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Definitions. A tolerance relation is a reflexive and symmetric binary relation. 
A compatible tolerance on an algebra 91 = (A, F) is a tolerance relation on the 

support A, compatible with each operation f e F. 
An (a, b)-maximal tolerance on the algebra 21 is such a compatible tolerance on 9t 

that is maximal among all compatible tolerances on 9t not containing the pair [a, b]. 
A compatible tolerance T o n the algebra 9t is a relatively maximal tolerance if 

there exists a pair [a, b] e T c = |9l| x |9l| \ T such that T is an (a, 6)-maximal 
tolerance. 

Proposition 1. Let Tbe a compatible tolerance on an algebra 91. Let [a, b] e T c. 
Then there exists an (a, b)-maximal tolerance Tab on 91 such that T c Tab. 

Proof. Denote by 3Tah the set of all compatible tolerances on 91 including Tand 
not containing [a, b]. 2Tab #= 0 as T e STab. The union of each nested subset of 2Tab 

is again an element of 2Tab. By Zorn lemma, ZTab has at least one maximal element Tab. 
Q.E.D. 

A particular case of this assertion is the following result of Chajda and Zelinka: 

Corollary. Let 91 be an algebra and let a, be |9t|, a 4= b. Then there exists an 
(a, b)-maximal tolerance on 9t. (Cf. [3], Thm. 4.) 

Proposition 2. Every compatible tolerance on an algebra 91 is the intersection of 
a family of relatively maximal tolerances on 91. 

Proof. Let Tbe a compatible tolerance on the algebra 91. If T c = 0, T = |9l| x 
x M = f W T c Tab. Suppose T c * 0. Then T c f l e w Tab, because T g Tab 

for all [a, b] e T c. Conversely, D[a,b]erc Tab c T, because [x, y] $ T implies [x, y] £ 
4 Txy and [x, y] e Tc and therefore [x, y] $ f]latb^TC Tab. Hence T = []iatbleTC Tab. 

Q.E.D. 
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Corollary. For every algebra 2t the following assertions are equivalent: 

(i) every compatible tolerance on 21 is a congruence; 

(ii) every relatively maximal tolerance on 21 is a congruence. 

Proof. (i)=>(ii): Clear. 

(ii) => (i): Every intersection of congruences is a congruence. Q.E.D. 

Remark. Relatively maximal tolerances on 21 are exactly all completely meet 
irreducible elements in the lattice of all compatible tolerances on 21: As each complete­
ly meet irreducible element in the lattice of all compatible tolerances is the inter­
section of relatively maximal tolerances, it is itself a relatively maximal tolerance. 
Conversely, if an (a, b)-maximal tolerance T is the intersection of a family of com­
patible tolerances, at least one member of this family must not contain [a, b], so it is 
identical with T. 

Proposition 3. For every algebra 21, every subalgebra 23 and every compatible 
toleranceTon 93 the following assertion holds: If every relatively maximal tolerance 
on 93 including Thas an extension onto 21, Talso has an extension onto 2t. 

Proof. The intersection of extensions of Tah, [a, b] e Tc = |93| x |S3| \ T, T e 
c Tab is an extension of T Q.E.D. 

Corollary. For every algebra 21 and every subalgebra 93 the following assertions 

are equivalent: 

(i) every compatible tolerance on 23 has an extension onto 21; 

(ii) every relatively maximal tolerance on 23 has an extension onto 21. 

The structure of relatively maximal tolerances is known in the case of distributive 
lattices. They are a useful tool in studying compatible tolerances on distributive 
lattices. (Cf. [4].) 

Definition. A (dual) a-maximal ideal in a lattice £ is a (dual) ideal in £ which is 
maximal among all (dual) ideals in £ not containing the element a e |£| . 

Proposition 4. For a Compatible tolerance T on a distributive lattice 2, the fol­
lowing assertions are equivalent: 

(i) Tis an (a, b)-maximal tolerance; 

(ii) Tis a two-block tolerance (i.e. Thas exactly two blocks) and (a) or (ad) holds: 

(a) one of the blocks of T is an a-maximal ideal and the other one is a dual 
b-maximal ideal; 

(ad) is the dual of (a). 

222 



Proof. In [4], Lemma 2, it is shown that for every compatible tolerance Ton the 
distributive lattice £ and for each pair of elements [a, b] e Tc there exists a com­
patible tolerance Tab satisfying (ii), including Tand not containing [a, b]. 

(i) => (ii): Because of maximality of T with respect to [a, b], T = Tab. 

(ii) => (i): Let Tbe formed by an a-maximal ideal I and a dual b-maximal ideal F. 

Let S be an (a, b)-maximal tolerance including T. Because of a-maximality of I and 
b-maximality of F, Sab = Tand therefore T = S. Q.E.D. 

Proposition 5. For a lattice £, the following assertions are equivalent: 

(i) £ is a distributive lattice; 

(ii) all relatively maximal tolerances on £ are two-block tolerances. 

Proof, (i) => (ii): By Proposition 4. 

(ii) => (i): Let a, b, c e |£| satisfy 

a A c = b A c and a v c = b v c . 

If T were a two-block (a, b)-maximal tolerance on £, T would be formed by an ideal I 
and a dual ideal F, with I u F = |£|. Two cases could arise: a $ I and b £ F or a$F 
and b £ I. In the first case, a A c = b A c implies c ^ F and a v c = b v c implies 
c £L The second case is the dual of the first one. Consequently, there exists no (a, b)-
maximal tolerance on the lattice £. Hence a = b and £ is a distributive lattice. 

Q.E.D. 

The congruence lattice of a lattice £ will be denoted by CL(S), the tolerance lattice 
of a lattice £ (i.e. the lattice of all compatible tolerances on £) will be denoted by 
TL(2). 

If £ is a distributive lattice, then CL(2) is a Boolean lattice if and only if £ is 
a lattice of locally finite length. (J. Hashimoto; cf. [ l ] , p. 80.) 

If £ is a distributive lattice, then £ is a relatively complemented lattice if and only 
if every compatible tolerance on £ is a congruence ([2]). 

Proposition 6. If £ is a distributive lattice and if TL(2) is a Boolean lattice, then 
every compatible tolerance on £ is a congruence. 

Proof. Let Tbe an arbitrary relatively maximal tolerance on £, i.e. a two-block 
tolerance on £, let T* be the complement of Tin TL(£).Obviously, T* 4= A. Assume 
I n F #= 0, where I and F are the ideal and the dual ideal forming T Take an arbitrary 
element xel n F. Let [a, b] e T*. Then x v aeF, x v be F, x A a el and 
x A b el. Hence x v a = x v b and x A a = x A b, and the distributivity of £ 
yields a = b. Thus T* = A. This is a contradiction, consequently I n F = 0 and T 
is a congruence. By Corollary of Proposition 2, every compatible tolerance on £ is 
a congruence. Q.E.D. 

223 



Corollary. If 2 is a distributive lattice, then TL(2) is a Boolean lattice if and only 
if 2 is a relatively complemented lattice of locally finite length. 
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