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Casopis pro p&stovani matematiky, ro¥. 110 (1985), Praha

GEOMETRICAL PROPERTIES OF PROLONGATION FUNCTORS

Joser JANYSKA, Brno
(Received November 4, 1983)

In the present paper we shall study geometrical properties of prolongation functors,
Koldf [5]. Prolongation functors generalize lifting functors (= natural bundles)
in the sense of Nijenhuis [9]. The properties of the natural bundles have been
described by Epstein [1], Epstein, Thurston [2], Krupka [7, 8], Palais, Terng [10],
Salvioli [11], Terng [12] and others. We shall describe some geometrical properties
of the prolongation functors which generalize the known properties of the lifting
functors.

All objects and maps are in the category C®.

1. Let # be the category of all manifolds and maps. Let ¥ be a subcategory
of  such that every inclusion U < M, where M € On ./ is any manifold and U
is any open subset of M, is an element of Hom %. Let #.# be the category of all
fibre manifolds and all fibre manifold morphisms and let B: #.# — .# be the base
functor.

Definition 1. A prolongation functor on € is a covariant functor F from the
category € into the category & # such that the following conditions are fulfilled.

i) (the prolongation condition) B o F = idg;

ii) (the regularity condition) if f: M x P — N is a smooth map such that
f(—,z)e Hom & for all ze P and all M, N € Ob %, then a map Ff: FM x P - FN
defined by Ff(—,z) = F(f(—, z)) is also smooth;

iii) (the localization condition) for any open subset U = M, FU = py/'(U) is
fulfilled, py: FM — M is the projection, and the inclusion ipy: FU - FM is the
prolongation of the inclusion iy: U » M, i.e. Fiy = igy.

A prolongation functor on the whole category . will be called briefly a prolonga-
tion functor. If € is the category ., of all m-dimensional manifolds and their
embeddings, we shall call a prolongation functor on .#,, a lifting functor (in dimen-
sion m). If F is a lifting functor then the quadruple (FM, py, F, M) is a natural
bundle in the sense of Nijenhuis [9]. For lifting functors the prolongation property
implies the regularity property, [2]. In the case when a prolongation functors has
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values in the category ¥4 of all vector bundles and all vector bundle morphisms,
then the prolongation property implies the regularity property, [1].

Definition 2. A prolongation functor F on € will be said to be of order r if for
every f,geHom &, f,g: M — N, j.f = jig implies Ff|FM Fg|FM where
F.M = py'(x) is the fibre over x € M.

We remark that the order of any lifting functor is finite, [10].

Examples. 1. The tangent functor T which associates the tangent bundle TM — M
to a manifold M and the tangent map Tf: TM — TN to a map f: M — N is a pro-
longation functor of order one.

2. The functor T of k"-velocities which asseciates the fibre bundle T;M = Jg(R*, M)
to a manifold M and the map Tif: TzM — TyN, Tif(jse) = js(f - ¢), to a map
f: M — N is an r-th order prolongation functor.

3. The r-th order frame bundle functor H" which associates the fibre principal
bundle H'M = inv J{(R™, M), m = dim M, to a manifold M and the map H'f:
H'M - H'M, H'f(jop) = ji(fo ), to a diffeomorphism f: M — M is a lifting
functor of order r.

From Definition 2 we obtain that every r-jet A e Jy(M, N), defines a map FA:
F.M — F,N by FA(y) = (Ff)(y), ye F,M, A = j.f. If B€ J(N, P),, then the
composition of jets yields B . A € J{(M, P), and we obtain

F(B o A) = (FB) o (FA)

where the right hand side is the composition of maps FA and FB.

