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0. INTRODUCTION

0.1. Let us consider the differential operator of order 2k,
(0.1) (4u) (x) = %q(— 1)!*! D*(a,y(x) D’u(x)) ,

defined on a domain Q < RY, and the associated bilinear form

(0.2) a(u,v) = Y j aq5(x) D?u D*v dx .

lol,181 <k
Further, let us consider the Sobolev space
Wk,Z(Q)
and its subspace
Wo(Q) = C3(9) -

Throughout this paper, only real functions will te considered.

0.2. Let us recall that to find a weak solution of the Dirichlet problem for the op-
erator A means to find, for a given function u, € W**(Q) and for a given continuous
linear functional f e (Wg'*(R))*, a function

ue W(Q)
such that
() u — ug e W3 (Q);
(ii) a(u, v) = {f, v) for every v e Wg'*(Q).

Here the function u, represents the right-hand side in the boundary condition and
condition (i) can be interpreted in the following sense:

d'u _ d'ug

a_ F 69, i=0,1,...,k—1,
n' n
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where dQ is the boundary of the domain Q2 and n the outer normal to 0Q. The func-
tional f represents the right-hand side in the (formal) differential equation

Au =f;
the symbol (-, +> expresses the duality pairing between (WE?(2))* and Wy?(Q).
0.3. The Lax-Milgram Lemma. Let V be a Hilbert space and b(u, v) a bilinear

form defined on V x V. Let this form be continuous — i.e. let there exist a con-
stant ¢; > 0 such that

(0.3) |6, 0)] = esllullv o]y

holds for all u,ve V, and V-elliptic — i.e. let there exist a constant ¢, > 0 such
that

(0.4) b(u, u) 2 cafjuly

holds for all u € V. Further, let f be a functional from V*. Then there exists one
and only one element u € V such that

(0.5) b(u,v) = {f,v) forevery veV
and
(0.6) lully < cs]f]ve

(with constant ¢, independent of u, and f).

0.4. Asis well known — see e.g. [7], [11], with help of the Lax-Milgram Lemma
it is possible to prove the existence and uniqueness of the weak solution of the
Dirichlet problem from Section 0.2, provided the differential operator 4 from (0.1)
satisfies certain conditions: It suffices that a,; be bounded measurable functions,

(0.7) a,z € L*(Q)

and that the ellipticity condition

(0.8) z l aaﬂ(x) ﬁaéﬁ g Ca Z |€a|2
lol, |8l <k la| sk

hold for a.e. x € 2 and for all real vectors ¢ = {&,, |¢| < k} with a constant c, > 0
independent of &. Under certain additional assumptions on the domain , condition
(0.8) can be weakened e.g. in the sense that the summation on the right-hand side
ranges only over the multiindices of the length k : Ial = k. ‘

The aim of this paper is to show that the method of the proof of existence of a weak
solution can be extended to a broader class of differential operators, viz. to equa-
tions, for which the classical Sobolev spaces cannot be used. We shall show how it is
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possible to construct, for a given operator A4, a suitable weighted Sobolev space
W*%Q, S), in which the existence and uniqueness of the weak solution of the
Dirichlet problem is already guaranteed. ‘

Now, we shall define the space just mentioned and the corresponding Dirichlet
problem.

0.5. The weighted Sobolev space. Let Q2 be a domain in R¥; the symbol
(0.9) v(Q)

denotes the set of all measurable, a.e. in Q positive functions. Such functions will
be called weight functions.

Let us denote by M(N, k) the set of all N-dimensional multiindices of length at
most k:

M(N, k) = {ae N, |¢| < k}.

Let M be a fixed subset of M(N, k) and let M contain at least one multiindex of
length k. Further, let a collection of weight functions

(0.10) S = {w, = w,(x), w,e #(Q), xe M}

be given; the collection S will be called shortly a weight.
For p > 1 we introduce the linear space

(0.11) WeR(Q, S)

as the set of all measurable functions u = u(x) defined on Q which have on Q
(generalized) derivatives D*u for @ € M such that

(0.12) (D], = j )

Du(x)|? wo(x) dx < oo .

Let us suppose that W*?(Q, S) is a Banach space with respect to the norm
(013 ol = (3 Dels. )

and let us introduce the so called “‘nulled-space”

(0.14) WEP(Q, S) = Co(Q)!* s

0.6. Remarks. (i) If we take M = M(N, k) and w,(x) = 1 for « € M, we obtain
the classical Sobolev space W*(Q).

(ii) The assumption that (0.13) is a norm and that W*?(Q, S) is a Banach space
with respect to this norm imposes some conditions on the set M as well as the collec-
tion S. The reader can easily verify that the space W*?(2, S) will be complete, if
eg. 0 =(0,0,...,0) belongs to M and if
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(0.15) wy P~V el (Q), aeM.
Thus restricts to some extent the choice of the weight functions. In a forthcoming
paper [5] we shall show how conditions (0.15) can be avoided.

(iii) In order to be able to introduce the “nulled-space” Wg'?(Q, S), the set C3'(Q)
has to be a subset of the space W*?(Q, S). This will be fulfilled iff
(0.16) ’ woe L, (Q), aeM.

loc

However, even this condition can be avoided — see [5].
(iv) The norm in the “nulled-space” W§'P(Q, S) is again given by (0.13). In the
case of the classical Sobolev space it is known that the expression

leellle.p = (MZ= Dl

where the summation ranges only over the derivatives of the highest, k-th, order,
gives an equivalent norm in W(;""(Q). An analogous, but more complicated situation
occurs for weighted spaces; we shall use estimates of the type

p 1/p
b
pPswi

which hold for functions u € Cg(£2) with a constant independent of u, under certain
conditions on the weight functions wg, w,, ..., wy. More details about equivalent
norms can be found e.g. in [4], [10]; now we shall state Hardy’s inequality, which is
an important tool for deriving estimates of the type (0.17) and which will be used in
the sequel in some examples.

N

(0.17) ]y < const<z ou

X

0.7. Hardy’s inequality (see [4]). Let u = u(t) be a function from C§’(0, co). Then
fore + p — 1 and p > 1 the following inequality holds:

(0.18) leu(t)k’ t-rdt < <I;>pj.w|u’(t)|” tde.

e—p+1| °

0.8. The Dirichlet problem. Let A be the differential operator (0.1) and a(u, v) the
corresponding bilinear form (0.2). Let W*%(®, S) be the weighted Sobolev space
from Section 0.5 (with p = 2) and let us suppose that the coefficients a,, of the opera-
tor A are such that the expression a(u, v) is meaningful for every u, ve W*%(Q, S).
Let u, be a given function from W*?(Q, S) and f a continuous linear functional from
(Ws*(, S))*. A function u e W*?(Q, S) is called a weak solution of the Dirichlet
problem in the space W**(Q, S), if it satisfies
v (i) u — upe W3R, S);

(i) a(u, v) = <f, v) for every ve Wy*(Q, S).
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1. EXAMPLES ;

i

1.1. Example. Let us consider a special differential operator of the second order
N8 ou
(1.1) (Au)(x) = =Y —(adx) —) + ao(x)u, xeQ.
i=1 0x; 0x;
In this case the bilinear form (0.2) has the form

