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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON A CONJECTURE OF TURÁN 

JIŘÍ NOVÁK, Liberec 

(Received February 14, 1979) 

The main result concerns a conjecture of Turán about minimal representations of 
fc-tuples on an n-set by triples if k is an odd number: The conjecture is not valid for 
k > 3 if n = 2fc - 1. 

1. INTRODUCTION 

Definition 1.1. Let N = {1, 2, ..., n} be a set of n elements, let n > k > s be 
positive integers, let R(n, k, s) = {Bt, B2,..., Bm} be a systém of s-tuples with the 
following properties: 

a) Bt <= N, \Bt\ = s, i = 1, 2, ..., m; m <; 

b) if any k-subset K c N is given then there exists at least one subset Bj e 
e R(n, k, s) such that Bj cz K. 

The systém R(n, k, s) is called a representation of k-tuples by s-tuples on an n-set. 
A representation is called minimal if it has the minimal number of s-tuples for 
given parameters n, k, s. 

Example 1.1. Let n = 4, k = 3, s = 2. Denote by N, Q, S the following sets: 
JV = {1, 2, 3, 4), Q = {123,124,134, 234}, S = {12,13,14, 23, 24, 34}. It is clear 
that the minimal representation R(4, 3, 2) is formed by 2 pairs: £^„(4,3,2) = 
= {12,34}. 

Conjecture 1.1 (Turán's conjeture [2]). Let n > k > 3 be positive integers where k 
is an odd number. Then a minimal representation R(n, k, 3) is formed by all 
triples on subsets Nh where i = 1, 2,..., (k — l)/2, N = \JNh Ni n Nj = 0, 

\m - K-II Ž i. 
We refer to such representations as to T-representations. 

Q> 
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Example 1.2. Let n = 7, fc = 5, s = 3. The disjoint subsets are: Nx = {1, 2, 3, 4}, 
iV2 = {5, 6, 7}. The T-representation 11(7, 5, 3) = {123,124,134, 234, 567}. This 
representation is minimal. 

Theorem 1.1. Denote byf(n. k, s) the number of s-tuples in a minimal represeta-
tion R(n, k, s). Then the following relaíion holds: 

(1) f(n, fc, s) £ (nj{n - 3))/(n - 1, fc, 5) . 

The proof is given in [l], 
Turán's conjecture is not valid in the čase R(9, 5, 3). The T-representation has 

14 triples, but a minimal one has only 12 triples. These triples form the Steiner 
triple systém of order 9. We will show in the following that the samé situation occurs 
for infinitely many numbers n. 

Further, we shall give results of the investigation of minimal representations 
R(n, k, 3) for k — 1, 9 for some numbers n. 

J. Suranyi proved [3] the validity of Turán's conjecture for representations 
J*(10, 5, 3). 

2. MINIMAL REPRESENTATIONS R(n, 9, 3) FOR n< 18 

Theorem 2.1. The following relations hold for n = 10 or n = 11:/(10, 9, 3) = 2 
o r / ( l l , 9, 3) = 3, respectively. There is exactly one representation formed by two 
or three triples, respectively. It is in both cases a T-representation. 

Proof. It holds f(9, 9, 3) = 1. According to (l) it follows that /(10, 9, 3) ^ 
2£ ]10/7[ = 2. A T-representation for n = 10 is formed by two disjoint triples, 
therefore it is minimal. If we consider two triples which are not disjoint then there 
always exists a 9-tuple which is not represented by such triples. 

According to (1) we háve for n = 11 the relation / ( l i , 9, 3) ^ ](H/8). 2[ = 3. 
A T-representation is formed by three disjoint triples, therefore it is minimal. A 9-
tuple not represented by any three non-disjoint triples always exists. 

For three triples we háve various possibilities of their mutual relations. We say 
that we obtain various structures of three triples. If a triangle corresponds to each 
triple we obtain 12 different structures of three triples. (Fig. 1.) 

We denote the vertices of triangles by 1, 2,..., 9. For 11 structures ninetuples are 
given not represented by the triples of the structures. 

If any three triples on the set N = {1, 2,..., 11} are given then they must háve 
one of the structures in Fig. 1. So we obtain a permutation which transforms these 
given triples into one of the 12 cases. If we obtain the čase a) then the given triples 
form a representation K(ll, 9, 3) isomorphic to the triples of the čase a). If we obtain 
another čase than a) then the triples do not form a representation. Proof. Suppose 

128 



CASE STRUCTURE A 9-TUPLE 
NOT REPRESENTED 
BY THE STRUCTURE 

<U л л л 
1 2 4 5 7 8 

NONE 

b) л лл 
1 2 4 5 7 

12 46 78 9 10 11 

c) ллл 13456 89 10 -11 c) 
1 2 4 ( 

13456 89 10 -11 

Ч) Л/V7 

1 2 4 5 

12 457 89 10 11 

•) 

É 
1245789 10 11 •) 

1 3 5 

1245789 10 11 

f) < ŕ<i 6 

12 45789 10 11 

9) 
/ < . 