It is known, [2], that FR™ is diffcomorphic with R™ x S,,, where S,, = (FR™), =
= F,R™ is the fibre over the origin in R™. This difffomorphism is given by u =
= (Ft,)(s), where u € FR™, pgm(u) = x and s€ S,,. t, denotes the translation y —
— y + x. Then we have

Lemma 1. FM is a local trivial fibre manifold with the standard fibre S,,.
Proof. If (U, ¢)is a local chart on M Then we have a sequence of diffeomorphisms

. -1
Uxs, 2 s pnys i Fu
and the composed map of U x S,, into FU is also a difftomorphism, QED.

If U =« M is a coordinate chart with coordinates (x") and V < S, is a coordinate
chart with coordinates (y?), then from the diffecomorphism U x S,, & FU we obtain
local fibre coordinates (x’, y’) on U x V = FM, which we shall call adapted co-
ordinates.

Let Ae J'(M,N) and y € FM be such that «(4) = py(y), where «: J(M,N) - M
is the source projection. Then FA(y)e FN and py(FA(y)) = B(A), where
B: J'(M, N) - N is the target projection. We have the so-called associated map
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(1) Fyn:J(M,N)® FM — FN ,

where @ is Whitney’s sum over M with respect to the projections « and p,,.

Theorem 1. The associated map (1) is smooth.

‘Proof. In the first step we shall prove Theorem 1 in the special case M = R",
N = R". We note that I(m, n) = J5(R™, R"),. In the coordinates (x) on R™ and (z%)
on R", any A € L(m, n) is given by the coefficients of Taylor’s series

A | . 1 ; ;
(2 2 =aix'+ —ajx'x) + ... +—af ; x".x".
2! rt T

For S,, = FoR™ and x = 0, y = 0 the associated map (1) is in the form
(3) L(m,n) x S, > S,, w=0¢(4,s) = FA(s),

s€S,, weS,, A= jof, f(0) = 0. For any A € L(m, n) Taylor’s series (2) is a smooth
map ¥: L(m,n) x R™ — R". From the regularity condition for the prolongation
functor F we obtain a smooth map Fy: L(m,n) x FR™ — FR" and its restriction
to S,, is (3), hence the map (3) is smooth.

Now, let x e R™ and y € R" be arbitrary points. We can identify J(R™, R") with
R" x I(m,n) x R™ by the rule B = j.f ~ (y, 4, x), where Be J(R",R"),, A =
= jo(t; ' o fot,)€ L(m, n) and t, is the translation u — u + x. We have the iden-
tification R™ x S,, & FR", (x,s) =~ (Ft,)(s). Then every element Be Ji(R™ R"),
can be identified with ji(t,0 g o 2;'), g(0) = 0, and every element u € FR™ can be
identified with (Ft,) (s), pg-(u) = x, for some s € S,,. Then

FB(u) = F(ty o g o 15") (Ft) (5)) = (F1,) (FA) () = (7, #(4, 9)) »

where A4 = jig € L(m, n). Hence Fpm gn is in the form

) (B, u) = (3, 94, (Ftpgw) (W) = (Ft,) (FA((Ftypu0) (#)

which is smooth because Ft,, FA nad F t;‘:m(,,) are smooth.

Suppose that local coordinate charts (U, ¢) on M and (¥, y/) on N are such that
Fyx(J'(U, V) @ FU) c FV. With any r-jet Ae J(M,N), a(A)eU, B(A)eV, we
associate a jet from J'(R™, R"),

4= j;f"’j;(x)(w ofo (P_l) .
This map is a diffeomorphism 6: J'(U, V) - J(R™, R"). We have a sequence of maps

91 ® Fﬂ’_l
—_—

F, Fy
J(R", R") ® FR™ JU, V)@ FU—2% Fv—Y, FR",

0~' ® Fp~! and Fy are smooth and Fgm g is a composed map which is also smooth.
Hence Fy,y = Fy,y | J(U, V) ® FU is smooth, QED.
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Let (y?) be local coordinates on S,, and.(w*) local coordinates on S,. Then (3) has
the coordinate form

A __ A2 a P
wh =0 (ais L] ail...l‘,-’y )'

