
Časopis pro pěstování matematiky

Miroslav Sova
Interchangeability of unbounded linear operators: General theory of transmutativity

Časopis pro pěstování matematiky, Vol. 107 (1982), No. 4, 360--379

Persistent URL: http://dml.cz/dmlcz/118145

Terms of use:
© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118145
http://project.dml.cz


Časopis pro pěstovánf matematiky, roč. 107 (1982), Praha 

INTERCHANGEABILITY OF UNBOUNDED LINEAR OPERATORS: 
GENERAL THEORY OF TRANSMUTATIVITY 

MIROSLAV SOVA, Praha 

(Received May 5, 1981) 

This paper deals with the notions of interchangeability of general linear, not 
necessarily everywhere defined or continuous operators from a Banach space into 
itself. These general linear operators are frequently called unbounded linear operators, 
even if a little inaccurately. 

Since the simple interchangeability of superpositions of these general linear 
operators, called here and usually commutativity, does not provide an effective 
notion of interchangeability beyond the system of everywhere defined continuous 
operators, we introduce a new notion of interchangeability, called here trans-
mutativiy, which has many needed properties and naturally coincides with com­
mutativity for everywhere defined continuous operators. Moreover, it includes various 
notions of interchangeability introduced more or less accidentally by different 
technical tools for some special classes of operators. 

There are the following sections: 1. Sets, spaces and operators, 2. Basic types of 
interchangeability: commutativity, submutativity, transmutativity, 3. Transmutativity 
of general operators, 4. Resolventive operators and their transmutativity, 5. Scalar 
operators and their transmutativity, 6. Cumulants of operators, 7. Reactive operators 
and their transmutativity. 

Section 1 is of an auxiliary character. Sections 2 and 3 contain the basic definitions 
and results. Sections 4 and 5 are devoted to some special classes of operators and are 
independent of each other. Sections 6 and 7 synthetize and generalize some special 
results from Sections 2, 4 and 5. 

1. SETS, SPACES AND OPERATORS 

1.1. In the whole paper, E will usually denote an arbitrary Banach space over the 
complex number field C with the norm j| • ||. 

For this Banach space £, we denote: 
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L+(£) — the set of all linear operators with the linear nonvacuous domain in £ and 
with the range also in £, 

L(£) — the set of all everywhere defined continuous operators from L+(£). 

For an operator A e L+(£), we denote by D(A) its domain and by R(A) its range. 

The everywhere defined identity operator in £ is denoted by L 

1.2. For A, Be L+(£), we define: 

the inclusion A ~i B: D(A) c D(B) and Ax = Bx for every x e D(A); 

the sum A + B: D(A + B) = D(A) n D(B) and (A + B) x = Ax + Bx 
for every x e D(A) n D(B); 

the product AB: D(AB) = {x :xe D(B) and Bx e D(A)} and (AB) x = 
= A(Bx) for every x e D(B) such that Bx e D(A). 

For a one-to-one opeiator A e L+(£) we define: 

the inverse operator A'1: D(A_1) = R(A) and AA~1x = x for every xe R(-4). 

1.3. For A e L+(£), we define A~ as the set of all operators S e L(£) such that 

(I) SA s AS, 

(II) SG = GS for every G e L(£) with GA s= AG. 

1.4. Proposition. Let Ae L+(£). Then the set A~ always contains all multiples 
of the everywhere defined identity operator. 

Proof. Immediately from 1.3. 

1.5. Proposition. Let A e L+(£). If the operator A is everywhere defined continuous, 
then A e A~. 

Proof. Immediately from 1.3. 

1.6. Proposition. There exist a Banach space E and an operator AeL+(£) 
such that 

(a) the operator A is densely defined closed, 

(b) every operator G e L(£) such that GA ~\ AG is a multiple of the identity 

operator. 

Proof. Such space and operator have been constructed by Fuglede ([4], Theorem 
II): 

(i) E = L 2 ( - c o , oo), 
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(ii) the operator A is defined as follows: x e 0(A) and Ax = y if and only if x e 
e L 2 ( - oo, oo), ye L2(— oo, oo), x' exists almost everywhere and y(£) — 
= £ x(£) + x'(£) for almost every {, - o o < £, < oo. 

2. BASIC TYPES OF INTERCHANGEABILITY: 
COMMUTATIVITY, SUBMUTATIVITY, TRANSMUTATIVITY 

2.1. Let Ai, B e L+(E). The operators A, B are called commutot/Ve if AB = BAL 

2.2. Let A, BE L+(E). The operators A, B are called submutative if AB c BA. 

2.3. Theorem. Lef A, Be L+(F). Then the following statements (A) and (B) are 
equivalent: 

(A) the operators A, B are commutative; 

(B) the operators A, B and B, A are submutative. 

2.4. Theorem. Let A, BeL+(E). If the operators A,B are everywhere defined, 
then the following statements (A), (B) and (C) are mutually equivalent: 

(A) the operators A, B are commutative; 

(B) the operators A, B are submutative; 

(C) the operators B, A are submutative. 

2.5. Let A, Be L+(E). The operators A, B are called transmutative if ST = TS 
for every S,Te L(E) such that 

(I) SA c AS, 

(II) SG = GS for every G e L(E) with GA c AG, 

(III) TB c BT, 

(IV) TH = HTfor every H e L(E) with HB c BH. 