(1.2) a(u, v) = zj ()g'i——d +Jao(x)uvdx,

Q2

and, in particular,

N 2

(1.3) a(u, u) =J~ |u|? ag(x) dx + Y. ay(x)dx .
o i=1 i

If all the coefficients ai(x) are weight functions, i.e. if

(1.9) a,ew(Q) for i=0,1,..,N,

then the expression (1.3) is nothing else than the square of the norm in the weighted
space

(1.5) W"Z(Q, S)
with the collection

(1.6) S ={ag, ay, ..., ay},
i.e., we have

(1.7) a(u, u) = [u]3zs -

At the same time it follows from the Holder inequality that

Lﬂ)%éu fﬁum |ﬂ(m
ou »

(Ll o009 (L]

and since the other terms in (1.2) can be estimated analogously, we eventually have

(1.8) |a(u, o)) £ (N + 1) Julls 2.5 0] 1,25 -

Inequality (1.8) and identity (1.7) show that the form a(u, v) fulfils conditions (0.3)
and (0.4) of the Lax-Milgram Lemma. Therefore, one can expect that the existence
and uniqueness of a weak solution of the Dirichlet problem in the weighted space
W'-3(Q, S) can be easily proved by applying this Lemma. Let us note that the weight
S is determined directly by the coefficients of the differential operator A.

2

mwm)’gwmmwmm

i i
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(i) Let the coefficients a; fulfil the following conditions: There exist constants c,, ¢,
such that

(1.9) a(x) < ¢,

(1.10) - afx) 2 ¢, >0

for a.e. xeQ and for i = 0,1, ..., N. Then the above mentioned approach brings
nothing new, since — as can be easily shown — the weighted space W'*((, S)
coincides with the classical Sobolev space W!'%(Q): the expression (1.7) defines

a norm which is, in view of conditions (1.9) and (1.10), equivalent to the usual norm
in W'3(Q). The application of a weighted space is purely formal in this case.

(ii) Let us assume that one or both the conditions (1.9), (1.10) are violated for some
of the functions a;(x). [Coefficients of the form

(1.11) afx) = [dist (x, I')]°,
with I' a part of the closure @ of the domain @, meas I' = 0, and with ¢ a (non-zero)
real number, may serve as a typical example of such functions: condition (1.9) is
violated for & < 0 and condition (1.10) for & > 0.] In this case, the classical Sobolev
space Wt '}(Q) cannot be used in general; on the other hand, one can use the weighted
space W'3(Q, S) and so enlarge the class of operators A for which the Dirichlet
problem is uniquely solvable. Let us note that if the conditions

(1.12) —eL‘,oc(Q) a; el (@), i=01,...,N
a;

are fulfilled in addition to conditions (1.4), then W'-*(Q, S)is a Hilbert space and the
definition of the space W, (2, S) makes sense — see Remark 0.6 (i), (iii).

(iii) Conditions (1.4) can be weakened as well: Let us assume that (1.4) takes place
only fori = 1,..., N, while for i = 0 we have

(1.13) ag(x) = —A by(x) - with 420, bye W (RQ) N L1 (R), be'eLi(Q).

Then the expression [a(u, u)]'/? in general fails to have all the properties of a norm
and consequently, the weighted space W'%(, S) can no more be introduced in
a natural way. Therefore we choose

(1-14) S = {bo, Aiy-eey aN}

and consider the spaces W»(, S) and W, (2, S) with this new collection of welght
functiops. In the same way as in part (ii) we prove that

(1.15) la(u, v)| < (N + ) Juls 25 0] 1,25

holds, so that condition (0.3) of the Lax-Mllgramm Lemma is fulfilled. It remains
to find out when condition (0.4) is fulfilled. To this end let us assume that the estimate
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2

(1.16) lu]l2.60 = CZ

ill2,a;

holds for all functions u € Wy **(®, S) with a constant ¢ > 0 independent of u. Then
we have ’

(1.17) lullt.os = Jullz.00

i.e., the expressions

(1.18) umzs—owm%

and N
(119 lezs =( 3,

are equivalent norms on W, **(, S). Making use of inequalities (1.16) and (1.17) we
obtain

a(u, u) = i

i=

2

b

sy [

2,a;
1/2
2,a¢>
Ju

2 1/2
2.“.')

0x;

6x,

i 2,a¢

6u
6x

i

du |? 2 I—Ac

0x;

= Aull2p = (L - '10)2

Hence it follows that condition (0.4) is fulfilled provided

(1.20) 0<i<lt
C

Tl

2,a; ill2,a;

In other words, for these values of A it is again possible to prove existence and uni-
queness of a weak solution of the Dirichlet problem in the space W, *(2Q, S) by virtue
of the Lax-Milgram Lemma.

[If ap = 0,i.e. A = 0, then b, may be chosen in various ways, nevertheless, always
so that the estimate (1.16) holds, which guarantees the equivalence of the norms
(1.18) and (1.19).]

The following example demonstrates that weighted spaces are useful for solving
the Dirichlet problem on unbounded domains.

1.2. Example. Consider the Dirichlet problem for the Laplace operator —A.
This is the operator from (1.1) with the coefficients ay = 0, a; = a, = ... = ay = 1.
Apparently we should do with the classical Sobolev spaces W*'*(Q) and W,'*(Q).
However, if the domain Q is unbounded, then the corresponding bilinear form

[ ou v
a(u,v)=iglj' ggd

in general fails to be W, *(Q)-elliptic, i.e., there need not exist a constant ¢ > 0
such that

a(u, u) 2 clul|} s
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holds for all functions u € Wy **(Q). This follows from the fact that for certain types
of the domains @, the expression [a(u, u)]'/? is not an equivalent norm on the space
Wy'?(R) — cf. [1]. Hence condition (0.4) is not fulfilled and the classical Sobolev
spaces cannot be used in connection with the Lax-Milgram Lemma. '

Nevertheless, it can be shown that for a suitably chosen weight function b, — e.g.
bo(x) = (1 + |x|)7, see [3] — the expression [a(u, u)]*/* will be an equivalent norm
on the weighted space W,'*(Q, S) provided we choose S = {bo, 1,2, ..., 1}.*)
Consequently, if we choose V = W, (£, S) then condition (0.4) s fulfilled and, since
the validity of condition (0.3) is obvious, we can prove the existence of a weak solu-
tion of the Dirichlet problem in the space W, (%, S).

