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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

DE RHAM CURRENTS AND SPRAYS 

MIRCEA PUTA, Timi§oara 

(Received September 20, 1980) 

1. A L M O S T - TANGENT STRUCTURE 

1.1. Notations. Let M be a smooth (= C00) orientable differentiable manifold of 
dimension n. We shall denote by X(M) the space of vector fields on M, by AP(M) 
and 3>'P(M) the spaces of p-forms and p-currents on M, respectively. We recall that 
a p-current on M is an alternating p-linear and continuous map T: X(M) x ... 
... x X(M) -> %(M) ([2]), where %(M) is the space of O-currents on M ([3]). 
In a local chart, £^0(M) can be identified with the space of L. Schwartz distributions. 

If pM : TM -> M and pTM : TTM -» TM is the tangent bundle and the second 
tangent bundle of M, respectively, and pT : TTM -> TM is the linear tangent map of p, 
then the diagram 

PT 

TTM -—-> TM 
PTM I i P 

TM * M 
P 

is commutative. 

If (U, (p) is a local chart on M, 7I/[TTl/] the corresponding chart on TM[7TM], 
then a point x e M\z e TU, Z e TTU\ can be represented as in [1] by x = (x\ ..., xn) 

Z = (x\ ..., *n, y\ ..., yw) or briefly z = (x, y), Z = (x\ ..., xn, y\ ..., f, K\ ... 

..., X\ y \ ..., Yn), or briefly Z = (x, y, X, Y), respectively. We have p'(Z) = (x, y), 

pT(Z) = (x, X) provided p' = pTM. If we denote by y the vector fields on TM which 

satisfy p'y = pTy, then y = (x, y, y, Y). 

1.2. Fundamental sequences. The fundamental sequence on TM is an exact sequence 

0 - TMxMTM X TTM A TMxMTM-+ 0 , 

where \i = (p\ pT). If y = (x, j;); z = (x, Z), then A(y, z) =f (x, y, o, z). 
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1.3. Canonical fields. *Let <r j yeTM-+a(y)v=(y9 y) e TMXTM9 SO that cr is 
a smooth section. Then we define: 

1) the canonical vector-field C = I o a e X(TM); 

2) the canonical (1.1) tensor-field J = X o p.. 

1.4. Remarks. 
1) From the exactness of the fundamental sequence it follows that J1 = 0. 
2) In a local chart one obtains: 

c ( x > y) ^ (*> >̂ °> y) a n d J Z =. (*> y> °>x) • 

3) For the canonical tensor-field J we can introduce the operators of Frolicher-
Nijenhuis dj9 ij which are derivatives of degree zero: 

a) t/:feC~(M)-itf) = 0 
ij : Q e AP(TM) -> ij(Q) e AP(TM) 

ij(Q) (Xl9..., Xp) =f £ Q(Xl9..., JXi9..., Xp)9 
І=-I 

b) dj = ijd - d/j. 

For any feCx{TM), djf = (dfldy')dx'. These operators can be extended to the 
space of De Rham currents in the following manner: 

a') ij : Te ®'P{TM) -> i}{T) e ®'P(TM) 

0(T) (Xu ..., J3Q = £ r ( z . , . . . , JXt,..., X,), 

b')djT= ijdT-dijT. 

As for the differential forms [1], for any ZeX(TM), YeX(TM), yeX(TM), 
p'y = pTy, we have also for currents: 

i.) [ J , C ] = - [ c , J ] = J, 

-2) |jj> JzJ = — JJZ5 |jj> ^ c j = = 1j> 

-3) Do dj] = ij; [rfj, Lc] = dj\ [ij9 dj] = 0, \d9 dj] = 0, 

-4) [dj9 [iZ9 djj] = 0, 

h) UP dj] = Lc - *-?,./]. 

2. SEMITBASIC AND HOMOGENEOUS CURRENTS 

We shall denote by T0(M) the space of all nonzero vectors of TM. 

2.1. Definition. We shall say that Te 2>'p(TQM) is homogeneous of degree r (we 
shall write h(r)) if 
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LcT=rT. 

2.2. Proposition. If Te ®'p(T0M) is h(r), then ijT, djT are h(r - 1). 

2.3. Definition. We shall say that Te @'p(T0M) is semibasic if for any vertical 
vector-field v on T0M we have 

ijj) = 0 . 

Remark. If Tis a semi-basic current, then djTis a semi-basic current and ijT = 0. 
Now we can prove: 

2.4. Proposition. Let Te @p(T0M) be h(r) and semibasic. Then for any y e 
eX(T0M)for which Jy = C, we have iydjT + dji{T + (p + r) T. 

Proof. From 1.3 we obtain iydjT + dji?T = LCT - itytJ1T But LCT = rT and 
thus it is sufficient to verify the equality ify.jjT = — pT For any Zi9 ...,Zpe 3E(T0M) 
we have 

p 

hy,nT(zi> • • •> ZP) = Z T(zi> • • •> zi-i> [y> J]> z i - • • •> Z P) • 
i = l 

But [ j , J] Z = - J Z . Indeed, \y, J~]Z = [y, JZ] - J[j, Z]. Because of J2 = 0 
we obtain J[j7, J] Z = [C, JZ] - J[C, Z] = - J Z . Q.E.D. 