2.6. Proposition. Let A,BeL+(E). Then the following statements (A) and (B) 
are equivalent: 

(A) ST= TS for every S e A~ and TeB~; 

(B) the operators A, B are transmutative. 

Proof. An immediate consequence of 1.3 and 2.5. 

2.7. Theorem. Let A, Be L+(E). If 

(a) the operator A is everywhere defined continuous, 

(P) the operators A, B are submutative, 

then the operators A, B are transmutative. 
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Proof. By 1.3 (II) and 2.2 we easily obtain from (a) and (P) that 
(1) AT= TA for every TeB~. 

Using again 1.3 (II), we see from (1) that 
(2) ST= TS for every S e A~ and TeB~. 

Then (2) implies the conclusion by virtue of 2.6(A) => (B)-

2.8. Theorem. Let A,BeL+(E). If 

(a) the operator A is everywhere defined continuous, 

(P) the operator B is everywhere defined continuous, 

then the following statements (A) and (B) are equivalent: 

(A) the operators A, B are commutative', 
(B) the operators A, B are transmutative. 

Proof. (A) => (B): By 2.3, we see from (A) that the operators A, B are submutative. 
This together with (a) enables us to apply 2.7 and the implication (A) => (B) follows. 

(B) => (A): By 1.5, we see from (a) and (P) that Ae A~ and Be B~. Using these 
relations, we obtain from (B) by 2.6(B) => (A) that AB = BA which proves the impli­
cation (B) => (A) in view of 2.L 

2.9. Note. In the sequel, we frequently and constantly use the notions of com-
mutativity and submutativity, but the terms commutative and submutative, intro­
duced in 2.1 and 2.2, explicitly occur only in some cases. In technical conditions, we 
usually prefer to write down the corresponding relations in concise form directly by 
the defining formulas. 

2.10. Synopsis of notions of interchangeability. The notion of commutativity of 
operators from L+(F), as defined above in 2.1, is one of the simplest forms possible 
of intechangeability of general operators from L+(£). 

It is a formal extension of the notion of interchangeability frequently used for the 
everywhere defined continuous operators from L+(F). 

Regrettably, it is necessary to say that the notion of commutativity within the 
framework of the whole system L+(F) is practically without importance since it has 
almost no reasonable and useful properties beyond the scope of the everywhere 
defined continuous operators. 

The same is true for various weakenings of the notion of commutativity for opera­
tors A, B e L+(JE) as e.g. ABx = BAx for every x e D(AB) n D(BA) or ABx = BAx 
for every x from a dense subset of D(AB) n D(BA), or similarly. 

The notion of submutativity of operators from L+(£), as defined above in 2.2, is 
sometimes also introduced as an autonomous unit of interchangeability of general 
operators from L+(E) even if it has practically the same disadvantages within the 
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framework of the whole system L+(£) as the notion of commutativity and, moreover, 
it is unsymmetric. Nevertheless, it appears useful in a certain degree provided the first 
operator of the couple is everywhere defined continuous. 

Since both the previous notions of interchangeability — commutativity and sub-
mutativity — appear disadvantageous, we introduced in 2.5 a new notion of inter­
changeability, called here transmutativity. The basic idea of its definition is more 
intuitively described in 2.6 by means of the commutativity of certain sets of every­
where defined continuous operators from L+(£), associated with arbitrary operator 
from L+(£) by 1.3. 

In view of 2.1 and 2.2, the above mentioned set defined by 1.3 can be called a bisub-
mutant in analogy with the already used term bicommutant denoting the set which is 
obtained if the operator inclusions in 1.3 (submutativity in the sense of 2.2) are 
replaced by the identities (commutativity in the sense of 2.1). The name bisubmutant 
is more' easily to understand if we take the set of all everywhere defined continuous 
operators submutative with the given operator for the submutant. 

Using the notion of bisubmutant, we can say that, by 2.6, the transmutativity of 
two operators from L+(£) means the commutativity of their bisubmutants. In this 
way, the notion of bisubmutant becomes of basic importance in all our subsequent 
considerations. 

On the contrary, it should be said that the above mentioned notion of bicommutant 
is of little importance within the framework of the whole system L+(£). It is mostly 
introduced only for everywhere defined continuous operators from L+(£) where it 
coincides with the bisubmutant by 2.4 even if the general definition described above 
is formally quite possible. 

Naturally, the notion of transmutativity must in the first place and unconditionally 
coincide with the notion of commutativity for everywhere defined continuous opera­
tors from L+(£), which actually happens as shown above in 2.8. 

But unlike the commutativity and submutativity, the transmutativity has many 
further reasonable and useful properties within the framework of the whole system 
L+(£). The most important of them will be dealt with in the sequel. 

Elementary properties of transmutativity are summarized in Section 3. 
It is urgent that the notion of transmutativity should coincide with various forms 

of interchangeability, occasionally introduced by sundry technical tools for some 
special classes of operators. This coincidence with commutativity was established 
in the present Section 2 for everywhere defined continuous operators. In Sections 4 
and 5, we deal with this problem for further important classes of operators: resolven-
tive and scalar. Moreover, we shall give some other new criteria of transmutativity 
for these operators in a subsequent paper (Interchangeability of unbounded opera­
tors: special criteria of transmutativity, to appear in this Journal). 

