, r) -> (Y9 T) has a (lX9IY)- [resp. (IX9 a), (0,Ir), (0,0), 
(IX9 w), (Jx, S), (/jf, 9)]-closed graph9 and Y is compact [resp. nearly-compact, 
compact, quasi-H-closed, completely-closed, S-closed9 quasi-H-closed]9 then f is 
continuous [resp. almost-continuous [19], strongly-9-continuous [8], O-continuous 
[4], a c-map [3], (IX9 S)-continuous9 weakly-continuous [13]]. 

We now present a proposition which gives a strong converse to Theorem 3.3 and 
has numerous corollaries which improve upon Theorem 1 in [13]. A set yis (sK9 uV)-
separated if for distinct p9 q e Y9 /is K(p) n p.u V(q) = 0. 

Theorem 3.4. Let f: X ~+ Y be (tH, sK)-continuous and Y be (sK9 uV)-separated. 
Then f has a (tH9 uV)-closed graph. 

Proof. Assume that 0 # Nuc #* c ftt H(p)9 p e X9 «F c @>(X)9 and Nuc/[#*] c 
cHuV(q)9 qeY. Then (tH9 sJC)-continuity implies that N u c / [ # ] c / i , X ( / ( p ) ) . 
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Since Nuc/[^] Ф 0, then (sK, wV)-separation implies that f(p) = q. Hence / has 
a (řЯ, мV)-closed graph. 

Corollaгy 3.4.1. If f: (X, т) -+ (У, T) is continuous [resp< almost-continuous, 
strongly- -continuous, -continuous, weakly-continuous] and Yis Hausdroff, thenf 
has a closed [resp. (lx, )-closed, ( , )-closed, ( ,d)-closed, (lx,oi)-closed] graph. 

Coгollaгy 3.4.2. If f: (X, т) -> (У, T) is weakly-continuous [resp. a c-map, 
(lx, S)-continuous] Y is Urysohn [resp. completely-Hausdorff, weakly-Hausdorff], 
thenfhas a (lx, ) [resp. (lx, w), (lx, oì)]-closed graph. 

Pгoof. The above results follow from Theorem 1.4 and 1.5 [6] and the result 
that if a space У is completely-Hausdorff [resp. weakly-Hausdorff [20]], then for 
distinct p,qeY, џw(p) n џw(q) = 0 [resp. џa(p) n џ S(q) = 0]. 

Remark 3.1. If / : X -* У has a (tH, sK)-closed graph and we have an rJ-monad 
system on X and a мV-monad system on У such that for each peX and qeY, 
џrJ(p) c џtH(p) and џuV(q) c џsK(q), then / has an (rJ, uV)-closed graph. 
Hence each of the (tH, sK)-continuous maps in the hypothçsis of Corollaries 3.4.1 
and 3.4.2 has a closed graph. 

Recall that for W c *X, Stt H(W) = {x \ [x e X] л [џt H(p) nW-џ 0]}. 

Theorem 3.5. Let Wc *У be sKA-compact. If f:X -+Y has a (tH, sK)-closed 
graph, then 

s.,я(*/-1[ ]) c/- 1[A| . 
Proof. We know that W c \j{џsK(x)\x є A). Thus *f~l[W] c 

c U{7 - 1[>»K(*)] \xeA}. Let pєSttH(*f-ЧW~). Then џtH(p)n */ - 1 [*P] + 
+ 0. Hence *f\ßt H(pj\ n W Ф Ф. Consequently, there exists x є A such that 
*/[/., H(p)~ n /.. X(x) Ф 0. Thus there exists rєџt H(p) such that NF{r} c jцř Я(p) 
and */(r)є/.sX(x). Therefore, NF{*/(r)} <= џsK(p). Now (íЯ,sK)-closed graph 
implies by Theorem 3.2 that/(p) = x. (i.e. pє/_1(x)). Hence, 

Coгollary 3.5.1. Let A c У be sKA-compact and for each peX, let te PTH(p). 
Iff : X -> Yhas a (tH, sK)-closed graph, thenf^A] is tH-closed. 

Coгollaгy 3.5.2. Let A c Ybe compact [resp. N-closed, SA-compact, completely-
closed, SA-compact]. If f : (X, т) -> (У, T) has a (IX,IY) [resp. (Ix,<*), (IX, ), 
(lx, w), (Ix, S)]-closed graph, thenf~ľ[A] is closed in X. 