If (x, y?) are local fibre coordinates on FM and (27, w*) are local fibre coordinates
on FN. Then Fy y has the coordinate form

(5) wt = ‘D;'(xi, z%, a?, ceey a:"l...ir’ yp)
and Ff:z* = fa(xi)
wh = @ (xl"fa(xi)’ ofx) " _f(x) , y”) .

axt T axt L. ox*r

Equations (5) are called the equations of the prolongation functor F. If (x, y“) and
(z%, w*) are adapted coordinates, then (4) implies that ®* = ¢* and the equations of
a prolongation functor in the adapted coordinates do not depend on xe M and

zeN.
4

Example. 4. For local coordinates (x’) on M and (y*) on N, (x/, dx’ = &) are
the adapted coordinates on TM and (y?, dy” = ) are the adapted coordinates
on TN. Then the associated map Ty y:J'(M,N)@® TM — TN has the form
Tun(4,&) =neTN, n=n? = al¢’ for A = (al)e J'(M,N), & = (¢)e TM and
Tf: TM — TN is given by y? = f?(x%),

14
,,p=%gf, FeTM.
X

2. Let L}, < L(m, m) be the r-th order differential group in a dimension m. Let F
be a lifting functor of order r. Then (3) defines the map

(6) @mi Ly X Sy S,, (4,5) FA(s),

AelLl, seS,. For any two elements 4, Be L], we obtain ¢,(B, p.(4,5)) =
= FB(FA(s)) = F(Bo A)(s) = @u(B - 4,s) and ¢,(jo idgm, s) = F idgm(s) = s.
Hence (6) is a left action of the group L;, on S,,.

If M is an m-dimensional manifold, then H'M = inv Jy(R=, M) is the principal
fibre bundle with the structure group L], and the base M, which is called the holonomic
r-th order frame bundle. With any element u € H'M, u = jif, we associate a dif-
feomorphism Fu:S,, — F,M which is the restriction of Ff: FR" = FM to S, =
= FoR", x = f(0). Forany A € L}, and s € S,, we have Fu(s) = Fu((FA . FA™")(s))=
= F(u o A) ((FA™")(s5)) and hence we have the equivalence .

~ (u,8) ~ (uo A, (FATY) ().
Hence FM is the fibre manifold associated with H"M with the standard fibre S,, and
the action (6) of L;, on S,
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On the other hand, it is known, [8], [10], that if S is a left L[, -space, then the rule
which with any m-dimensional manifold M associates the associated manifold
FM := (H'M, S) and with any diffeomorphism f € Hom .#,,, f: M — M, associates
the morphism of fibre manifolds Ff: FM — FM given by Ff := (H'f, ids): (H"M, S)—
— (H'M, S), is a lifting functor of order r.

Consider the category 24,(G) (of all principal fibre bundles with the structure
group G and m-dimensional bases and morphisms of such principal fibre bundles
over diffeomorphisms). Then for any left G-space S we can define a covariant functor
S:24,(G) » FM4,(S, G)(into the category of all associated fibre manifolds with
m-dimensional bases, the standard fibre S and the structure group G and morphisms
of such fibre manifolds over diffeomorphisms) given by S(P) = (P, S) and §(¢) =
= (¢, ids), P € Ob 24,(G), ¢ € Hom #%,,(G). Then we can summarize:

Proposition 1. Any lifting functor F: M,, — F M of order r has values in the
subcategory F M ,(Sp, L), S = FoR™, and F = S, c H'. On the other hand, for
any left L!-space S the composed functor S o« H' is a lifting functor of order r.

Now, we shall prove an analogous description for an r-th order prolongation
functor. Let us define the category L. Ob L is the set of natural numbers 1, 2, ... .
Hom L(m, n) = I(m, n) = Jy(R",R"), and composition in L is given by the
composition of jets.