1246789 10 11 9) Ÿ V 
2 

1246789 10 11 

h) z 6 

S-
2 

124578 9 10 11 

Fig. 1. 
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3 

23456789 10 

1) •<] > > 5 

13456789 10 

Fig. 1 - cont. 

that the given triples represent the set K of all 9-tuples on 11-set. The mentioned 
permutation transforms the given triples into a certain case different from a) and the 
set K into itself. Thus the triples of that case different from a) represent the set K. 
We obtain a contradiction because these triples do not represent the set K. 

Thus the T-representation is the minimal representation for .R(ll, 9, 3). 

Theorem 2.2. There is only one minimal representation R(12, 9, 3). It is the T-
representation which is formed by four disjoint triples. 

Proof. According to (1) the following relation holds: /(12, 9, 3) = (12/9) . 3 = 4 . 
The T-representation for these parameters is formed by 4 disjoint triples, therefore it is 
minimal. 

Suppose that there exists a minimal representation JR(12, 9, 3) which is not formed 
by 4 disjoint triples. Any element of the set N = {1, 2,..., 12} occurs in the repre­
sentation not more than once. Suppose that an element a occurs more than once. 
Let us delete the triples with the element a from the representation. We obtain at 
most two triples which must form a representation R(ll, 9, 3). Thus we have a contra­
diction with Theorem 2.1. Therefore the element a occurs at most once and the triples 
must be disjoint. We obtain a contradiction with the assumption. 
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CASE STRUCTURE A 9-TUPLE 
NOT REPRESENTED 
BY THE STRUCTURE 

(a) 

1 5 

2/A 

9 12 

ШҺҺ 1 2 56 7 8 10 11 13 
7 8 10 11 

13 

(Ь) ÄЛ 
8 9 11 12 

12 4 5 78 10 11 13 

(c) 
11 12 

2_ 5 9 12 

(Ф Л A 12 46 78 10 11 13 

1 3 4 5 7 8 10 11 

(e) 
10 12 

1 2 4 5 78 10 1113 

(f) 

10 12 

Fig. 2. 

Theorem 2.3. A minimal representation -R(13, 9, 3) contains 7 triples. There exist 
at least 4 nonisomorphic minimal representations and just one of them has the 
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following property: any element of its triples occurs in at most two triples, i.e. the 
degree of any element equals at most 2. 

Proof. Let us suppose that/(13, 9, 3) = 6. In the corresponding representation 
R(13,9,3) there must exist an element of the set N = {1,2,..., 13} whose degree is equal 
to 2. No element can have a greater degree than 2. These assertions can be proved 
analogously as in the proof of Theorem 2.2. 

We can suppose that the element of the set N denoted by 13 has the degree equal 
to 2. Let us omit both triples with the element 13 from the representation considered. 
We obtain 4 triples which must form a representation -R(12, 9, 3). According to Theo­
rem 2.2 these triples must be disjoint and therefore we obtain the representation 
R(13, 9, 3) by adding to them two triples with the element 13. Let the disjoint triples 
be 123, 456', 789,10 11 12. Then we have the following possibilities for two triples 
with the element 13 (Fig. 2): 

a) 2 3 13, 1 5 13 d) 3 4 13, 2 6 13 
b) 2 3 13, 5 6 13 e) 3 4 13, 6 7 13 
c) 2 3 13,6 8 13 f) 3 4 13, 9 10 13 

Two triples with the element 13 and four disjoint triples form a structure of six 
triples. We obtain six structures which are mutually nonisomorphic. This fact fol­
lows immediately from the graphical representation of the triples by triangles. 

To each obtained structure we can easily find at least one 9-tuple which is not 
represented by the triples of the same structure. The following 9-tuples fullfil this 
condition: 

ad a): 1 2 5 6 7 8 10 11 13, 
ad b), c), f): 1 2 4 5 7 8 10 11 13, 
add): 1 2 4 6 7 8 10 11 13, 
ad e): 1 2 4 5 8 9 10 11 13. 

It follows that the representation satisfying our assumptions does not exist and 
therefore /(13, 9, 3) -= 7. The T-representation for these parameters contains seven 
triples, therefore it is minimal: 
(2) = {12 3, 1 2 4, 1 3 4, 2 3 4, 5 6 7, 8 9 10, 11 12 13}. 

Now we introduce three representations which are not isomorphic to the repre­
sentation (2): 

(3) =={2 2 3, 4 5 6,78 9, 10 11 12, 1513,26 13, .3 4 13}; 
(4) = {12 3, 4 5 6, 7 8 9, 10 11 12, 1 2 13, 3 6 13, 4 5 13}; 
(5) = {12 3, 4 5 6, 7 8 9, 7 9 12, 8 10 12, 2 11 13, 1 3 13}. 