1.3. Example. Consider a plane domain (N = 2) and choose the square (0, 1) x
x (0, 1) for the domain Q. Further, consider the fourth-order differential operator

(121) 7 ( ou )

0x, 0x, \0x, 0x,

In this case the corresponding bilinear form (0.2) is of the form

2 2
(1.22) a(wo)= [ =24 9P 4y dx,.
q 0x, 0x, 0x, 0x,

If we worked with the space V = Wg**(Q2) we should easily find out that the form
a(u, v) satisfies condition (0.3) but not condition (0.4). So the classical Sobolev space
cannot be used. Therefore, let us choose the weighted space

w23(Q,S), S={1,0,0,0,1,0}, **

i.e. the space with a norm given by the formula

(1.23) )2 25 = f lu[? dx, dx, + J
2

Q2

2

2
Ou dx, dx, .

0x4 0x,

*) In the paper [3] the inequality ¢ < — N is considered. However, it can be shown that we
can choose ¢ = —2.

**) This notation does not comply with that introduced in Sec. 0.5. It means that M =
= {(0,0), (1, D} and S= {w,, ae M}, where W(0,0)= W(1,1) = 1. Analogous notation will
be also used in the forthcoming examples: the notation S = {a, b,c,d, e, f } forN=2andk=2
will mean that the weight functions a, b, ..., f are arranged in the same order as they succes-

sively appear at the functions
du du 0%u % o%u

Uy ——, —, =5, —— :
P ox,’ ox,’ 9x}’ ox, ox,  8x3

the “‘zero™ weight functions, which do not appear in the corresponding norm at all, are written
down as well.
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It is immediately seen that condition (0.3) is fulfilled provided we choose V =
= W3*(Q, S). Thus it remains to prove that condition (0.4) is fulfilled as well, i.e.
the form a(u, v) is V-elliptic. To this end it suffices to prove that the expressions
(1.24) [a(u, w)]'* and |u...s

are equivalent norms on W;'*(®, S). Let us prove it: Since

L[:;[Z dx, dx, = L: (J:[u(xl, x,)? dxl) dx,

ou
- x 1x
6x1( 1 X2)

and since

1 1 1
u(xy, x,)|2dx; £ | |u(xy, x,)|> = dx; <
JII( x,)|* d <Jl( )P = dx, < 4
(] 0 . xf

0

2
dx,

for each function u € C§() [the former inequality follows from the fact that x € Q
and hence x,; < 1, the latter is a consequence of Hardy’s inequality — cf. (0.18) —
for p =2 and & = 0, since for every x, we have u(x,, x,) = C(0, 1) and after
extending it by zero it belongs even to C¢’(0, )], we obtain by integrating by x,

from O to 1:

(1.25) j |u|? dx, dx, < 4J' ou
2 a0

2
dx, dx, .

X1

Applying the same procedure to the function du/dx, and the variable x,, we obtain

1 du 2 Y ou 21 Y1 8% 2
P (xl’ x,)| dx; < — (xla xz) —3 dx, < 4 (xla x,)| dx,
o 10x, o 10x, x5 o |0x 0%,
that is
2 . 2, |2
j ou dx,dx, < 4 Ou dx, dx, .
a |0x, Ja |0x; 0x,

This together with (1.25) implies

2

2
Ou dx, dx, = 16a(u, u)

0x, 0x,

(1.26) J |u|? dx; dx, < 16J
Q2 Q

for every function u € C(£2) and hence also for every function u € Wy"*(Q, S). Now,
it follows from (1.22), (1.23) and (1.26) that

a(u, u) < J. Iul2 dx, dx, +‘[
9]

0%u

1 0X2

2
dx, dx, = |u|3,s < 17 a(u, u)

Q

for u € WZ*(2, S). The inequality yields that the norms in (1.24) are equivalent, as
well as that the form a(u, v) is W7**(, S)-elliptic (with the constant ).
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Consequently, there exists a unique weak solution of the Dirichlet problem for
the operator (1.21) in the space W?%(Q, S).

1.4. Remarks. (i) The weighted space W*'*(, S) from the previous example is
actually not a weighted space but rather an anisotropic one (with the dominating
mixed derivative 0*u[0x, dx,). We have chosen this example in view of its simplicity;
nonetheless, we shall present another similar example involving more complicated
weights (see Example 1.5).

(ii) In Section (0.8) we have introduced the Dirichlet problem in a completely
abstract way, by means of the spaces W*?%(@, §) and Wy'*(Q, S) without specifying
in more detail in which way we are to understand the boundary value conditions to
be satisfied. The boundary condition is expressed by condition (i) in 0.8: u — uq €
€ W*(Q, S) means that “u (i.e., the solution) behaves on dQ as u, (i.e., the given
function)”. Evidently, when the weighted spaces are involved we cannot in general
characterize the ‘“boundary behavior of the function u on Q" so satisfactorily as in
the case of the classical Sobolev spaces, when u € Wy'?(Q) means that “D’u = 0 on
0Q in the sense of traces for ly' k — 1. This is connected with the fact that a full
description of the properties of the traces of functions from weighted spaces has not
yet been available. For this reason we stop at the formulation of the Dirichlet
problem in the form from Definition 0.8, not going into its interpretation for the
time being.

1.5. Example. Considsr again a plane domain (N = 2), choosing the first quadrant
(0, 00) x (0, o0) for the domain Q. Further, consider the fourth-order differential

operator
2 2 '
a x‘;ixgz a u ) —_ _a_ (xﬁlxgz _a.u_ — i xﬂl B2 @.) .
0x, 0x, 0x, 0x, 0x4 0x,) 0x, 0x,

\

(1.27) du =

The corresponding bilinear form is
(1.28)

2 T2
a(u,v) = O o x§x3 dx, dx, + 6_u ﬁli X} x5 dx, dx, +
0 6x1 axZ axl axl. 1 :

+ gu v % x4 xb2 dx, dx, .
@ 0%3 0%,

(i) Consider the weighted space
(1.29) ‘ w*3(Q, S)
where the collection S is chosen in the following way:

- -2
(1.30) S = {x372x% 7%, 3, xx52, 0, x31x32, 0} .
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Thus the weight functions at du/dx,, du/dx, and 0*u/dx, dx, are determined directly
by the corresponding coefficients in the operator (1.27); the choice of the weight
function at the function u in the form x3'~2x32~2 is made on purpose: namely, if
8y # 1, 8, % 1, we obtain by using twice Hardy’s inequality (0.18) (for p = 2 and

¢ = 0, € = J,, respectively) the relation
(1.31)
J.‘ |y x,)| %3 72X 72 dx, dx, =j <J‘ |u(oe,x5)| x5 2 dxl) 2-2(4x, <
2

4 ) © 2 _
4 Ou

——— (x5, %2)

2
x2 )dx, x§t dx, =
6x1 0x,

T —1|2|az—11f ()

|_0%
|61 - 1| | » — 1)) J‘,, I(?x1 9%,

2
J
x§ix% dx, dx,,

which holds for functions from Cg(®2) and hence also for functions u € Wg"*(£, S).
Since the norm on W*%(Q, S) is given by the formula

lu)|3,2,s = a(u, u) + j ‘u[z x5 7257 2 dx, dx,
Q

we obi_ain by virtue of (1.31) the estimate
(1.32)  Jul32s S ca(u,u) with ¢ =[1+16(]6, — 1].]6, — 1])~2].