Corollary. Let Te ®'p(T0M) be h(r), semi-basic and djT = 0. Then T has the 
form 

T=—!—djiyT. 
p + r 

3. TWO - CURRENTS AND SPRAYS 

First we shall recall the definition of a spray: 

3.1. Definition. [1]. We say that a vector field G on T0M is a spray if [C, G] = 0 
and J(G) = C. In a local chart, G = (x, y, y, X). 

3.2. Definition. We say that Te^f
2(T0M) is a generalized Finsler structure if 

f,)LcT= T, 

f2) ijT=0, 

f3) if for any Ye X(T0M), T(X, Y) = 0, then X = 0. 

3.3. Proposition. Let a>eEp(T0M) and let TW6^(T0M) be the current defined 
by co ([3]). Then 

*J* <o •* ijoo ' 
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Proof. For any Xl9 ..., Xp e X(T0M) we can write ijTn(Xi9 ..., Xp) = 
In In 

^ Z Ta(Xl9..., JXi9..., Xp) = 2. OJ(X19 ..., JXi9..., Xp) = Tij0>(Xl9..., Kp). 

Remark. From Proposition 3.3 and from the equality L^T^ = TLx(a we deduce 
that tlie space of Finsler structures 1F(T0M) is a subspace of the space of generalized 
Finsler structures 3F'(T0M). We can also prove 

3.4. Proposition. Let M be a two-dimensional smooth differentiaable manifold. 
Then the space ^(T0M) is dense in the space !F\T0M). 

Proof. The space tF\T0M) is a closed subspace of !F'(T0M) and consequently, 
it is a reflexive space. If co e ^(T0M) is orthogonal to &(T0M)9 then co = 0. Indeed, 
if co is orthogonal to fF(T0M) then co is orthogonal to co (dim M = 2) and then 
co = 0. This together with the Hahn-Banach theorem implies that ^(T0M) is dense 
in &'(T0M). Q.E.D. 

3.5. Conjecture. Proposition 3.4 is true for M of any dimension. 

3.6. Proposition. Let Te&'(T0M), Z,Z' eX(T0M). If t = izT, t' = iz,T then 
Z = JZ' if and only if t = - Jt'. 

Proof. ijiz. - izij = -/ J Z>, so that i3iz>T = -iJZ. T, or i3t' = -\3i-T. If 
Z = JZ', then i3t' = —izT= —t and conversely, if i3t' = — t it follows that 
izT= t = iJz.T. Then T(JZ', Y) = T(Z, Y) for any YeX(T0M) and by Definition 
3.2, the equality JZ' = Z holds. Q.E.D. 

Now it is easy to prove 

3.7. Proposition. Let Te &'(T0M) and tc
 d= icT. Then for any t' e 9'2(T0M) 

with the properties h(2) and Jt' = —tc, there exists GeX(T0M) such that J(G) = 
= C, and iGT = t'. 

Proof. We have Jt' = —tc and by Proposition 3.6 there exists GeX(T0M) 
such that J(G) = C and iGT = t'. Q.E.D. 

3.8. Definition. Let Te 3F'2(T0M). Then the Finsler energy ofTis defined by 

where y e X(T0M) and Jy = C. 

3.9. Proposition. Let Te &'(T0M) be such that djicT = 0. Then the vector 
field G defined by the equality iGT = — dE is a spray on M (the canonical spray). 

Proof. Since d3icT = 0, for any y e X(T0M) such that Jy = C we obtain 
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icT=idj(iyicT) or icT = ddE . 

But djE = -ij(-dE)= -J(-dE), so that there exists GeX(T0M) such that 
JG = C and iGT= ~ d £ . Q.E.D. 

We also have 

3.10. Proposition. The energy E is constant on the trajectories of the canonical 
spray. 

Proof. In fact iGT = -dT, hence iGdT = 0 or LG£ = 0. Q.E.D. 

4. EXAMPLE 

A very interesting case in mechanics is that for which T has the decomposition 
T = ddjE + S, where 5 is a semi-basic two-current. 

In this situation we can establish 

4.1. Proposition. Let Te &'(T0M) and let E be the energy of T. Then T - ddjE 
is a semi-basic current if and only if d3E is a semi-basic current. 

Proof. If S = T— ddjE is semi-basic, then djS = djT is semi-basic. Now we 
shall suppose that djT is semi-basic, i.e. ijdjT = 0. For any X, Y,ZeX(T0M), 
dT(JX, JY, Z) + dT(X, JY, JZ) + dT(JK, Y, JZ) = 0. Let X = y, where J(y) = 
= C. Then dT(C, JY, Z) + dT(C, Y, JZ) + dT(y, JY, Z) = 0. But ijdT is semi-
basic, therefore i3dT(y, JY,Z) = 0, so that we obtain 

dT(C, JY,Z) + dT(y, JY, JZ) = 0 . 

Then for any Y, Z e X(T0M), dT(C, Y, JZ) = 0 which implies that i3dT is semi-
basic. Q.E.D. 
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