In Sections 2, 4 and 5 it is also shown that the transmutativity of some special 
classes of operators, as everywhere defined continuous, resolventive or scalar, is 
completely determined by the commutativity of certain simpler associated systems 
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of everywhere defined continuous operators than those of bisubmutants. Analogous 
systems are generally singled out in Section 6 under the name of cumulants of opera­
tors and their principal role for transmutativity of a large class of the so-called 
reactive operators is shown in Section 7. 

A cumulant of a given operator from L+(F) is defined in Section 6 as any set of 
everywhere defined continuous operators from L+(F) which is equipotent with the 
bisubmutant of this operator with respect to the commutativity. This means that an 
everywhere defined continuous operator is commutative with every operator from 
a cumulant of the given operator if and only if it is commutative with every operator 
from its bisubmutant. It is clear that the bisubmutant of an arbitrary operator from 
L+(F) is always one of its cumulants. Moreover, special operators as everywhere 
defined continuous, resolventive or scalar ones have simple cumulants which will be 
indicated. 

The reactivity of a given operator from L+(F), as defined in Section 7, means that 
any everywhere defined continuous operator commutative with every operator from 
the bisubmutant of the given operator is submutative with the given operator itself. 
Two main properties of reactive operators explain our special interest in them. First, 
the class of reactive operators includes the special classes of everywhere defined 
continuous, resolventive and scalar operators, even if on the other hand, not every 
"respectable" (e.g. densely defined closed) operator is reactive. Secondly, the trans­
mutativity of reactive operators is completely determined by the commutativity and 
submutativity of their arbitrary cumulants. 

3. TRANSMUTATIVITY OF GENERAL OPERATORS 

3.1. Theorem. Let A, Be L+(£). Then the following statements (A) and (B) are 
equivalent: 

(A) the operators A, B are transmutative; 

(B) the operators B, A are transmutative. 

Proof. Obvious from 2.6. 

3.2. Lemma. Let A e L+(K). Then ST = TS for every S, Te A~. 

Proof. Evident from 1.3. 

3.3. Theorem. Let A e L+(E). Then the operators A, A are transmutative. 

Proof. An immediate consequence of 2.6 and 3.2. 

3.4. Lemma. Let A e L+(F). Then (aA)~ = aA~ for every a e C, a 4= 0. 

Proof. Immediately from 1.3. 
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3.5. Theorem. Let A, Be L+(£) and a, P e C. If a * 0, p # 0, fhen the following 
statements (A) and (B) are equivalent: 

(A) the operators A, B are transmutative; 

(B) rhe operators <xA, PB are transmutative. 

Proof. An immediate consequence of 2.6 and 3.4. 

3.6. Lemma. Let A e L+(£). Then (ocl -f- A)~ = A~ for every a e C. 

Proof. Immediately from 1.3. 

3.7. Theorem. Let A, BE L+(E) and a, P e C. Then the following statements (A) 
and (B) are equivalent: 

(A) the operators A, B are transmutative; 

(B) the operators <xl + A, pi + B are transmutative. 

Proof. An immediate consequence of 2.6 and 3.6. 

3.8. Sublemma. Let Ae L+(£). If the operator A is one-to-one, then for every 
Ge L+(£), the following statements (A) and (B) are equivalent: 

(A) GA c AG; 

(B) GA-1 s A~XG. 

Proof. Let us first fix a G e L+(£). 

(A) => (B): Then (A) can be written in the form 

(1) y e D(G), Gy e D(A) and GAy = AGy for every y e D(A). 

Taking y = A~1xfoixe D(A^1), we get from (1) that 

(2) GA"1* 6 D(A), x 6 D(G) and Gx = GAA~xx = AGA~xx for every x e D(A_ 1) . 

Now we see from (2) that Gxe R(A) = D(A_ 1) and A_1Gx = A~1AGA~1x = 
-= GA~xx for every x e D(A_1), which is (B). 

(B) => (A). In an analogous way as (A) => (B). 

3.9. Lemma. Let Ae L+(E). If the operator A is one-to-one, then A~ = (A _ 1)~. 
Proof. Immediately from 1.3 and 3.8. 

3.10. Theorem. Let A, Be L+(E). If the operator B is one-to-one, then the fol­

lowing statements (A) and (B) are equivalent: 

(A) the operators A, B are transmutative; 

(B) the operators A, B'1 are transmutative. 

Proof. An immediate consequence of 2.6 and 3.9. 
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3.11. Theorem. Let A, BE L+(F). If the operators A, B are one-to-one, then the 
following statements (A) and (B) are equivalent: 

(A) the operators A, B are transmutative; 

(B) the operators A"1, B'1 are transmutative. 

Proof. An immediate consequence of 2.6 and 3.9. 

3.12. Lemma. Let A e L+(F). If GA c AG for every G e 1(E), then either D(A) = 
= {0} or the operator A is a multiple of the everywhere defined identity operator. 

Proof. We first prove that 

(1) for every x e D(A), there exists an a e C such that Ax = ax. 