Corollary 3.5.3. Let A c У be compact. Iff: (X, т) -• (У, T) йas a ( , Iү)-closed 
graph, thenf^A] is closed in X. 
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Example 2 in Viglino's paper [22] is that of a HausdorfF, non-Urysohn, non-
compact space in which each closed set is 0-compact. He calls such a space C-compact 
and notes that a C-cempact Urysohn space is compact. SOUNDARARAJAN [20] gives 
an example of a compact weakly-Hausdorff space which is not Hausdorff. The next 
result improves somewhat upon Corollary 2 in [13]. 

Theorem 3.6. Let Y be Hausdorff [resp. completely-Hausdorff] and each closed 
subset of Y is 0-compact [resp. w-compact]. If f: (X, T) -> (7, T) is almost-con­
tinuous [resp. a c-map], then f is continuous. 

Remark 3.2. In Theorem 3.6, we have not included weakly-Hausdorff spaces in 
which every closed subset is S-closed. The reason for this is that a weakly-Hausdorff 
space which is S-closed is if-closed Urysohn and extremally disconnected. Such 
a space is thus N-closed and if a subset is S-closed, then it is N-closed. Con­
sequently, Theorem 3.1 would imply that a weakly-Hausdorff space in which every 
closed subset if S-closed is a compact Hausdorff space. 

As far as rim-compact spaces are concerned, we are able to extend or improve 
upon Theorems 3 and 4 in [13]. A space (X, T) is rim-tH-compact if for each peX 
and each neighborhood Ve f of p there exists some neighborhood Gp e T of p such 
that Fr(Gp) = cl*G - G is rH(Fr(Gp))-compact and Gp c V. GROSS and VIGLINO 

[4] show than any C-compact Hausdorff space is rim-0-compact. Viglino's example 
[22] is a C-compact Hausdorff, nonregular; hence, non-rim-compact but rim-0-
compact space. 

We now modify the proof of Theorem 3 in [13] in order to obtain the following 
proposition. 

Theorem 3.7. If (Y. T) is rim-sK-compact and f: (X, T) -> (7, T) is weakly-
continuous with a (lX9 sK)-closed graph* then f is continuous. 

Proof. Let peX and/(p)e Ve T. Then there exists some We Tsuch that f(p) e 
e Wa V and Fr(W) is sK(Fr(*V))-compact. Clearly f(p) $Fr(W). Thus for each 
y e Fr(PV), (p, y) $ G(f). Since G(f) is (lx, sK)-closed, then *f[fi(p)] n /zs K(y) = 0 
for each y e Fr(W). Consequently, *f[n(pj] n ({j{tisK(y) \ y e Fr(W)}) -= 0. Hence, 
*f[fi(p)] n *(Ft(W)) = 0. Weak-continuity implies that *f[fi(p)] c ixe(f(p)) c= 
c: *(clyJV). Therefore, 

VIXP)] n *(r - W) = V|Xp)] n *(Fx(W)) = 0 . 
Hence, *f[n(p)] <= *W<=. *V. Since Vis an arbitrary open neighborhood of f(p)> 
then */[/*(.?)] c fi(f(p)) and the proof is complete. 

Corollary 3.7.1. If(Y9 T) is rim-9-compact [resp. rim-a-compact] andf: (X, T) -» 
-> (Y9 T) is weakly-continuous where G(f) is stronlgy closed [resp. has property 
(P)j, then f is continuous. 
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Theorem 3.8. Let X be (tH, rj)-separated and p.tH(p) c p.B(p) for each peX. 
If (X, T) is rim-r J-compact then for each p e X, jit H(p) c: p,(p). 

Proof. Let peVez. Then there exists some Wei such that peWaV and 
Fr(W) is rJ((Fr(JV))-compact. Now p $ Ft(W) and (tH, rJ)-separation imply that for 
each y e Fr(W), fit H(p) n \ir J(y) = 0. Thus \it H(p) n *(Fr(W)) = 0. Now 
lit H(p) c ne(p) c *(dYW) implies that /*, H(p) n *(Y - W) = fit H(p) n 
n *(Fr(fV)) = 0. Hence \it H(p) c *V implies that /x,H(p) c /x(p). 

Corollary 3.8.1. Every rim-9-compact Urysohn [resp. rim-oc-compact Hausdorff, 
rim-S-compact weakly-Hausdorff extremally disconnected] space is regular. 
Every rim-S-compact weakly-Hausdorff space is semiregular. 

Proof. A space is regular iff for each peX, p.(p) = p.e(p). A space is Urysohn iff 
it is (9, 0)-separated. If X is weakly-Hausdorff, then it is (a, S)-separated. Also, in 
general, a weakly-Hausdorff extremally disconnect space is a Urysohn space such 
that for each peX, jj9(p) = \i S(p). 
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