The representation (2) has 4 elements of degree 3 and 9 elements of degree 1, the 
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representation (3) has one element of degree 3, six elements of degree 2 and six 
elements of degree 1. The representation (4) has the same degrees of elements as the 
representation (3), but they are not isomorphic as we can see from the graphical 
representation by triangles in Fig. 3. The representation (5) has 5 elements of degree 2 
and 8 elements of degree 1. 
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Fig. 3. 

The proof of the last assertion of our Theorem will be omitted because it is too 
lengthy. It is necessary to consider about 70 structures of seven triples on a 13-set 
whose elements have the degree less than or equal to 2. 

Theorem 2.4. The T-representations R(n, 9, 3) for n = 14, 15, 16 are minimal 
but R(ll, 9, 3) is not. 

Proof. For n = 14 we obtain by Theorems 1.1 and 2.3 the following relation: 
/(14, 9, 3) = ](14/11). 7[ = 9. The T-representation is formed by 10 triples on the 
subsets {1, 2, 3}, {4, 5, 6}, {7, 8, 9,10}, {11,12,13,14}. 

We shall prove that there is no representation -R(14, 9, 4) with 9 triples. Suppose 
that such a representation exists. Any element of the 14-set has in this representation 
degree at most 2 which can be proved analogously as in the proof of Theorem 2.2. 

Fig. 4. 
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Let us omit 2 triples with the same element. We can suppose that the omitted 
element is denoted by 14. We obtain 7 triples of the representation K(13, 7, 3) in 
which the elements of the 13-set have degree equal to at most 2. According to Theorem 
2.3 there exists just one representation with this property; it is the representation (5). 
Let us add to it 2 triples with the element 14 so that the degree of no element exceeds 
2. Let us illustrate the representation (5) by triangles in Fig. 4. Both triples with the 
element 14 can clearly contain only the elements 10, 11,4, 5,6, i.e. the elements 
with degree one. There are only 3 different cases: 

(a) = {10 11 14, 4 5 14}, 

(b) = { 4 10 14, 5 11 14}, 

(c) = { 4 5 14, 6 11 14}. 

But the following 9-tuple (aa) is not represented by 7 triples of the representation 
(5) and by two triples of (a). The same holds analogously for (bb) and (cc). 

(aa) = 12 467 8 10 13 14, 

(bb) = 12467 8 12 13 14, 

(cc) = 125 67 8 10 13 14. 

This fact implies that we obtain no representation K(14, 9, 3) with 9 triples. Thus 
a minimal representation K(14, 9, 3) is formed by 10 triples. 

According to this result, we have for n = 15 the estimate f(15, 9, 4) ^ ](15/12). 
. 10[ = 13. The T-representation on the subsets {1, 2, 3}, {4, 5, 6, 7}, {8, 9,10, 11}, 
{12,13,14,15} has just 13 triples, therefore it is minimal. 

According to this result, we obtain for n = 16 the estimate f( 16, 9, 4) ^ ] (16/3). 
. 13[ = 16. The T-representation on the subsets (1, 2, 3, 4}, {5, 6, 7, 8}, {9,10,11, 12}, 
{13,14,15,16} has just 16 triples, therefore it is minimal. 

According to the last result, we obtain for n = 17 the estimate f(17, 9, 4) ^ 

= ](17/14). 16[ = 20. The T-representation on the subsets {1, 2, 3, 4}, {5, 6, 7, 8}, 
{9,10,11,12}, {13,14,15,16,17} has 22 triples. We shall show in the following 
(Theorem 4.1) that the minimal representation actually contains only 20 triples. 

3. MINIMAL REPRESENTATIONS R(n, 7, 3) FOR n < 14 

Theorem 3.1 If n = 8, 9, ..., 12 then Turdn's conjecture holds for representations 
R(n, 7, 3). 

Proof. It is clear that f(7, 7, 3) = 1. Thus f(8, 7, 3) =- ]8/5[ = 2. Further, we 
have the relation f(9,1, 3) ^ ](9/6). 2[ = 3. In these cases the T-represent^tions 
contain just f(n, 7, 3) triples. 

For n = 10 we obtain the relation f(10, 7, 3) = ](10/7). 3[ = 5. But the cor­
responding T-representation is formed by 6 triples on the subsets {1, 2, 3}, {4, 5, 6}, 
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{7, 8, 9, 10}. We will show that the T-representation serves as a minimal representa­
tion #(10, 7, 3). 

Suppose that a minimal representation JR(10, 7, 3) is formed by 5 triples. There 
must exist an element of degree 2, but no element of degree 3 or greater in such 
a representation. These assertions can be proved analogously as in the proof of Theo­
rem 2.2. 