Indeed, since (1) is true if D(A) = {0}, we can suppose D(A) #= {0} and proceed 
indirectly. Thus, let us admit that there exists an x0 e D(A) such that x0 + 0 and 
Ax0 4= ax0 for every a e C. This implies that Ax0 #= 0 and that the vectors x0, Ax0 

are independent. Using the Hahn-Banach Theorem, we fix an / e £* such that Z(x0) = 
= 1 and l(Ax0) = 0. Now let us define Gx = l(x) x0 for x e E. Then clearly G e L(E). 
On the other hand, x0 e D(AG), AGx0 = /(x0) Ax0 = Ax0 + 0 and x0 e D(GA), 
GAx0 = l(Ax0) x0 = 0. But these conclusions contradict the supposition of our 
lemma and thus, (1) is valid. 

Now, we prove that 

(2) there exists an a e C such that Ax = ax for every x e D(A). 

Indeed, (2) is clear if D(A) = {0}. Further, (2) follows from (l) if D(A) is a one-
dimensional subspace. Hence let us suppose that D(A) is at least a two-dimensional 
subspace and that (2) does not hold. Now let us first fix an xx e D(A) so that xx + 0. 
By (1), we can find an a1 e C such that Axx = ajXj. Since xx e D(A), xl =j= 0, Axt = 
= ajXi, D(A) is at least two-dimensional and (2) is not tiue by supposition, we can 
find an x2 e D(A) so that the vectors x l5 x2 are independent and Ax2 + a ^ . By (1), 
we can find an a 2 e C so that Ax2 = a2x2 and a y e C so that A(xl + x2) = 
= y(x1 + x2). Consequently, we get oc1x1 + a2x2 = y(xx + x2). Since the vectors 
xux2 are independent, it follows from this identity that ax = a2 = y. Hence Ax2 = 
= a2x2 = axx2 which contradicts Ax2 + OL{X2- The statement (2) is proved. 

Finally, we prove that 

(3) D(A) = {0} or D(A) = E. 

Indeed, let {0} + D(A) + E. Let us fix an arbitrary x0 e D(A) such that 
x0 + 0. By the Hahn-Banach Theorem we choose an / e £ * such that /(x0) = 1. 
Then we put Gx = l(x) (x0) for x e E. Cleaily G e 1(E). Further, D(AG) = {0} and 
D(GA) = D(A) =)= {0}. But these conclusions contradict the supposition of our lemma 
and thus, (3) is valid. 

The statement of our lemma now follows at once from (2) and (3). 
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3.13* Theorem. Let A e L+(F). Then the following statements (A), (B) and (C) 
are mutually equivalent: 

(A) (1) the operator A is everywhere defined continuous, 

(II) for every B e L(F), the operators A, B are commutative; 

(B) (I) the operator A is everywhere defined continuous, 

(II) for every B e L+(F), the operators A, B are transmutative; 

(C) the operator A is a multiple of the everywhere defined identity operator. 

Proof Use 1.3, 2.6 and 3.12. 

3.14. Theorem. Let AeL+(E). Then the following statements (A), (B) and (C) 
are mutually equivalent: 

(A) for every B e L(F), the operators A, B are transmutative; 

(B) for every B e L+(F), the operators A, B are transmutative; 

(C) every operator S e L(F) such that SA c AS and SG = GS for every G e L(F) 
with GA £ AG is a multiple of the everywhere defined identity operator. 

Proof. Use 1.3, 2.6 and 3.12. 

3.15. Proposition. Let A e L+(F). Then the following statements (A) and (B) are 
equivalent: 

(A) the operator A is a multiple of the everywhere defined identity operator; 

(B) (I) the operator A is everywhere defined continuous, 

(II) every operator S e L(E)such that S A c AS and SG = GS for every G e L(E) 

with GA £ AG is a multiple of the everywhere defined identity operator. 

Proof. The implication (A) => (B) follows from 3.12, the implication (B) => (A) is 
obvious from 1.3 and 1.5. 

3.16. Proposition. There exist a Banach space E and an operator A e L+(F) 
such that 

(a) the operator A is densely defined closed, 

(b) D(A) * E, 

(c) every operator S e L(E) such that SA c AS and SG = GS for every G e L(F) 
with GA c AG is a multiple of the everywhere defined identity operator. 

Proof. Immediately from 1.6. 

3.17. Theorem. Let A, Be L+(F). If there exists a set U s L(£) such that 

(a) ZAi £ ^4Zfor every Z e L(E) such that ZU = UZ for every U e U, 
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(P) UB c BU for every U e U, 

then the operators A, B are transmutative. 

Proof. Let us fix a set U £ 1(E) such that (a) and (P) hold. 

By 1.3(11), we see from (P) that 

(1) UT= TU for every Ue U and T e B ~ . 

Then it follows from (a) and (1) that 

(2) TA c AT for every Te B~. 

Using again 1.3(11) we get from (2) that 

(3) ST= TS for every SeA~ and TeB~. 

But (3) enables us to apply 2.6 and the conclusion follows. 

3.18. Theorem. Let A, Be L+(F). If there exist two sets U, V <= 1(E) such that 

(a) ZA c AZfor every Z e 1(E) such that ZU = UZ for every U e U, 

(P) ZB c BZfor every Z e 1(E) such that ZV = VZ for every Ve V, 

(Y) UV = VU for every U e U and Ve V, 

then the operators A, B are transmutative. 