However, this means that the form a(u, v) is Wg'?(Q, S)-elliptic, i.., it satisfies
condition (0.4). Since it can be easily shown by means of the Hélder inequality that
the form a(u, v) satisfies condition (0.3) as well, we actually arrived at the following
assertion: If §, + 1, 6, + 1 and if the collection S is chosen according to (1.30),
then there is a unique weak solution of the Dirichlet problem for the operator 4
from (1.27) in the weighted space W2-*(Q, S).

At the same time, inequality (1.32) together with the obvious inequality |u3 . =
2 a(u, u) asserts that for 6, + 1, 6, & 1 the expressions |ul|,, s and [a(u, u)]'/
are equivalent norms on Wy'*(Q, S):

(ii) In the preceding considerations we have not at all used those parts of the
norm in W*%(2, S) that involve the first derivatives du[dx,, du[0x,. Therefore, let us
consider the problem whether the Dirichlet problem for the operator (1.27) is solvable
in the space W*'%(, §), where we put
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(1. 33) ' = {x3"2x%72,0,0,0, x}'x%, 0} .

In the same way as in part (1) we can show that the form a(u, v) is W)"*(2, S)-elllptnc
i.¢., it fulfils condition (0.4). Let us have a look at condition (0.3): If the inequality

: |a(u, )| < crl|ullz25]0]2,25
were satisfied, then
la(u, u)| < ¢, |u]3,. 5

would hold as well. This in particular would mean that for u € C3(R) we should have
the estimate
Oul?

L) 0x,
=c, [J. |u]? x3~2x%2 dx, dx, +I
2 Q 5

as well as an analogous estimate with

xPx} dx, dx, < Cl”“||§:2-s =

2

o%u

X, 0x,

x3'x32 dx, dxz]

[ e
o |0x;

on the left-hand side. However, there are counterexamples available demonstrating
that these estimates can hold only if

(1.34) =061, y2=0,—2,
ﬂ2=52, ﬁ1=51_2.

If (1.34) fails to hold, condition (0.3) is not fulfilled, either. Conversely, by Hardy’s
inequality we can show that condition (0.3) really holds provided conditions (1.34)
(and the conditions 6, % 1, §, * 1) are fulfilled.

We conclude: A weak solution of the Dirichlet problem for the operator from
(1.27) with the collection S from (1.33) exists if and only if 6, + 1, 6, + 1 and
conditions (1.34) are fulfilled.

x1x8 dx, dx,

2. DIRICHLET PROBLEM: A SIMPLE CASE

2.1. Differential operator. Let us assume that the coefficients a,, of the differential
operator A from (0.1), i.e. the operator

(2.1) , Au= Y (-1)*D*a,, D),

R LIATIE

satisfy the following conditions:

Al 7 a,.€W(R) for |of < k;
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1

A2 g € Lo(Q), € L, (@) for |of < k;

aa

A.3 there is a constant ¢; > 0 such that
(2.2) |a.5(x)| < €1 V/[3:a(x) agp(x)] forae. xe @ (|, |B] < k)

A.4 there is a constant ¢, > 0 such that for an arbitrary vector & = {&,, |a| < k}
and for a.e. x € 2 we have

(2'3) z aap(x) 5afp 2 CZ|¢|ZSkam(x) é: .

laf, 1Bl =k
Let us recall that #7(Q) is the set of weight functions — cf. Sec. 0.5.

2.2. Weighted space. We will consider the space W**(Q, S) with

(24) S = {w,(x) = a,,(x), |o| = k}

thus we choose here M = M(N, k). In view of condition A.2, W**(@, S)is a complete
(Hilbert) space and it also makes sense to define the space Wy *(Q, S).

2.3. Theorem. Let the coefficients a,z of the operator A from (2.1) be defined
on a domain Q < RN and satisfy conditions A.1—A.4. Then there is a unique
weak solution u of the Dirichlet problem in the space W**(Q, S). Further, there is
a positive constant ¢ independent of the function uy, and the functional f, such that

lulle2.s = c(luole.2,s + [f|owercasne) -

Proof. 1° By using property A.3, the Holder inequality and the definition of the
norm in the space W*%(Q, S) we arrive at the estimate

(2:5) a(u, v) §l ||Z| J‘ |as(x)| [D?u(x)| |D*(x)| dx <
al,|BlsSkJ Q2

ll/\

j DA L] D] ()] 05 5

I Is |ﬁ|5k

sa ;m( J ID2u(x)[? wy(x) dx) ( J ID%(x)]? wa(x) dx> "<

< csfulle,zs [olk,z.s

which holds for arbitrary functions u, v e W**(Q, S).

2° At the same time, inequalities (2.5) imply that the expression a(u,, v) for a fixed
uo € Wy*(Q, S) is a continuous linear functional over the space W**(Q, S) as well
as over its arbitrary subspace, thus, in particular, over the subspace V = Wg'3(Q, S).
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3° Setting &, = D%u(x) in (2.3) and integrating the resulting inequality over @,
we immediately obtain the estimate

(2.6) a(u, u) 2 c;f|ulizs
which holds for each function u € W**(Q, S) and, a fortiori, for each u € Wg*(Q, S).

4° In view of inequalities (2.5) and (2.6) we may apply the Lax-Milgram Lemma
0.3 with b(u, v) = a(u, v), V= We?(R, S) and choosing the functional g e V* as
follows:

g vy = <f, vy — afio, v) ;

here f € V* and u, € W**(Q, S) are respectively the functional and the function from
Definition 0.8 of a weak solution of the Dirichlet problem. By point 2° of our proof,
g indeed belongs to V* and by Theorem 0.3 there is a unique function w € V'such that

2.7 a(w,v) = {g,v) forevery veV.
If we now put
(2.8) u=w+ ug

then u — uy, = we V= Wg*(Q, S), i.e., condition (i) from Definition 0.8 is fulfilled.
At the same time condition (ii) from (0.8) is fulfilled, since (2.7) yields

a(u, v) = alw + uo, v) = a(w, v) + a(u,, v) =
= {g, v) + a(uq, v) = {f,v).

Consequently, the function u from (2.8) is the required, uniquely determined weak
solution of the Dirichlet problem in W*2(Q, S). Moreover, in virtue of (0.6) we have

lulle,2.s = e([wollk,2.s + [I/]ve) -

2.4. Remark. It is immediately verified that condition A.3 could be written also
in the following form:

A.3* There is a constant &; > 0 such that

(2.2%) |a.(x)] £ & [@ua(¥) app(x)] forae. xeQ
and for a % B, |af, |f| < k.

It can be shown that condition A.4 guaranteeing the V-ellipticity of the form a(u, v)
already follows from condition A.3* provided the constant &, is sufficiently small.