If F: ll > F M is an r-th order prolongation functor, we shall denote & =
= {8, S;,...}, S; = FoR'. The action 1 of the category L’ on & is defined as a system
of maps

At L(m,n) x S, > S,
which satisfy

(7) Amp(Bo A, ) = Ay (B, A (A4, 5))

for all Ae L(m,n), Be L(n, p), s€ S,. The map (3) defines such an action with
Ama(A, s) = FA(s). Hence we associate an action of the category L on & with an
r-th order prolongation functor F.

Now, consider a sequence of manifolds & = {S,, S,, ...} and an action 4 of the
category ' on &. With any m-dimensional manifold M we can associate a fiber
manifold FM = (H'M, S,,). The equivalence on (H'M, S,,) is given by

(8) (u,8) ~ (oA, A m(A™1,5)),

where ue H'M, A€ L}, s€ S,,. If f: M - N and f(x) = y, we define Ff: FM — FN
by

) Ff(u,s) = (0, Apa(v™ ' 0 Aou,s)),

where ue HHM,ve HIN, A € J;(M , N),. It is easy to see that Ff is correct. From (8)
and (9) we can deduce F(gof) = (Fg)o(Ff) for all f:M - N, g:N - P, and
F(idy) = idgy. Then F is an r-th order prolongation functor and we have proved
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Theorem 2. There is a bijective correspondence between the set of r-th order
prolongation functors and the set of actions of the category L.

3. Let F, G be two r-th order lifting functors and S = F,R™, R = G,R™. We have
the left action A of the group L], on S and the left action p of L], on R given by (6).
Consider a natural transformation @ of F into G. Then for any diffeomorphism
S M — M we have Gf o @)y = @y o Ff and rewriting it for M = M = R™, f(0) = 0,
using restriction to the fibres over the origin and notation ®gm | S = @ (Ff | S)(s) =
= FA(s) = 1(4,s), (Gf|R)(r) = GA(r) = pu(4,7), A=jif, s€S, reR, we
obtain

Pu(An( 4, 5)) = tin(A, Ou(s)) -
Hence ¢,, = Pgm | S is an L -equivariant map of the L] -space S into the L, -space R.

On the other hand, consider a left L{,-space S (or R) and an L -equivariant map
¢: S - R. According to Proposition 1 we have an r-th order lifting functor F (or G),
FM = (H'M, S) (or GM = (H'M, R)), Ff = (H'f, ids) (or Gf = (H'f, idg)) for all
M eOb A, fe Hom A, Then for any manifold M € Ob #,, we define @,;: FM —
- GM by

¢M = (idH"M: (P) .
It is easy to prove that such &@,, define a natural transformation of F into G.
Thus we have proved a result known from [7], [12]:

Proposition 2. There is a bijective correspondence between the set of natural
transformations of two r-th order lifting functors and the set of L -equivariant
maps of the standard fibres determined by these lifting functors.

Now, we describe analogous properties of natural transformations of r-th order
prolongation functors. Consider two r-th order prolongation functors F and G.
A natural transformation @ of F into G is called projectable if ®,,: FM — GM is
a base-preserving morphism for all M € Ob .#. We shall consider only projectable
natural transformations.

Consider an action A4 of the category I’ on & = {S;, S,,...} and an action p
of L on # = {Ry, R,, ...}. A sequence of maps ¢;: S; - R; which satisfy

(10) PolAmon(45 5)) = Hin (A Om(s))
for all se S, A€ L’(m, n) will be called a covariant map of the action A into the
action pu.

For any morphism f: M — N and a natural transformation of F into G we have the
following commutative diagram:

4
FM— M .GM

Ff Gf
¢N

FN GN
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If M=R", N=R", f(0) =0, then using restriction to the fibres S, = FoR",
R, = GoR™, we have (Gf|R,)o(Prn|Sn) = (Pan|S,)o (Ff|S,) and from the
definition of FA and GA, A = jif, using the notation ¢,, = Pgm | S,, we have

(11) GAo(pm=¢noFA.