Proof. Let us fix sets U, V c L(E) such that (a) - (Y) hold. 

It follows from (p) and (Y) that UB c BU for every U e U. 

This property together with (a) enables us to apply 3A7 and the conclusion follows. 

3.19. Theorem. Let U c L(E) and B e L+(E). If there exists an operator A e L+(£) 
such that 

(a) the operators A, B are transmutative, 

(Pi) UA £ AU for every U e U, 

(P2) UG = GU for every U e U and G e 1(E) with GA c AG, 

ffcen UT = TU for every Ue U and Te 1(E) such that TB c £ T awd TH = HT 
for every H e 1(E) with HB c BH. 

Proof. Let us fix an operator A e L+(E) so that (a), ( p j and (p2) hold. 

By 1.3, we see from (PJ) and (p2) that 

(1) l / c A ~ . 

By 2.6, it follows from (a) and (1) that 

(2) UT = TU for every U e U and Te JB~f 

The conclusion follows from (2) by 1.3. 
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3.20. Theorem. Let U, V £ L(E). If there exist two operators A, Be L+(E) such 
that 

(a) the operators A, B are transmutative, 

(Pi) UA £ AUm for every U e U, 

(P2) UG = GU for every U e U and G e L(E) with GA £ AG, 

(Yi) VB £ BV for every Ve V, 

(y2) VH = HVfor every Ve V and H e L(E) with HB £ BH9 

then UV = VU for every U e U and Ve V. 

Proof. Let us fix operators A, Be L+(E) so that (a), (Px), (p2), (y±) and (Y2) hold. 
By 1.3, we see from ( P j (p2) and (yt) (y2) that U £ AT and V £ B~. 
This property together with (a) implies the conclusion by virtue of 2.6. 

3.21. Remark. Theorems 3.17 — 3.20 may appear a little artificial, but they will 
play an important role in the subsequent sections when studying the transmutativity 
of some special classes of operators. 

4. RESOLVENTIVE OPERATORS AND THEIR TRANSMUTATIVITY 

4.1. Let A e L+(E) and zeC. The number z is called a resolvent point of the 
operator A if the operator zl + A is one-to-one and (zl + A)'1 e L(E). 

4.2. Let A e L+(E). The operator A is called resolventive if there exists a number 
z e C which is a resolvent point of the operator A. 

4.3. Lemma. Let A e L+(E) and zeCIf the number z is a resolvent point of the 
operator A9 then 

(a) (zl + A)-1 A £ A(zl + A)'1, 

(b) G(zl + A)"1 = (zl + A)'1 Gfor every G e L(E) such that GA £ AG, 

(c) ZA £ AZfor every Z e L(E) such that Z(zl + A)'1 = (zl + A)~x Z. 

Proof. First we have 

(zl + A)'1 A = (z/ + A)"1 (z/ + ,4 - zl) £ I - z(zl + A)"1 = .4(zJ + A)'1 , 

which proves (a). 

Further, let G 6 L(E) and GA £ AG. Then (zl + A) G = zG + AG 2 2G + 
+ GA = G(zI + .A). Multiplying this inclusion by (zl + A)"1 from the left and 
right we obtain G(zl + .A)"1 2 (zl + A)'1 G, which implies (b). 

Finally, let Z e L(£) and Z(zl + A)"1 = (zF+ A)~x Z. Multiplying this identity 
by zl + A from the left and right we get easily that (zl + A) Z 3 Z(zI + v4), which 
implies ZA £ A.Z as was necessary in order to prove (c). 
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4.4. Theorem. Let A, Be L+(E) and a, pe C. If 

(a) the number a is a resolvent point of the operator A, 

(P) the number ft is a resolvent point of the operator B, 

then the following statements (A) nad (B) are equivalent: 

(A) the operators (aI + A)'1, (pi + B)'1 are commutative; 
(B) the operators A, B are transmutative. 

Proof. Let us put U = {(aI + A)"1} and V = {(pi + B)'1}. 

Then the implication (A) => (B) is an immediate consequence of 2.1, 3.18 and 4.3(c) 
and the implication (B) => (A) of 2.1, 3.20 and 4.3(a), (b). 

4.5. Remark. Theorem 4.4 permits to prove that two semigroups of operators (say 
strongly continuous, but the same is true for arbitrary regular distribution semigroups) 
are commutative (in the sense that every operator from the range of the one is com­
mutative with every operator from the range of the other) if and only if their genera­
tors are transmutative. It suffices to prove that the above described commutativity of 
semigroups is equivalent to the commutativity of resolvents of their generators, which 
again follows from the known relations between a semigroup and the resolvent of 
its generator. An analogous statement is valid also for cosine operator functions. 

5. SCALAR OPERATORS AND THEIR TRANSMUTATIVITY 

5.1. By B(C) we denote the set of all Borel subsets of C. Further, the set of all 
mappings of B(C) into L(E) will be denoted by B(C) -• L(E). 

5.2. Let Ae L+(E) and ^ G B ( C ) -> L(E). The function S is called a (spectral) 

resolution of the operator A if 

(I) the function $(•) x is a a-additive vector-valued measure on B(C) for every 

xeE, 

(II) S(X n Y) = S(X) S(Y) for every X, Ye B(C), 

(III) S(C) = I, 

(IV) x e D(A) if and only if the integral fc<TS(dcr) x exists, 

(V) Ax = J c ^ ( d ^ ) * for every x e D(A). 