Indeed, we have ‘
Y a(x)8l =)+ Y 2
lal, 18] <k . a=f o*p

= Z - |Z| 2 Z aaa(x) éazr - Z laaﬂ(x) €a€ﬁ| .
a=p a*f la| sk a¥p
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The last summand is estimated by means of (2.2*) and the inequality ab < 4(a® + b?):
a;ﬂl“aﬂ(") &g = Ex;z:ﬂ\/ [2aa(2)] [&a] v/ [aps(x)] |&] =
= 40 E(0ulx) & + aglx) &) £ 4826 = 1) ¥ anl() &,
where x is the number of multiindices of length at most k. Hence

Z aaﬁ(x) éaéﬁ 2 (1 - z:1(" - 1))|a§k|au(X) 63 ’

lal,|Bl =k

which means that for

(2.8) & <

condition A.4 is fulfilled, i.e. inequality (2.3) with the constant ¢, = 1 — &(x — 1)
holds.

2.5. Weakening conditions A.1—A.4. Conditions A.1—A.4 represent the simplest
assumptions that essentially immediately yield the existence theorem. Since they are
simple, they are very rough, too. Let us therefore present some (again rather obvious)
generalizations of these conditions.

(i) It is evident that all the preceding arguments remain valid if some of the
coefficients a,, vanish. Thus condition A.1 can be replaced by the following one:

A.1* Denote by M the set of those multiindices « € M(N, k) for which a,, € #7(<Q),
and let agy(x) = O for B ¢ M. Let the set M contain at least one multiindex of
length k and let the expression

(29) lulns = ( J' |D%u[? a,4(x) dx)

be a norm on the space W**(Q, S) with the collection

]2

(2.10) S = {w,(x) = a,(x), xe M} .

a € M and that it suffices to perform the summation on the right-hand side of (2.3)
only over o € M. Remark 2.4 remains valid, too, with the only change consisting in
replacing the number x in (2.8) by the number of multiindices in the set M.

(ii) Let us pass back to the space W*%(Q, S) from Sec. 2.2 and let us assume that
the expression

@) lhas = ( 5, [ Pt v 0z)
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where the sum is taken over a certain subset M, = M(N, k), is again a norm
on the space Wy'*(€, S), equivalent to the original norm |u]; , s. Then condition
A.4 may be replaced by a weaker condition

A.4* There exists a constant ¢ > 0 such that for any vector ¢ = {f,, a] < k}, the
inequality
(2'12) Z aaﬁ(x) éaiﬁ ; (:; Z aaa(x) 63
lo,18] <k acM;
holds.

(iii) The collection S of weight functions from (2.4) is determined directly by the
‘““diagonal” coefficients a,, of the operator A. Consider now another collection

(2.13) § = {W(x), |o] £k, w,e w(Q)},
which possesses the following property: the spaces
' We%(Q,S) and W(Q, 5)

are different (in the sense that the norms |jul), , s and |u], .5 are not equivalent),
but the identity

(2.14) Wy (Q, S) = Wy*(@, 5)

holds (in the sense that the both norms just mentioned are equivalent on the set
C3(Q)). Since we take the space Wy'*(Q, S) for the space V'to which we apply Theorem
0.3, we may, in view of (2.14), use the collection S as well.

The advantage of this approach consists in the fact that it allows of greater varia-
bility in the choice of the function u,, which represents the boundary conditions.
In fact, it may happen that the given function u, does not belong to the space
W*%(Q, S) but it does belong to W**(Q, §). Naturally, we have to solve the Dirichlet
problem in that space to which u, belongs; this means, in this case, in the space
we3(Q, §).

L=t us notice that, if the function u, simultaneously belongs to two different
spaces W*2(Q, S) and W**(Q, §) (the corresponding norms being equivalent on
C3(R), so that the spaces Wy'*(2, S) and W§'*(Q, S) coincide), we can solve the
Dirichlet problem in the former as well as in the latter space. In both cases we obtain
the same solution, for we construct them by means of a uniquely determined func-
tion we W§X(Q, S) = Wy*(Q, S) (cf. identity (2.8)).

Concerning the choice of the function u,, see Example 2.6.

(iv) The choice of two diffzrent collections S and § that give the same “‘nulled”
space, described in part (iii), allows of greater variability also in the coefficients of the
operator A: in virtue of the eqvivalence of the norms on the ““nulled” spaces we can
replace some of the inequalities (2.2) and (2.3) by the corresponding inequalities of

the type :
(2.15) ' |aes(x)| < 1 /[Fa(x) W5(x)] .
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(2.16) Y ag(x) &gy 2 IO

lol,18l =k

2.6. Example. Consider a plaﬁe domain (N = 2) and take the halfplane {(xx. x2)s
X; > 1} for Q. Further, consider the operator

Au:.__a_ xz-za_u _._a_ xia_u +u
0x, 0x, 0x, 0x,
By Sec. 1.1, the weighted space corresponding to this operator is the space W’ 'Z(Q, S)

with the collection
S={1,x3%x3}.

If we consider still another system
§={x73?x;%x3},

we have Wh3(Q, S) £ Wh*(Q, §), since e.g. the function ug(xy, x;) = (x5 + 1)7!
belongs to W'*(Q, §) but not to W'*(Q, S). On the other hand, Wy'}(2, S) =
= W,'*(Q, §) since the respective norms are equivalent as a consequence of the
inequalities

ﬂ |u|? x33/% dx, dx, < H |u|? dx, dx, < 4H
Q Q2 Q

which are valid for every u e C3() (ths first inequality follows from the fact that
x; > 1 for (x4, x;) € @, the other is a conszquence of Hardy’s inequality (0.18) with
respsctto x, for p = ¢ = 2).

Let us now solve the Dirichlet problem with the boundary condition given by the
function ug(x,, x;) = (x5 + 1)7*. As ug ¢ W-*(Q, S), w2 cannot look for a solution
in this space, but we can look for it in the space W'*(Q, S).

du

0x,

2
x3 dx, dx,,

3. DIRICHLET PROBLEM: MORE COMPLICATED CASE

3.1. In Chap. 2 we worked with a collection S whose elements were determined by
the ‘‘diagonal” cozfficients of the opzrator A. In Sec. 2.1 we assumed that all the
coefficients a,, bslong to #7(2) (condition A.1), and we wzakened this condition by
admitting that some of the cozfficients a,, vanish (condition A.1*). Nevertheless, as
is seen e.g. from Example 1.1 (iii), cosfficients a,, which are negative or change they
sign are admissible, too, though they neither belong to % (Q) nor vanish identically.
Howezver, it is necessary for us to be able to estimate the terms that correspond to
these cosfficients in the norm of the space W*?(Q, S) by the other terms, that is,
we have to be able to determine certain coefficients that are decisive. The situation
is similar to that occuring in the case of classical elliptic equations: in this latter
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case we use the classical Sobolev space W**(Q) and the decisive coefficients in the
Dirichlet problem are the coefficients a,, with |a| = k, i.e. the coefficients of the
highest order.

In our general case it is not so easy to determine the decisive coefficients; there has
to be at least one coefficient of the highest order among then. However, as Example
1.5 demonstrates, in some cases we cannot do without terms with coefficients a,,
of “lower orders”, i.e. with [al < k. Let us formulate these considerations a little
more precisely.