We can suppose that the element of degree 2 is denoted by 10 and omit two triples 
with the element 10. We obtain 3 triples which must represent all 7-tuples on a 9-set. 

CASE STRUCTURE A 7-TUPLE 
NOT REPRESENTED 

BY THE STRUCTURE 

(a) 

2 5 8 

1^^P~5 7 9 

10 

12 5 6 7 8 10 

(Ь) 
A2 Л 5 A8 

14^ fc^6 >-—-* 
10 

12 4 5 7 8 10 

(c) 

2 A5 A8 

1^^v\j/\9 

10 

12 4 5 7 8 10 

(d) 

3 6 9 
/Ьsr -^l\ Л 13 4 5 7 8 10 (d) Л Ж Л Л 13 4 5 7 8 10 (d) 

1 2 4 5 7 8 

13 4 5 7 8 10 

(e) ,4^4. 
10 

13 4 5 89 10 

Fig. 5. 



If we consider all structures of 3 triples in Fig. 1 we find easily that only the structure 
of three disjoint triples can serve as representation R(9,7, 3). 

The other structures do not represent the 7-tuples which are formed by the first 7 
elements of the 9-tuples given in Fig. 1. 

Thus we obtain the required representation -R(10, 7, 3) by adding two triples with 
the element 10 to 3 disjoint triples. No element can have a greater degree than 2. 
There are 5 possibilities of adding two triples: see Fig. 5, where the added triples are 
marked by shading. The 7-tuples given in Fig. 5 are not represented by the triples of 
the 5 structures. Therefore the supposition was false and thus the minimal representa­
tion -R(10, 7, 3) has 6 triples. It is e.g. the T-representation for this case. 

According to this result, we have the following estimate for n = 11 : / ( l l , 7, 3) = 

= ](ll/8) . 6[ = 9. The T-representation on the subsets {1, 2, 3, 4}, {5, 6, 7, 8}, 
{9,10,11} is formed by 9 triples and therefore it is minimal. 

According to the last result, we have the following estimate for n = 12 : 
/(12, 7, 3) = ](12/9). 9[ = 12. Therefore the T-representation formed by 12 triples 
on the subsets {1, 2, 3, 4}, {5, 6, 7, 8}, {9,10,11,12} is minimal. 

So we have proved the assertions of Theorem 3.1. 

Theorem 3-2. A minimal representation #(13, 7, 3) is formed by 16 triples. 
Turdn9s conjecture does not hold in this case. 

Proof. The assertion is a special case of Theorem 4.1. 

4. THE MAIN THEOREM 

Theorem 4.1. Let k = 5 be an odd number. Then the T-representation R(2k — 1, 
fc, 3) is not minimal. For each fc > 3 there exists a representation R(2k — 1, fc, 3) 
with 2k + 2 triples. 

Proof. We will use the induction by fc. It is well known that the theorem holds 
for fc = 5. Let us suppose that it holds for an odd integer fc > 3 and let us prove it 
for the next odd integer fc -f- 2. 

The T-representation jR(2fc - 1, fc, 3) has 2fc + 4 triples. We split the set N = 
= {1, 2, ...,2k — 1} into (fc — l)/2 disjoint classes. The cardinality of each class is 
equal to 4 except one class with cardinality 5. Evidently, the following relation holds: 
4 . ((fc — l)/2 — 1) + 5 = 2fc — 1. The number of triples in a T-representation is 
therefore equal to 

«*-.)/.-• o.QҶQ-.* + 4. 

By the assumption there exists a representation R(2k — 1, fc, 3) with 2fc + 2 triples. 
We shall search for a representation JR(2fc + 3, fc + 2, 3). We decompose the set 
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N' = {1, 2, ..., 2fc — 1, 2fc, 2fc + l92k + 2, 2fc + 3} into two disjoint classes: 

A = {1, 2, ..., 2k - 1} , 5 = {2fc, 2fc + l,2k + 2, 2fc + 3} . 

Let us consider any (fc + 2)-tuple of the set N'. If this (fc + 2)-tuple has at least fc 
elements in the class A then it is represented by a certain triple of the representation 
R(2k — 1, fc, 3) whose triples represent all fc-tuples of the class A. If the (fc + 2)-
tuple has 3 or 4 elements in the class B then it is represented by a certain triple on 
the class B. 

Therefore all (fc + 2)-tuples on the set N' are represented either by the triples of the 
representation R(2k — 1, fc, 3) or by the triples on the class B. The number of the 
triples is therefore equal to 2fc + 2 + 4 = 2fc + 6. 

However, the T-representation R(2k + 3, fc + 2, 3) has 2(fc + 2) + 4 = 2fc + 8 
triples. Thus the theorem is proved. 
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