5.3. Let Ae L+(E). The operator is called scalar if there exists a function &e 
e B(C) -• L(E) which is a resolution of the operator A. 

5.4. Lemma. Let A e L+(E) and & e B(C) -> L(E). If the function $ is a resolution 
of the operator A, then 
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(a) S(X) Y^A S(X) for every X e B(C), " 

(b) G S(X) = S(X) G for every X e B(C) and G e 1(E) such that that GA c AG, 

(c) ZA c AZ for every Z e L(JE) such that Z S(X) = S(X) Z for every X e B(C). 

Proof. The statements (a) and (c) follow easily from the properties 5.2(1) —(V). 
The statement (b) is essentially due to Fuglede [3], whose proof for the special 

case of normal operators can be easily adapted to this general situation. Another 
proof, based on analytic function theory, is to be found in [2], Part III. 

5.5. Theorem. Let A, Be L+(E) and £,&e B(C) -> 1(E). If 

(a) the function $ is a resolution of the operator A, 

(P) the function !F is a resolution of the operator B, 

then the following statements (A) and (B) are equivalent: 
(A) the operators S(X), !F(Y) are commutative for every X, Ye B(C); 

(B) the operators A, B are transmutative. 

Proof. Let us put U = {£(X) : X e B(C)} and V = {^(Y) : Ye B(C)}. 
Then the implication (A) => (B) is an immediate consequence of 2.1, 3.18 and 5.4(c) 

and the implication (B) => (A) of 2.1, 3.20 and 5.4(a), (b). 

5.6. Remark. In connection with our previous consideration, the question can be 
raised whether it is possible to say something more about the "inner" structure of 
bisubmutants of scalar operators. In general, this structure is not transparent, but 
in the case of scalar operators, we can attempt to exploit the very special character 
of these operators. Unfortunately, an exhausting answer is not known to us but 
some information can be given, especially for Hilbert spaces. 

First we can ask for scalarity (normality) of elements of the bisubmutant of a given 
scalar (normal) operator. We have 

PROPOSITION. Let A e L+(£). If 

(a) the space E is a Hilbert space, 

(P) the operator A is scalar (normal), 

then the elements of A~ are scalar (normal) operators. 

Proof. Thanks to the Wermer Theorem ([2], XV. 6.4) we can consider the normal 
operators only. 

Thus, let A be a normal operator. 
It is well-known that G*A f= AG* for every G e 1(E) for which GA c AG. 
Let now S e A~. Using the previous property, we get from 1.3(11) that SG* = G*S 

for every G e 1(E) with GA c AG. This implies S*G = GS*. Using again 1.3(11), 
we see that S* e A~. Now by 1.3(1) and 1.3(11), S*S = SS* which proves the normal­
ity of S. 
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Further, we can seek for an analytical description of elements of the bisubmutant 
of a given scalar operator. As a tool for such an analytical description we can use the 
notion of bounded Borel functions of a given scalar operator in the sense of the opera­
tional calculus developed e.g. in [2], XVIII. In this direction we have the following 
results. 

PROPOSITION. Let A e L+(£). If the operator A is scalar, then every bounded 
Borel function of A belongs to A~. 

Proof. Easy from the above mentioned operational calculus. 

PROPOSITION. Let A e L+(K). If 

(a) the space E is a separable Hilbert space, 

(P) the operator A is scalar, 

then every element of A~ is a bounded Borel function of the operator A. 

Proof. Use the Wermer Theorem ([2], XV. 6.4) and the von Neumann Theorem 

([-]. P- 64). 
PROPOSITION. The supposition of separability in the previous proposition is 

indispensable. 

Proof. See Nakano's example ([1], p. 65). 

PROPOSITION. Let A e L+(K). If 

(a) the space E is a Hilbert space, 

(P) the operator A is scalar, 

then for every operator Te L(F), the following statements (A) and (B) are equi­
valent: 

(A) TeA~, 

(B) there exists a generalized sequence Tae L(F) such that 

(I) Ta(x) -» T(x)for every x from a dense subset of E, 

(II) the sequence Ta is uniformly bounded, 

(III) every operator Ta is a bounded Borel function of the operator A. 

Proof. Use the Wermer Theorem ([2], XV.6.4) and the von Neumann and Segal 
Theorems ([4], 12.1 and 12.2.3). 

6. CUMULANTS OF OPERATORS 

6.1. Let A e L+(£) and U e L(£). The set l/is called a cumulant of the operator A 
if 
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(I) for every Z e L(E) such that ZU = UZ for every U e U, we have ZS = SZ 
for every S e L(E) satisfying SA c A[S and SG = GS for every G e L(K) with 
GA <= ^G, 

(II) for every Z e L(£) such that ZS = SZ for every S e L(F) satisfying SA c /IS 
and SG = GS for every G e L(E) with G4 c AG, we have ZU = UZ for every 
U6U. 

6.2. Lemma. Let A e L+(£) and U £ L(£). Then the following statements (A) 
and (B) are equivalent: 

(A) rhe set U is a cumulant of the operator A; 

(B) (I) for every Z e L(E) such that ZU = UZ for every U e U, we have ZS = SZ 
for every S e A~, 

(11) for every Z e L(E) such that ZS = SZfor every S e A~, we have ZU = UZ 
for every U e U. 