3.2. Coefficients of the differential operator and the weight function. Let us
again consider the differential operator 4 from (2.1) and let us denote by M, the set
of such multiindices « € M(N, k) for which a,, € #/(Q). Let the following condition
be fulfilled:

B.1 The set M, contains at least one multiindex of length k; moreover, a,, € L} (?)
for ae M,. ’

Let us now choose a set M; = M, so that

B.2 for o € M,, there is a constant & > 0 such that
(1) Dl 58 % D2,
YeMy

holds for all u € CZ(R).
Denote the sum on the right-hand side by |||u/|4,, i-.

62) il = (5, 1Dl

The expression l”l”m possesses all the properties of a seminorm.

The set M, can be chosen in various ways; condition (3.1) will be certainly fulfilled
if we set M; = M,. However, we shall naturally strive for choosing the set M,
as small as possible; practically this means that we try to estimate the greatest
possible number of terms of the form |D*u|3 , by combinations of the smallest
possible number of analogous terms with other multiindices. When doing this we
will assume that the set M, chosen satisfies the following conditions:

B.3 1. L}, (Q) for aeM,;

B.4 there exists a constant ¢; > 0 such that
(3.3) |a:5(x)| S €1 V[aua(x) ags(x)] for ae. x € @ and for @, fe My;

B.5 there exists a constant ¢, > 0 such that
(34) . a(u, u) 2 csf]jul|a,
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holds for all functions u € C3 (), where a(u, v) is the bilinear form corresponding
to the operator 4 — cf. (0.2).

Now let us choose a set M; = M(N, k) — M, and weight functions w, € ‘//ﬁ(ﬂ)
or « € M, so that they satisfy the following conditions: L

i
B.6 W, € L},(?) and 1. L (Q) for aeM,;
w

loc
a

further, there is a constant c, > 0 such that for all u € C(€2) the inequality

(3.5) D] . = |l
holds.

B.7 For every pair «, € M; U M, there is a constant c,; > 0 such that

(3-6) |8.5(x)] S cop V[We(¥) we(x)] forae. xeQ;
here we put

(3.7) wy(x) = a,(x) for yeM,.
Ifa¢ M; UM, or B¢ M; UM,, then a,(x) = 0.

3.3. Remark. The first part of condition B.7 already includes condition B.4.
Nonetheless, we have presented it explicitly, as Sec. 3.2 actually provides instructions
how to proceed in a particular case when constructing the sets M, and M, and choos-
ing the functions w, for « € M,. If we do not succeed in fulfilling condition B.4, our
theory is inpracticable and it is of no use constructing the set M, and verifying
conditions B.5, B.6 and B.7.

3.4. Weighted space. Let us now choose the set M so that
(3.8) McMcMuM,,
holds and denote S = {w,, € M} (for « € M; we choose w, accordingly to (3.7)).

Moreover, we choose the set M so as to satisfy the condition

" B.8 the space W*?(Q, S) is a (complete) Hilbert space with the norm

(3.9) - Nulle.zs = (gA”Da“"%,w.)m -

3.5. Remarks. (i) As M =M, U M,, it follows from (3.5) that for all u e CJ(£2)
the inequality

(3-10) lulé2s < eslflulllia

399



is satisfied with a constant ¢c; = 1 + ) ¢, > 0 independent of u. As M; = M, the
aeMy

converse inequality (with c¢; = 1) holds as well, which means that the seminorm
||| s, is @ norm on the space WE*(Q, S), equivalent to the norm (3.9).

(ii) 1t immediately follows from (3.4) and (3.10) that the form a(u, v) is Wg'*(2, S)-
elliptic; indeed,

(3.11) au, u) = 53 Jullz 2.

3

for all u € C3(2). Condition B.6 and, above all, inequality (3.5) thus play a crucial
role in our considerations.

Now we can state the main result:

3.6. Theorem. Let A be the operator from (2.1) and W**(Q, S) the weighted
space from Szc. 3.4. Let the coefficients a,g of the operator A and the weight functions
w, satisfy conditions B.1—B.8. Then there is a unique weak solution of the Dirichlet
problem in the space W**(Q, S).

Proof is left to the reader since it is analogous to that of Theorem 2.3. The
Wy'*(R, S)-ellipticity of the form a(u, v) follows from (3.11); conditions B.7, B.6
and B.2 then guarantee the validity of condition (0.3) of the Lax-Milgram Lemma.

3.7. Remark. When choosing the sst M we have, with regard to (3.8), a certain
liberty, so that gznerally we can construct various spaces W*?(Q, S) (more precisely,
various collections S depending on the choice of the set M). Naturally, Remark 3.5 (i)
implies that the corresponding ‘‘nulled” spaces- Wé"z(ﬂ, S) coincide for all choices
of the set M. This fact can be made use of when choosing the function u, that repre-
sents the “boundary conditions™; the situation is the same as in Sec. 2.5 (iii).

3.8. The algebraic condition of ellipticity. In Chap. 2 the W} >-ellipticity of the
form a(u, v) was guaranteed by the algebraic condition A.4 — see (2.3), while here
it was formulated in the “‘integral form” — see (3.4).

Because of the fact that the verification of algebraic conditions is sometimes easier
than of integral ones, let us introduce a certain analogue of condition A.4. Let the
following condition hold:

B.5* There is a constant ¢, > 0 such that any vector ¢ = {&,, Ia] < k} satisfies

(3.12) z}; ap(x)f fﬁ 02 z yy(x) éz

<k

for a.e. xe Q.
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First of all, it is evident that (3.12) immediately implies, by choosing &, = D*u(x)
and integrating over the set ©, the inequality (3.4), so that condition B.5 is fulfilled
provided condition B.5* is.

Of course, the algebraic condition B.5* is substantially more restrictive: it 1mme-
diately follows from (3.12) that

a(x) 2 0 ae. in Q,

for all « € M(N, k) (not only for « € M,, where the property a,, € % () was a con-
dition for constructing the set M,). Indeed, if for some B ¢ M, the coefficient ag,
was negative on a set of positive measure, then inequality (3.12) with the choice
{& = Ofora + B, £, = 1} would yield a contradiction.

On the other hand, condition B.5 admits also diagonal coefficients that are negative
or change signs — cf. Example 1.1 (iii) or the forthcoming Example 3.9.

3.9. Example. Let Q be a plane domain and let us choose

4 4 4
(3.13) au=T4_ g T L TH 550,
oxi d0xi 0x5  0x;
Thus, we now have ag; 0)2.0/(X) = (0.20.2)(X) = L, aq.1y1,1) = —24, ag5(x) =0

for the other «, § such that |a| < 2, |B| £ 2. The “diagonal” coefficient a1y
is negative and hence it does not belong to #7(Q); this is why M, = {(2, 0), (0, 2)}.
Since condition B.2 should hold, we cannot reduce the set My, hence M, = M,
Condition B.5* naturally fails to hold, since inequality (3.12) has the form

6(22,0) - 2/16(21,1) + 5(20,2) = 02(5(2?,0) + 5(20,2))

and this condition evidently is violated for &, 0y = &,2) = 0, &4,5) = 1. Non-
etheless, condition B.5, i.e. inequality (3.4), is satisfied for small A’s. Indeed,

i = [ [(52) + (B Jews
and

(3.14) a(u, u) = ||u]||Z, - uﬂ ,,(ax(izgxz)zdx‘ dx; .