(3) defines the action A (or ) of L on & = {F,R',F,R? ..} (or # =
= {GoR', GoR?,...}) by A, (A, s) = FA(s) (or pm.(A,r)= GA(r)) for all Ae
€ L(m, n), se S,, (or r e R,,). Then rewritting (11) we have (10), which means that
@m = Pgm | S, defines a covariant map of 4 into .

On the other hand, consider an action A (or p) of the category L on asystem
& ={51,S,,...} (or #={Ry,R,,...}). According to Theorem 2 we have the
r-th order prolongation functor F (or G) given by the action A (or p). Consider a co-
variant map ¢ of A into p given by a sequence of maps ¢;: S; — R; satisfying (10).
Then with any M € Ob .# we asociate a morphism @,,: FM -» GM defined by

@y (H'M, S,,) > (H'M, R,), @y := (idurss, @),

m = dim M. Then it is easy to prove that &,, defines a natural transformation ¢
of the functor F into the functor G.
Thus we have proved

Theorem 3. There is a bijective correspondence between the set of natural trans-
formations of two r-th order prolongation functors and the set of covariant maps of
actions of L' given by these prolongation functors.

4. Let n: Y - X be a fibre manifold. f: X — X is a map. Denote by f'Y the induced
fibre manifold over X, ie. f'Y = {(X,y)e X x Y, f(X) = n(y)}. Then we have the
canonical morphism of fibre manifolds fy:f'Y— Y over r given by fy()?, y) =
= y € Y, The restriction of fy to the fibre over X is a diffcomorphism. If g: X — X
is another map we have the well-known identity (f - g)' Y = g'f'Y.

Consider two fibre manifolds =,: Y; = X, =n,: Y, - X with the same base and
a base-preserving morphism ¢: Y; —» Y,. Let f: X — X be a map. Then we define
the induced morphism of fibre manifolds f'o: f'Y; - f'Y, by the rule (%, y)+—
= (%, ¢(»)), where ,(y) = f(X). Then

(12) froof'o = 0ofy,.

Now, we describe some properties of prolongation cofunctors, [3].

Definition 3. A prolongation cofunctor F: M — FM is a rule transforming any
manifold M into a fibre manifold py: FM — M and any map f:M — N into
a base-preserving morphism

Ff:f'FN - FM
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such that
Fidy = idpy forallM and F(gof) = Ffof'Fg

forall f:M —» N and g: N — P, '

A prolongation cofunctor is said to be of order r if j,f = j.g implies Ff | (f 'FN),c =
= Fg | (f'FN)..

For any r-jet Ae Ji(M,N),, A = j.f, we can define a map FA: F,N - F.M by
(13) FA:=Ffo(fen |(f'FN))™".
If Be J(N, P),, B = j;g, we have

Lemma 2. F(B o A) = FA . FB.

Proof. From (13) we obtain

F(B o 4) = Ff < (/'Fg) o Uyee | (F'9'FP))" o (922 | (4'FP),) "
and using (12) we have Lemma 2, QED.
With any 4 € J3(M, N), and g € F,N we can associate FA(q) € F,M. Hence we can
define an associated map

(14) Fyn: FN @ J(M,N) - FM ,

where @ is Whitney’s sum with respect to the projections py and f. Using the same
methods as in Theorem 1 we can prove that (14) is smooth.
Let (IZ)°” denote the dual category of L. Denote & = {FoR', F,R?, ...}, FR' =
= S, then (14) defines an action of the category (L)’” on &
@Ompn: Sy X L(m, n) > S,

given by ¢, (s, A) = FA(s), A€ L(m, n), s€ S,. It is easy to see that

(15) PS> B o A) = @ (@0 o5, B), 4)

for Be L(n, p), s€ S,.