Proof. Immediately from 1.3 and 6.1. 

6.3. Theorem. Let A e L+(E). Then there exists at least one cumulant of the opera-
tor A. Moreover, this cumulant can be chosen nonvacuous. 

Proof. The set A" is always a cumulant of the operator A as it is trivially seen 
from 1.3 (II) and 6.2 (B) => (A). 

The fact that the set A~ is nonvacuous is shown in 1.4. 

6.4. Proposition. Let A e L+(E). Then the following statements (A) and (B) are 
equivalent: 

(A) the vacuous set is a cumulant of the operator A; 

(B) every operator S e L(E) such that SA £ AS and SG = GS for every G e L(E) 

with GA £ AG is a multiple of the everywhere defined identity operator. 

Proof. (A)=>(B): Use 3.14.. 
(B) => (A): Obvious. 

6.5. Lemma. Let A e L+(£) and U £ 1(E). If 

(a) UA c AU for every U e U, 

(P) UG = GU for every U e U and G e L(E) with GA s AG, 

(y) ZA c AZ for every Z e L(E) such that ZU = UZ for every U e U, 

then the set U is a cumulant of the operator A. 

Proof. By 1.3 (II), it follows from (y) that 

(1) the condition 6.2(B) (I) holds. 
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By 1.3, it follows from (a) and (p) that 

(2) U^A~. 

Then it is immediate from (2) that 

(3) the condition 6.2(B) (II) holds. 

Now the desired statement follows from (1) and (3) by 6.2(B) => (A). 

6.6. Theorem. Let A e L+(E). If the operator A is everywhere defined continuous, 
then the set {A} is a cumulant of the operator A. 

Proof. Immediately from 6.5. 

6.7. Theorem. Let AeL+(E). If the operator A is resolventive, then the set 
{(zl + A)'1} is a cumulant of the operator A for every z e C which is a resolvent 
point of the operator A. 

Proof. Immediately from 4.3 and 6.5. 

6.8. Theorem. Let A e L+(E). If the operator A is scalar, then the set {$(X) : X e 
e B(C)} is a cumulant of the operator A for every $ e B(C) -» L(E) which is a resolu­
tion of the operator A. 

Proof. Immediately from 5.4 and 6.5. 

7. REACTIVE OPERATORS AND THEIR TRANSMUTATIVITY 

7.1. Let A e L+(E). The operator A is called reactive if ZA c AZ for every Z e L(E) 
such that ZS = SZ for every 5 e L(E) satisfying SA c AS and SG = GS for every 
G e L(£) with GA s AG. 

7.2. Lemma. Let A e L+(E). Then the following statements (A) and (B) are 
equivalent: 

(A) the operator A is reactive; 

(B) ZA c AZfor every Z e L(£) such that ZS = SZ for every S e A~. 

Proof. Immediately from 1.3 and 7.L 

7.3. Theorem. Let A e L+(E). If the operator A is reactive, then 
(*) ZA c AZfor every Z e L(E) such that ZG = GZ for every G e L(E) with GA c 

^ AG. 

Proof. By 7.2 (A) => (B), we obtain from the assumption that 

(1) ZA s AZ for every Z e L(E) such that ZS = SZ for every SeA~. 
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It follows from 1.3(11) that 

(2) for every Z e 1(E) such that ZG = GZ foi every G e L(£) with GA c AG, we 
have ZS = SZ for every SeA~. 

Now the statement of our theorem is an immediate consequence of (l) and (2). 

7.4. Proposition. There exist a Banach space E and an operator A e L+(F) 
such that 

(a) the operator A is densely defined closed, 

(b) the operator A is not reactive. 

Proof. Let us consider the space E and the operator A e L+(E) from 1.6. 
The statement (a) is identical with 1.6(a). 
Using 1.6(b) and 1.3(11), we easily obtain that 

(1) A" is the set of all multiples of the everywhere defined identity operator. 

On the other hand, it follows from the Hahn-Banach Theorem that there exists 
an operator Z such that 

(2)ZeL(£), 

(3) Z is not a multiple of the everywhere defined identity operator. 

It is obvious from (l) and (2) that 

(4) ZS = SZ for every S e A~. 

To conclude the proof, suppose that the operator A is reactive. Then by 7.2(A) => 
=> (B), we obtain from (2) and (4) that ZA != AZ. But this leads to a contradiction 
with (2) and (3) in view of 1.6(b). Hence the statement (b) holds. 

7.5. Lemma. Let A e L+(F). If there exists a set U £ L(E) such that 

(a) UA £ AU for every U e U, 

(p) UG = GU for every U e U and G e 1(E) with GA <= AG, 

(y) ZA c AZfor every Z e 1(E) such that ZU = UZ for every U e U, 

then the operator A is reactive. 

Proof. Let a set U £ L(E) with the properties (a), (P) and (y) be fixed. 
By 1.3, it follows from (a) and (p) that 

(1) UczA~. 

Then it follows from (l) and (y) that 

(2) the condition 7.2(B) holds. 

Now the desired statement is obtained from (2) by use of 7.2. 
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7.6. Theorem. Let A e L+(F). If the operator A is everywhere defined continuous, 
then it is reactive. 