Since we consider functions u € C3(£2), we can extend the function u by zero onto the
whole plane R? and integrate always over R2. Passmg to the Fourier Transform we
easily prove

(3.15)

([ o) amansif[ [GE) +(5a) e oxe = el
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Hence and from (3.14) we obtain
a(u, u) = (1 ~ A)||ufl|4, for ueCP(Q);

thuS for A < 1 condition (3.4) is fulfilled.

Let us see now how we can choose, in our case, the set M, and the weight functions
w, for @ € M,. Since agy ;)1,15(x) = —24 =% 0, the multiindex (1,1) does not belong
to My(= M,). Condition B.7 implies that necessarily (1,1) € M,, and the weight
function w(y ;) must satisfy (3.6), i.e.,

(3:16)  |=24] £ & Y[Wa.(X) wa.1)(x)] = Ewgyp)(x) forae. xeQ.

Simultaneously (3.5) must hold, that is,

Il

Taking into account (3.15) we see that this inequality is fulfilled by the weight function
Wa,1)(x) = 1, which at the same time satisfies condition (3.16), too. Thus, if we choose

M; = {(0,0), (L, 1)}, wu,y(x) =1, weox)= (ll + |x|)€

(¢ £ —2; & = 0/if the domain Q is bounded), condition B.8 will be fulfilled as well.
In view of Remark 3.7, the existence of a weak solution of the Dirichlet problem is
guaranteed in two spaces W*2(Q, S): either with the choice S = {(1 + |x|)‘, 0,0,
L,1L,1} M=M,UM,) or S={(1+[x)50,0,1,0,1} (M=mM,u{(0,0)}).
The choice M = M, is inadmissible since then condition B.8 would not hold in
general.

If the domain Q is bounded, then M, may be chosen so that M, u M, = {(0, 0),
(1,0), (0,1), (2,0), (1, 1), (0,2)} = M(2,2); here we take w,(x) = 1 for x e M,. In
this case we in fact solve the Dirichlet problem for the operator (3.13) in the classical
Sobolev space W2%(Q).

Here it has always been essential that 0 < 4 < 1. Let us note that for these values
the operator A from (3.13) is not elliptic in the classical sense, since there is a non-
zero vector ¢ such that

" wz;,qaaﬂ(x) &lp = '5(22,0) - 215(21,1) + C(zo,z) =0.

0%u

0x, 0x,

2
W, (%) dx; dx, < EHI“HI;M .

3.10. Example. Let us consider the domain as well as the operator from Example
1.3. Here M(N, k) = M(2,2) and M, = {(1, 1)}, since ay,1)1,1)(x) = 1 is the only
nonzero coefficient. We again have choose M; = M,. The reader can easily verify
(using the arguments of Sec. 1.3) that the choice

M; = {(0,0, (1,0), (0,1)} and wy(x)=1 for aeM,
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leads to the desired result, i.e., solvability of the Dirichlet problem in the cor-
responding space W*'*(Q, S) with S = {w,, e M} and M determined by the inclu-
sions

M U{(0,0}cMcM UM,.

Let us recall that the space W*'*(Q, S) from Example 1.3 corresponds to the choice
M= M, u{(0,0)}.

3.11. Example. Consider the domain as well as the operator from Example 1.5.
There we had agy 5y1,1)(%) = *3x% a1,001,00(X) = XP'XP, dgo,1y00.1) (%) = x§'x2,
and the other coefficients a,; vanished. Hence M, = {(1, 0), (0, 1), (1, 1)}. We have
shown that the choice M; = My, and M, = {(0,0)} with w o)(x) = x}' ~2x3 2
and M = M; U M, leads to the result (for 6, * 1, 6, * 1).

So far as the conditions (1.34) are fulfilled it suffices to choose M, = {(1, 1)} (i.e.,
we have M; = My, M, += M), M, = {(0,0)} with the weight function w(,o, as
above,and M = M, U M,.

If only the first or the second pair of conditions in (1.34) is fulfilled, we arrive at the
result even with the choice M, = {(0, 1), (1, 1)} or M, = {(1,0), (L, 1)}, respec-
tively, provided we choose M, and w( o) in the same way as above and put again
M=M, UM,

4. CONCLUDING REMARKS

4.1. One more example. On the half plane Q = {(x,, x,); x, > 0} let us consider
the operator

Au = —Au —i—a—u—, Areal.
x5 0x,
Here "(1,0)(1,0)("7) = a(0.1)(0.1)(x) =1, “(0.0)(0,1)(") = —A[x,. Hence My = M, =

= {(1, 0), (0, 1)}. Further,

o= [ [(2) + (2 o= 2] 2w Lo

The first integral on the right-hand side is the seminorm |||uH!,2“ ; the second integral
we estimate by the Holder inequality and by Hardy s inequality with respect to x,

for p=2and ¢ = 0:
1/2 1 1/2
IJ. —u— dxl dx,| < <jj ( ) dx, dxz) <[[ u? — dx, dx2> <
0x; X, a X3
< 2J.J- ( ) dxl de s
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so that
a(u, u) Z (1 = 2[2])[[lufla4, -

In this way we are able to prove that for l,ll < % condition B.5 is fulfilled. Let us show
that condition B.5 is also fulfilled for every 4 < 0.

Indeed, if u € C3(Q), then

and consequently

u? —\)dx, dx, =2 a—uidx, dx, — f uzizdx,dxz.
axz xl 0 ax2 X2 0 x2

" This implies
—u.— dx1 dx, =20
6x2

for every function u € C3(Q), which for 4 < 0 yields
ol ) 2 [l

Further, it can be seen that there is a number 1 = { such that condition B.5 is not
valid for all A, A = 1. Hence our theory cannot be applied to the case 1 = 1.

However, this difficulty can be avoided, if we consider, instead of the operator A,
the operator B given by the formula

Bue - 2 ()2 (auY
0x, 6x1 0x, X3

This operator is very simply connected with the operator A4:
Bu = x} Au.

Moreover, here My = M; = {(1,0), (0, 1)} and the bilinear form b corresponding
to the operator B satisfies '

- ) () o

so that condition B.5 presents no difficulties. If we choose, in addition, M, = {(0, 0)}
with W(o,o)(x) = x372, then the solvability of the Dirichlet problem for the operator B
is guaranteed in the space W''}(Q, S) with M = M; U M, and S = {x}72, x}. x3},
provided A # 1: for such 4 also condition B.6 holds, since as a consequence of
Hardy’s inequality (with respect to x, and for p = 2 and ¢ = 1) we obtain
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o, x2 dx, dx, < |H l“Mn s

(- 1)2

il S s [ o

which is inequality (3.5).