On the other hand, let ¢ be an action of the category (L’)"” on some system & =
= {S}, S,,...}. Hence we have a system of maps ¢, ,(—, A): S, > S,, 4 € L(m, n),
satisfying (15). Denote by @, the left action of L}, on S,, defined by ¢,(4,s) =
= @mm(s,A”") and by FM = (H'M, S,,) a fibre manifold associated with H"M
with respect to the action @,,. The equivalence on FM is given by

(16) (u,8) ~ (uo A, $(A7",5)) = (oA, @puls, 4)).

Now, let Ae J(M,N),, A=j.f, ue H;M, ve H)N, then v™' o A o u € L(m, n)
and we can define the map

FA:F,N - F,.M
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by
(17) FA(v,s) = (u, @ o(s, v 0 A o u1)),

where se S,. It is easy to prove that this map is correct and satisfies F(Bo A) =
= FA, FB.
Now, we define Ff := FAo fey: f'FN - FM, and from (12) we obtain

F(gof) = Ffof'Fg

for all B = jig and F(idy) = idgy. The correspondence M — FM, (f: M — N)
+ (Ff: f'FN — FM) is an r-th order prolongation cofunctor.
Thus we have proved

Theorem 4. There is a bijective correspondence between the set of all r-th order
prolongation cofunctors and the set of all actions of the category (L)’".

5. In this section we shall deal with the composition of prolongation functors
To this end we need the concept of fibre jets defined by Koldf [6]. Let Y — X be a fibre
manifold and N a manifold. We say that two maps f, g: Y - N have the r-th order
fibre contact at x € X, if j,f = jig for all y € Y,. Such an equivalence class j;f will
be called a fibre r-jet of Y into N. Given other fibre manifolds W— Z and U - V,
and provided f: Y — Wand g: W — U are morphisms of fibre manifolds, then we can
define

(J:9) o (ief) = idg o ) » f(Xa) = W,.
Lemma 3. Let F be an r-th order prolongation functor. If j.*f = j.*°g then
JxFf = jiFg for any f,g € Hom /.

Proof. From (5) we have, in adapted coordinates (x‘, y?) on FM and (2% w")
on FN, the following expression for Ff, Fg:

Ff: z* =f“(x,y), wt = F* (% .. -L. ’yp)

s 3 * :
ox* ox't ... ox'r

aga arga
Fg:z* = g*(x,y), w=F =, ..., ———,)").
g g°(x.5) <6x' ox" ... 0x"r y)

JxFf = j;Fg if and only if j,Ff = j;Fg for all y € F,M. The coordinate expression
of jiFf (or Jj3Fg) is given by partial derivatives of Ff (or Fg) with respect to x!, yP up
rt+s

to order s and from the coordinate expression it follows that if j.*°f = j~*°g, then
JyFf = j;Fg for all ye F.M, QED.

Theorem 5. Let F be an r-th order prolongation functor and G an s-th order
prolongation functor. Then the composed functor GF is an (r + s)-th order pro-
longation functor.
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Proof. It is easy to prove that GF is a prolongation functor. We shall prove that
r+s

GF is of the (r + s)-th order. F is of order r and according to Lemma 3, j.*5f = j;
implies jiFf = jiFg for all f, g e Hom ./, f, g: M — N. G is an s-th order prolonga-
tion functor, hence jiFf = j}Fg implies G(Ff)| G,FM = G(Fg) | G,FM for all ye
e FM. But from jiFf = jiFg we have jiFf = ],Fg and hence G(Ff) | G,FM =
= G(Fg) | G,FM for all y € F,M. Consequently GFf | GF.M = GFg | GF,M, QED.

Example. 5. J* is an s-th order prolongation functor on ## < # which as-
sociates J°Y — Y with a fibre manifold Y — X and Jf: J°Y - J*Y over (f, fo) given
by J(j5y) = jjem(f oV ofo ') with a morphism of fibre manifolds f: Y — Y over
the diffeomorphism f,: X — X. If F is an arbitrary r-th order lifting functor, then J°F
is an (r + s)-th order lifting functor.
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