Proof. Immediately from 7.5. 

7.7. Theorem. Let A e L+(F). If the operator A is resolventive, then it is reactive. 

Proof. Immediately from 4.3 and 7.5. 

7.8. Theorem. Let A e L+(F). If the operator A is scalar, then it is reactive. 

Proof. Immediately from 5.4 and 7.5. 

7.9. Theorem. Let A, Be L+(£). If 

(a) the operator A is everywhere defined continuous, 

(P) the operator B is reactive, 

then the following statements (A) and (B) are equivalent: 

(A) the operators A, B are submutative; 

(B) the operators A, B are transmutative. 

Proof. (A) => (B): A special case of 2.7. 
(B) => (A): By 1.5 we obtain from (a) that 

(l)AeA~. 

By 2.6, it follows from (B) and (1) that 

(2) AT = TA for every Te B~. 

Now by 7.2(B) => (A), the conditions (p) and (2) imply (A). 

7.10. Lemma. Let A e L+(F) and U c 1(E). If 

(a) the operator A is reactive, 

(P) the set U is a cumulant of the operator A, 

then 

(a) UA c AU for every U e U, 

(b) UG = GU for every U e U and G e L(E) with GA c AG, 

(c) ZA c AZfor every Z e 1(E) such that ZU = UZ for every U e U. 

Proof. By 7.2(A) => (B), we obtain from (a) that 

(1) ZA c AZ for every Z e 1(E) such that ZS = SZ for every S e A~. 

Further, by 6.2(A) => (B) we obtain from (p) that 

(2) for every Z e 1(E) such that ZU = UZ for every U e U, we have ZS = SZ 
for every S eA~, 
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(3) for every Z e L(£) such that ZS = SZ for every S e A~ we have ZU = UZ for 
every U e U. 

Moreover, it is immediate from 1.3 that 

(4) StS2 = S ^ i for every SuS2eA~. 

Then (3) and (4) imply 

(5) US = SU for every U e U and Se A~. 

On the other hand, we have by 1.3(11) that 

(6) SG = GS for every -S e A~ and G e L(£) with GA c AG. 

Now it is easy to see that (1) and (5) imply (a), (3) and (6) imply (b) and (l) and (2) 
imply (c). The proof is complete. 

7.11.' Theorem. Let A, B e L+(£). If 

(a) the operator A is reactive, 

(P) there exists a set U c L(£) such that 

(i) U is a cumulant of the operator A, 

(ii) the operators U, B are submutative for every U e U, 

then the operators A, B are transmutative. 

Proof. An immediate consequence of 2.2, 3.17 and 7.10 (by virtue of the property 
7.10(c)). 

7.12. Theorem. Let A, Be L+(£) and U .= L(£). If 

(aj) the operator A is reactive, 

(a2) the set U is a cumulant of the operator A, 

(P) the operator B is reactive, 

then the following statements (A) and (B) are equivalent: 

(A) the operators U, B are submutative for every U e U\ 

(B) the operators A, B are transmutative. 

Proof. (A) => (B): An immediate consequence of 7.11. 

(B) => (A): An immediate consequence of 2.2, 3.19 and 7.10 (by virtue of the 
properties 7.10(a), (b)). 

7.13. Theorem. Let A, Be L+(£) and U, V s L(£). If 

(ax) the operator A is reactive, 

(a2) the set U is a cumulant of the operator A, 

( P j the operator B is reactive, 
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(P2) the set V is a cumulant of the operator B, 

then the following statements (A) and (B) are equivalent: 

(A) the operators U, V are commutative for every U e U and Ve V; 

(B) the operators A, B are transmutative. 

Proof. (A) => (B): An immedaite consequence of 2.1, 3.18 and 7.10 (by virtue of 
the property 7.10(c)). 

(B) => (A): An immedaite consequence of 2.1, 3.20 and 7.10 (by virtue of the 
properties 7.10(a), (b)). 

7.14. Note. Theorems 7.11, 7.12 and 7.13 can also serve as skeleton theorems for 
a series of transmutativity criteria if we specify one or both of the operators A, Bio 
everywhere defined continuous, resolventive or scalar operators as is possible by 
6.6-6.8 and 7.6-7.8. 

Some of these special cases were independently proved earlier in 2.7, 2.8, 4.4, 5.5 
and 7.9. Explicit formulations of further special cases are immediate and will be left 
to the reader. Naturally, the proofs of these further special cases can be based directly 
on 3.17-3.20 as well. 

7.15. Proposition. Let A e L+(F) and U c= L(F). Then the conditions 7.10 (a) 
and (P) are equivalent to the conditions 7.10 (a), (b) and (c). 

Proof. An immediate consequence of 6.5, 7.5 and 7.10. 

7.16. Remark. By Theorem 7.3, we can say that for reactive operators, the condi­
tion 1.3(11) implies the condition 1.3(1). 

7.17. Remark. The converse of Theorem 7.3 seems improbable, but we do not 
know any non-reactive operator with the property 7.3(*). 

7.18. Remark. It is easy to see from 1.6 that there exist a Banach space E and an 
operator A e L+(F) which is densely defined closed, but has not even the property 
7.3 (*) (weaker than reactivity). Cf. 7.4. 
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