4.2. Weakening the conditions on the set M,. Let again the operator A from (2.1)
be given and let us assume that some of the ‘‘diagonal” coefficient a,; has the fol-
lowing property:

(4.1) ass(x) >0 for xeQy, 2, % Q,
a55(x) =0 for xeQ — Q;

we assume moreover that the set Q — Q, has a positive measure. Then a;; does not
belong to #(Q) and therefore & ¢ My; however, since as5(x) = 0 does not hold,
either, we necessarily have € M, and hence

(4.2) jwmw%mugwww

This inequality is a consequence of conditions B.7 and B.6: according to B.7 there is
ws € #() such that |as;(x)| £ c55 ws(x), and according to B.6 we have |D%ul3,, <
< ol ul

If condition (4.2) is not satisfied, our theory is inapplicable; nevertheless, it can
be modified in the following way: the multiindex ¢ is included in the set M, and the
set M, is again formed with help of conditions B.2 (for « = .6 condition (4.1) implies
that on the left hand side of (3.1) we actually have only the integral over ©,). The
further steps are the same as above, with our modification of the set M, manifesting
itself in the other conditions B.3—B.8: for instance, condition B.7 implies that the
coefficients a,; and a,, vanish for x € Q — Q (cf. (3.6) with w; = ag).

As an example of an operator for which condition (4.2) is violated let us introduce

the operator
64
Au = — + — —
p ( a(x ) )

x1
where a(x) is a function of type (4.1) with the following property: there is a point
X € 2, a neighbourhood U(x,) = Q, and a positive constant ¢ such that a(x) = ¢
for x € U(x,). According to the above introduced modification of our theory we then
have M, = M, = {(2,0), (0, 2)} and

- [ (o ] (50

4.3. Boundary conditions. In the weak formulation of the Dirichlet problem the
boundary condition is substituted by condition (i) from Definition 0.8, i.e. the con-
dition

u — uge Wi, S).
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The interpretation of this condition is closely connected with the characterization
of traces of functions from weighted spaces. Until now, the knowledge of the latter
has been very incomplete. This is why the interpretation we are acquainted with
from the classical Sobolev spaces (see the end of Sec. 0.2) can be transferred to the
weight spaces only to a very limited extent.

Let us illustrate this fact on the operator

5, . Ou o ([, Ou .
Au = — —[x] — ) — — | x] — ) + xju
0x, 0x,/ 0x, Jx,

considered on a plane domain Q = {(x,,x,); 0 < x; < 1,0 < x, < 1}. The weighted
space corresponding to this opzrator is W''%(, S) with the collection S = {x§, x{, x}}
and the existence of a weak solution of the Dirichlet problem in this space is guaran-
teed for every ¢ € R.

Concerning the trace of the function w e W"(Q, S) on the boundary dQ we can
assert the following facts (cf. [4], [8]):

(a) the trace w]s, exists for all ¢ < 1 (as a function from L*(99)), and fore £ —1
vanishes on I' = {(0, x,); 0 < x, < 1}, i.e. w|, =0 fore £ —1.

(b) for & = 1, the trace exists on dQ — I (again as a function from I*(6Q — I)),
while on I its existence is not guaranteed.

Conszquently, our “boundary condition” u — u, € W'*(Q, S) means that
(i) u = ug on 0Q — I for every e€ R,
(i) u = uoand u = O on I foree(—1,1) and ¢ < —1, respectively,

and there is no condition given on I for ¢ = 1 [if ¢ £ —1, condition (ii) is a con-
sequence of the identity “ol r = 0 that is necessarily fulfilled in view of (a)]. Hence
we can say that only on 0Q — I the situation is “normal”’.

We see that even in this simple case the problem of interpretation of the boundary
conditions is difficult. Evidently it will be still more complicated for higher order
equations and more general boundary functions.

Let us go back to our space W'-?(Q, S). We have stated for ¢ 2 1 the existence of
the trace is not guaranteed; indeed, we can construct such functions u(x,, x,)€
€ W'-3(Q, S) that u is not bounded in a neighbourhood of the set T, i.e.

lim |u(x,, x,)| = 0 forae. x,€(0,1).
x; -0+
Nonetheless, the bzhavior of the function u in the neighbourhood of I' can be
described more precisely: namely, for every u € W"Z(Q, S) we have

(4.3) : lim x}u(x,,x,) =0 forae. x,€(0,1),
x;—0+

where

(4.4) A>t ; L
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This concerns the case ¢ = 1; however, relation (4.3) holds even for ¢ £ —1 with A
satisfying the inequality

(4.5)

8—1<).<0.

4.4. Remark. In Szc. 4.3 we have met wzight functions and coefficients of the fol-
lowing type:

(4.6) w(x) = [dist (x, I)]*, T < Q.

Equations with such cosfficients and spaces with such weights occur most frequently
in applications. For ¢ < 0 they grow to infinity in a neighbourhood of I" and there-
fore an equation with coefficients of this type is said to have a singularity on I'. On
the contrary, for ¢ > 0 the function w(x) converges to zero for x — x, € I' and an equa-
tion with such coefficients is said to degenerate on I'. Since coefficients of the type
(4.6) ““gz=t spoiled” solely on I' = 8, there are no difficulties with condition of the
type A.2.

Quite another situation occurs if I' = Q. Under the conditions meas I’ = O the
condition w € L} (Q) is fulfilled for ¢ > 0, but for negative &’s only provided ¢ €
€ (—¢o, 0), where g, > 0 depznds on the dimension of the set I'; similarly the con-
dition 1/w e L} (@) is not fulfilled for ¢ > ¢,. Hence wz can say that for certain
sufficiently large Isl conditions of the type A.2 are not fulfilled; we speak about
strong singularity or strong degeneration on I (i.e. inside Q) and our theory is
inapplicable. Nevertheless, our method can be modified to suit even such cases.
Roughly speaking, it is necessary to consider the domain 2, = Q — I instead of Q,
so that I" then becomes part of the boundary dQ2,. We shall resume the study of these
problems, as well as of ‘“non-Dirichlet” boundary problems and of nonlinear equa-
tions in the next paper.

4.5. ' Bibliographical notes. There is extensive literature on equations of the above
described type. Above all, degenerate equations are frequently the object of study
(see e.g. [13], where a survey of results till 1966 can be found; more recent literature
is represented e.g. by [2], [6], [8], [12]). Most of these works consider degeneration
of the type “‘a power of the distance of the point x € Q from the set I' = dQ”. Our ap-
proach is more general: we admit simultaneously both degznerations and singularities
(and not only of the power type); the coefficients may “get spoiled” not only on the
boundary dQ but inside the domain Q as well, and even the case of degeneration on
sets of positive measure us possible — cf. Sec. 4.2. Moreover, we impose no restric-
tions on the domain Q. An approach similar to ours in its generality (including
the method, i.e. the use of the Lax-Milgram Lemma) can be found in [12]; in com-
parison with [12], we admit operators that are substantially more general, and our
approach is a little more systematical.
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It is the intention of the authors to develop the present topics in further papers,
including the linear equations (coefﬁcients with a strong singularity and strong
degeneration inside Q, Neumann’s problem and further types of boundary condmons)
as well the nonlinear ones.
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